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ABSTRACT

In this paper, we analyze the difficult problem of estimat-
ing low fundamental frequencies from periodic signals, like
those produced by musical instruments. The problem arises
when the fundamental frequency is low for a given number
of samples as this causes the harmonics to overlap in the fre-
quency domain. Moreover, we demonstrate how the perfor-
mance of estimators can generally be improved by avoiding
the asymptotic approximations that are commonly used in,
for example, the harmonic summation method.

Index Terms— Pitch estimation, fundamental frequency
estimation, spectral estimation

1. INTRODUCTION

The problem of estimating the fundamental frequency of a
periodic (or approximately periodic) signal is one of the clas-
sical problems in speech and audio processing, as the funda-
mental frequency can be used in a myriad of applications,
including coding, analysis, tuning, transcription, enhance-
ment, and separation. Among the methodologies that have
been employed to this problem maximum likelihood, least-
squares, auto-/cross-correlation and related methods, linear
prediction, filtering, and subspace methods can be mentioned
[1–8]. For an overview, we refer the interested reader to [9].
Most of the commonly employed methods are based the as-
sumption that the harmonics of periodic waveforms are well-
separated in the spectrum, meaning that they do not over-
lap significantly. This assumption is, however, not accurate
when the fundamental frequency is low for a given number
of samples. It is, though, the case for any non-zero funda-
mental frequency for an infinite number of samples, and the
assumption can hence be seen as an asymptotic approxima-
tion.

In this paper, we will analyze the problem of estimating
low fundamental frequencies by avoiding the aforementioned
asymptotic approximation in a) the computation of estima-
tion bounds, more specifically the Cramér-Rao lower bound
(CRLB) for the problem at hand, and in b) a specific estima-
tor, namely the nonlinear least-squares (NLS) method. Both
can then be said to be exact. The CRLB reveals the nature

of the problem and quantifies what is to be expected while
the NLS method demonstrates what can be achieved with an
actual method.

The remainder of the paper is organized as follows: In
Section 2, we introduce the signal model, define the problem
of interest and derive an expression for the CRLB for it. In
Section 3, we then derive an exact estimator based on the
NLS method. Finally, we present some simulation results in
Section 4 before concluding on our work in Section 5.

2. MODEL, PROBLEM, AND BOUND

We will now proceed to define the problem of interest and
the associated signal model. The observed real signal x(n)
is composed of a set of L sinusoids having frequencies that
are integer multiples of a fundamental frequency ω0 > 0,
real amplitude Al > 0, and phases φl ∈ [0, 2π). Aside from
the sinusoids, we assume that an additive noise source e(n)
is present. This noise source represents all stochastic signal
components, even those that are inherent and important parts
of natural signals. It is here assumed to be white and Gaus-
sian distributed having variance σ2. Mathematically, the ob-
served signal can be expressed for n = 0, . . . , N − 1 as

x(n) =

L∑
l=1

Al cos (ω0ln+ φl) + e(n). (1)

The problem is then to estimate ω0 from x(n). For a given L,
the fundamental frequency can be in the range ω0 ∈ (0, πL ).
Regarding the remaining unknown parameters, some com-
ments are in order. The model order, L, (also referred to as
the number of harmonics) can be found in a variety of ways
(see [9] for a review of these), and it is possible to solve
jointly for the fundamental frequency and the model order.
Once the fundamental frequency and the model order L has
been found, the corresponding phases and amplitudes can be
found using one of the existing amplitude estimators [10].
Compared to the problem of estimating the fundamental fre-
quency, this is fairly easy, as these parameters are linear.

An estimate θ̂i of the ith real parameter θi of the param-
eter vector θ is unbiased if its expected value the is identical
to the true value. The CRLB is a lower bound on the variance
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of such an estimate, and it is given by var(θ̂i) ≥
[
I−1(θ)

]
ii

.
Here, the notation [I(θ)]il means the ilth entry of the matrix
I(θ) and var(·) denotes the variance. Furthermore, I(θ) is
the Fisher information matrix. For the case of Gaussian sig-
nals with x ∼ N (µ(θ),Q) where Q is the noise covariance
matrix (which is not parametrized by any of the parameters
in θ) and µ(θ) is the mean, the likelihood function is given
by

p(x;θ) =
1

det (2πQ)
1
2

e−
1
2 (x−µ(θ))TQ−1(x−µ(θ)). (2)

For this case, Slepian-Bang’s formula can be used for deter-
mining a more specific expression for the Fisher information
matrix. More specifically, it is given by

[I(θ)]nm =
∂µT (θ)

∂θn
Q−1 ∂µ(θ)

∂θm
. (3)

For the problem and signal model considered here, the in-
volved quantities are Q , σ2I, µ(θ) , Za and

x , [ x(0) · · · x(N − 1) ]
T (4)

θ , [ ω0 A1 φ1 · · · AL φL ]
T

Z , [ z(ω0) z∗(ω0) · · · z(ω0L) z∗(ω0L) ] ,

a ,
1

2

[
A1e

jφ1 A1e
−jφl · · · ALejφL ALe

−jφL
]T

z(ω0l) ,
[
1 ejω0l1 · · · ejω0l(N−1)

]T
.

Note that for colored noise, the present derivations and re-
sults still hold provided that pre-whitening is applied. In re-
lation to the problem at hand, some observations about the
nature of the matrix Z can be made: Firstly, for ω0 6= 0 and
ω0 ∈ (0, πL ), Z has full rank. However, for ω0 = 0, it will
be rank deficient and as ω0 → 0, the condition number of Z
will tend to infinity and the involved estimation problem is
basically ill-conditioned.

With the above in place, we now have to determine the
following derivatives:

∂µ(θ)

∂ω0
=

∂Z

∂ω0
a,
∂µ(θ)

∂Al
= Z

∂a

∂Al
,
∂µ(θ)

∂φl
= Z

∂a

∂φl
, (5)

which are given by

∂Z

∂ω0
=

[
∂z(ω0)

∂ω0

∂z∗(ω0)

∂ω0
· · · ∂z(ω0L)

∂ω0

∂z∗(ω0L)

∂ω0

]
∂z(ω0l)

∂ω0
=
[
0 jlejω0l · · · j(N − 1)lejω0l(N−1)

]T
. (6)

and ∂Z
∂ω0

a , α0, Z ∂a
∂φl

= −Al Im
{
ejφlz(ω0l)

}
, γl,

and Z ∂a
∂Al

= Re
{
ejφlz(ω0l)

}
, βl. Here, Re {·} and

Im {·} denote the real and imaginary values, respectively.
The Fisher information matrix can now be expressed as

I(θ) =
1

σ2



αT0 α0 αT0 β1 αT0 γ1 · · ·
βT1 α0 βT1 β1 βT1 γ1 · · ·
γT1 α0 γT1 β1 γT1 γ1 · · ·

...
...

...
. . .

βTLα0 βTLβ1 βTLγ1 . . .
γTLα0 γTLβ1 γTLγ1 . . .


. (7)

The CRLB can now be determined numerically by comput-
ing the inverse of this matrix and inspecting its diagonal el-
ements. The simple closed form expressions for CRLBs ob-
tained in [6, 9] can be found using the asymptotic orthog-
onality of complex sinusoids in computing the inner prod-
ucts above. However, we here do not employ this approx-
imation, and we therefore refer to this CRLB as the exact
CRLB. For reference, the asymptotic CRLB for the prob-
lem at hand is given by var(ω̂0) ≥ 24σ2/

(
N3
∑L
l=1A

2
l l

2
)

.
The lower bound can be seen to be determined by the so-
called pseudo signal-to-noise ratio (PSNR) defined (in dB)
as SNR = 20 log10

∑L
l=1A

2
l l

2/σ2 [dB].

3. AN EXACT ESTIMATOR

We will now move on to deriving an estimator for solving
the problem of interest without making use of the commonly
used asymptotic approximations. The method is the NLS
method, which is based on the principle of maximum likeli-
hood estimation. The maximum likelihood estimator for the
parameters θ is given by

θ̂ = argmax
θ

ln p(x;θ). (8)

Under the assumption that x is Gaussian distributed and the
noise is white, i.e., x ∼ N (µ(θ), σ2I) , the likelihood func-
tion is given by (2). By inserting (2) into (8), we obtain:

θ̂ = argmin
θ

N

2
ln
(
2πσ2

)
+

1

2σ2
‖x− µ(θ)‖2 , (9)

where ‖·‖2 denotes the vector 2-norm. Dropping all constant
terms and multipliers, we are left with

θ̂ = argmin
θ
‖x− µ(θ)‖2 . (10)

Using the definitions in Section 2, this results in the follow-
ing estimator:

(ω̂0, â) = argmin
ω0,a
‖x− Za‖2 . (11)

Substituting the amplitudes by their maximum likelihood es-
timate, we obtain the following estimator, which depends
only on ω0:

ω̂0 = argmin
ω0

∥∥∥x− Z
(
ZHZ

)−1
ZHx

∥∥∥2 , (12)
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which can be written more compactly using the orthogonal
projection matrix for the space spanned by the columns of Z

given by Π = Z
(
ZHZ

)−1
ZH as

ω̂0 = argmin
ω0

‖x−Πx‖2 = argmax
ω0

xTΠx. (13)

This is the estimator that we will here refer to as the NLS esti-
mator. For each fundamental frequency candidate it involves
operations of complexity O(L2N + L3 + LN2 +N2). The
harmonic summation method [1] follows from this by using
that the columns of Z are orthogonal asymptotically inN [9].
Although this leads to a fast implementation based on the fast
Fourier transform, this ultimately also leads to the failure of
this method for low ω0 and N . We will refer to this method
as approximate NLS (ANLS).

4. SOME RESULTS

We will now proceed to report some simulation results. First,
we will investigate the dependency of the performance on
the number of samples, N , and the fundamental frequency,
ω0. We will compare the performance of the exact NLS
method to a number of state-of-the-art methods from [4, 9],
namely the ANLS method, a method based on optimal fil-
tering (OPTFILT), and a subspace method (MUSIC), and the
weighted least-squares (WLS) method of [3], all of which are
based on asymptotic approximations. To assess the perfor-
mance, we use the mean squared estimation error (MSE) and
use Monte Carlo simulations in which signals are generated
using (1) with the following details: white Gaussian noise is
added at a PSNR of 40 dB, Rayleigh distributed amplitudes
along with uniformly distributed phases with five harmonics
are used, and 100 trials are generated for each data point.
The results are depicted in Figures 1(a)-1(b) (along with the
exact CRLB) as functions of N for ω0 = 0.3129 (a) and
as functions of the fundamental frequency with N = 100
(b). It can clearly be seen from the figures that the meth-
ods based on asymptotic approximations fail when the num-
ber of samples and/or the fundamental frequency is low. It
can also clearly be seen that the NLS method performs much
better under these circumstances. Regarding the CRLB, an
interesting observation can be made from Figure 1(b): the
asymptotic CRLB does not depend on ω0, but the exact
CRLB can clearly be seen from the Figure to vary with ω0

when it approaches zero. This is another clear indication that
the asymptotic approximation used to derived the asymptotic
CRLB is incorrect in this case, and it should hence not be
used as a benchmark for low fundamental frequencies.

Next, we will illustrate the problems associated with low
fundamental frequencies using a recorded signal, namely 100
ms of a tone played by a contra bassoon sampled at 44.1 kHz
with noise added at a signal-to-noise ratio of 40 dB. The sig-
nal is shown in Figure 2(a). In studying the effect of the low

fundamental frequency on the ability to obtain accurate esti-
mates, the segment length is varied from 5 ms to 100 ms in
steps of 5 ms, and the various estimators are then run on the
resulting segments. We note that the number of harmonics
was determined by visual inspection of the spectrum. The
results are shown in Figure 2(b) for the same estimators as
before. A number of interesting observations can be made
from the figures. Firstly, all estimators converge to the same
result when the segment length is increased. It can also be
seen that all the methods break down eventually when the
segment lengths get extremely short, but the increased ro-
bustness of the exact NLS towards this is also evident.

5. CONCLUSION

In this paper, we have analyzed the problem of estimating
low fundamental frequencies. We have derived an exact ex-
pression for the Cramér-Rao lower bound and an exact esti-
mator for finding the fundamental frequency. These avoid the
asymptotic approximations that are commonly used in fun-
damental frequency estimators. Simulations clearly demon-
strate the importance of this, as the exact estimator outper-
forms state-of-the-art methods for low fundamental frequen-
cies and a low number of observations, and the exact bound
can be observed to depend on the fundamental frequency. Fu-
ture work includes avoiding such assumptions in other esti-
mators, as these too may benefit from the principles intro-
duced here.
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Figure 1: Performance measured in terms of the mean square estimation error (MSE) as a function of (a) the number of samples,
N , and (b) the fundamental frequency, ω0.
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Figure 2: Example of a signal having a low frequency, here a tone played by a contra bassoon. Shown are (a) its spectrum for
low frequencies computed from 100 ms, and (b) the obtained estimates as functions of the segment length.
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