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Abstract
This paper describes a novel approach to improve monoau-
ral speaker identification where two speakers are present in a
single-microphone recording. The goal is to identify both of
the underlying speakers in the given mixture. The proposed
approach is composed of a double-talk detector (DTD) as a pre-
processor and speaker identification back-end. We demonstrate
that including the double-talk detector improves the speaker
identification accuracy. Experiments on GRID corpus show that
including the DTD improves average recognition accuracy from
96.53% to 97.43%.
Index Terms: speaker identification, double-talk detection,
single-channel, Gaussian mixture models.

1. Introduction
Speaker recognition systems have evolved to reach high accu-
racy on clean speech signals [1]. However, speaker recognition
under adverse conditions remains a challenging problem. De-
pending on the noise type and the way that it affects the speech
signal, the more complicated methods are required to handle
speaker recognition task. One of the most challenging cases
are speech signals mixed with other speech signals known as
monaural speech. This happens in such applications as single-
channel speech separation [2] where accurate speaker identifi-
cation is crucial for the entire system. Here we consider the task
of identifying both of the speakers’ identity in a given speech
mixture of two speakers. Current approaches for handling this
task are combined with speech separation where we cannot say
exactly there is a stand-alone speaker identification system for
monaural speech [3]. We have recently independently proposed
methods for both speaker identification (SID) [4] and speaker-
dependent double-talk detection (DTD) [5] for speech signals
mixture. Our proposed method [4] does not depend on speech
separation but it works directly on monaural signal without any
prior information about mixing scenario of the two speech sig-
nals. In this work we improve the SID accuracy by introduc-
ing external information of mixed frames and single-talk frames
provided by enhanced version of proposed DTD module in [5].
A block diagram of the proposed system is shown in Fig. 1.

Majority of the current single-channel speech separation
systems use a priori knowledge of speaker identities [6] which
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Figure 1: The proposed method is composed of a double-talk
detector followed by SSR-independent speaker identification.

is both impractical and restrictive regarding real applications.
A joint system composed of speaker identification and speech
separation blocks was proposed in [7] for relaxing the need for
a priori speaker identities. The proposed system [7] improved
the overall perceived speech quality of the separated output sig-
nals compared to speaker-independent and the observed speech
mixture. To make speaker identification system more efficient,
in this work, we introduce gender-dependent DTD and apply it
to monaural SID.

State-of-the-art single channel speech separation (SCSS)
systems use a model-based SID module known as Iroquois [3]
to identify the speakers in monaural speech. Recognition accu-
racies as high as 98% and 99% were reported on GRID corpus
for Iroquois in [2,8] for locating the target speakers in short-lists
of top-2 and top-3 most probable speakers respectively. In the
Iroquois system, a short-list of the most likely speakers is pro-
duced based on frames dominated by one speaker. This short-
list is then passed to a max-based EM algorithm for estimat-
ing both the signal-to-signal ratio (SSR) and the identities of
the two speakers using exhaustive search on codebooks created
for speech synthesis [3]. Based on the sizes of the short-list
and code-books, this search can be time consuming. It is im-
portant to notice that if we wish to apply Iroquois system on a
conversational mixed speech, it also requires a reliable speech
separation system to produce meaningful results. Independent
performance of our proposed method could be considered as a
bonus in this situation. In view of this problem, the proposed
system could also be used as a pre-processor for Iroquois sys-
tem to reduce the search time.
The new contributions in this study are summarized as follows.
We include a sophisticated MAP-based double talk detector
(DTD) to our recent recognition system [4]. The double-talk
detector was earlier introduced for monaural speech assuming
known speaker identities [5]. In this paper, we adopt the method
to monaural speaker identification, by using gender-dependent
models to enable speaker-independent processing. The DTD
module is utilized in the identification system so that the mixed-
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signal recognition score is enhanced by using “bonus” scores
obtained from the more reliable single-talk regions of the mixed
signal.

2. Double-Talk Detection System
In [5], a method for detecting single-talk and double-talk re-
gions from a given speech mixture was proposed. The method
was based on multiple hypothesis testing. In this work, we
briefly describe the method and apply it for improving speaker
identification performance. Consider monaural speech signal
with N samples y = [y(0), . . . , y(N − 1)] composed of J
speaker signals as y = s1 + s2 + · · · + sj + e, where
j ∈ [1, J ] indicates the number of signals in the mixed signal,
sj = [sj(0), · · · , sj(N −1)] is the jth signal and e is the noise
signal incorporated in the model. In the following, we focus on
J = 2, that is, a mixture of two speakers.

Assume that we have K candidate models denoted by Mk,
for describing y. The double-talk detection addresses the fol-
lowing problem: given the mixed signal, select the model which
has the the maximum a posteriori (MAP) probability. We con-
sider four models for y as: M0: y = e, M1:y = ŝ1({θ1}),
M2:y = ŝ2({θ2}), M3:y = ŝ(J)({θ1, θ2}). Here ŝi({θi})
indicates the ith signal modeled by the parameter set {θi} and
ŝ(J)({θ1, θ2}) =

∑J

j=1 ŝj({θj}) is the estimated mixed sig-
nal by model M3. Let gk(y, e, θk) be a generic form for class
Mk where k ∈ ZK = {0, 1, 2, 3}. Here, θk is a vector com-
posed of model parameters in a parameter space θk ∈ R

mk and
mk is the length of the parameter vector θk. Let θ1 and θ2

be the vectors for model parameters for speaker one and two,
respectively. Following the model selection approach in [9],
we here adopt a MAP criterion for multiple-hypothesis testing
to determine double-talk/single-talk regions in segments of a
mixed signal. To this end, we need to evaluate the posterior
probabilities of Mk with k ∈ ZK . The MAP estimate of the
most likely hypothesis is,

M̂k = arg max
Mk:k∈ZK

{
p(y|Mk)p(Mk)

p(y)

}
, (1)

where p(y) denotes the marginal density of the observed signal
and p(Mk) is the a priori probability of the model Mk. Assum-
ing that the underlying models are equiprobable, P (Mk) = 1

K
,

dropping K and p(y) since they are independent of Mk, the
model selection rule becomes

M̂k = arg max
Mk:k∈ZK

{∫
θk

p(y|θk,Mk)p(θk|Mk)dθk

}
(2)

where M̂k is the best model which achieves the MAP probabil-
ity and the argument in (2) is basically p(y|Mk). The integral
in (2) is a complicated nonlinear minimization problem which
can be solved by, for instance, Laplaces method for integra-
tion. According to [9], instead of numerical integration for the
evaluation of marginal density in (2), we employ asymptotically
MAP criterion as

M̂k = arg min
Mk:k∈ZK

{
−L(θ̂k) + pc

}
, (3)

where pc is the penalty of the MAP criterion and−L(θ̂k) is log-
likelihood term, given Mk. Let θ̂k be our feature parameters for
the kth model, Mk. As our signal modeling, to find θ̂k, we use
sinusoidal modeling described in [7] which is based on selecting
one peak per frequency band. Let ei be the residual signal due

to the sinusoidal modeling error in the ith band indicated by
ei = yi − s1,i(θ1), where σi denotes the variance of the error
signal in the ith band, ei, due to the modeling error and θ1 is the
parameter vector of length 3×L for the first speaker composed
of sinusoidal parameters, L being the model order of sinusoids.
Given the independence assumption in the frequency bands in
subband decomposition, likelihood function for all Q bands is

p(e|σ2) =
1

(2π)
N

2

∏Q

i=1 σi

exp

(
−

1

2

Q∑
i=1

eie
T
i

2σ2
i

)
, (4)

where (·)H represents the Hermitian operator. A similar expres-
sion goes for the second speaker class, M2 just by replacing
ei = yi− s2,i(θ2) in (4), where θ2 is the parametric vector for
the second speaker.

We also include the noise model as one of the examined
models by setting g(y, e, θ) = e and setting the number of si-
nusoids equal to zero (L = 0). We define p(e|σ2

0) as the prob-
ability density function, with e considered as zero mean Gaus-
sian noise whose noise variance is estimated by σ̂2

0 = 1
N

yyT

and likelihood function given by (4).
As our last hypothesis, we are required to include the mix-

ture model, M3 where the residual signal for the ith band is
considered as a colored noise not fitted by M3 denoted by
ei = y − ŝ(J)({θ1, θ2}). The negative log-likelihood func-
tion for mixture model M3 is

− ln p(y|{θ1, θ2}, σ̂
2
i ,M3) =

N

2

Q∑
i=1

ln (2πσ̂2
i )+

1

2

Q∑
i=1

eie
T
i

σ̂2
i

.

(5)
In order to form the MAP criterion in (3), we employ the MAP
criterion [9] for sinusoids composed of amplitude and unknown
frequencies and M̂k is obtained as

M̂k = arg min
Mk∈ZK

{
N

2

Q∑
i=1

ln σ̂2
i +

5L

2
ln N

}
, (6)

where σ̂i is the estimated variance for the modeling error de-
fined for each model. For mixed class, M̂3, as our mix model
denoted by ŝ(J)({θ1, θ2}), we use the minimum mean square
error (MMSE) mixture estimate presented recently in [10]. Ac-
cording to (6), the best model, as a result, is the one which yields
high log-likelihood and low model order, which is achieved ac-
cording to (6) [5].

Figure 2 shows the clean signal for two speakers together
with their mixture. It is observed that, the double-talk detector
effectively finds the boundaries of single-talk regions. Com-
paring with the ground-truth, it accurately determines for each
frame that which speaker(s), if any, is active. It is important to
note that, for same gender or same talker scenarios DTD module
degenerates into a three-class problem since it only employs one
speaker model for these scenarios. Then, the double-talk detec-
tor cannot distinguish between M1 and M2, since the residual
signals of these classes, are the same. The double-talk detector,
however, can still identify single/double-talk regions and pass
this information to the SID module.

3. Speaker Identification System
The speaker identification module is based on maximum a pos-
teriori (MAP) adapted Gaussian mixture models (GMM) [11].
A speaker GMM is a weighted linear combination of M uni-
modal Gaussian densities where, letting λ denote a model of
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Figure 2: Double-talk detection results for a speech mixture of a
male and a female speaker mixed at 3 dB SSR. The mixed signal
is composed of a male speaker 12 uttering ”Lay white with e
8 again” with female speaker 11 uttering ”Set green with v 3
soon”. Decisions are -1 for no speech, 1 for speaker 1, 2 for
speaker 2 and 0 for mixed signal regions.

single speaker, the likelihood function is defined as,

�(x) = p(x|λ) =
M∑

m=1

wmpm(x), (7)

where pm(x) = N (x; μm,Σm) and the mixture weights wm

further satisfy the constraints
∑M

m=1 wm = 1 and wm ≥ 0.
Speaker-dependent GMMs are adapted from a so called uni-
versal background model (UBM) [11]. The UBM is a GMM
trained on a pool of feature vectors extracted from as many
speakers as possible and it serves as a priori information for
feature distribution. By defining λig as the signal-to-signal ra-
tio dependent model for the ith speaker at SSR level g, we use
frame-level likelihood and model-level approximate Kullback-
Leibler divergence (KLD) as the similarity and distance mea-
sures respectively. For a feature vector xt extracted from a
speech segment at time instance t, frame level score for speaker
i is defined as sit = 1

G

∑G

g=1 sigt, where

sigt = log[p(xt|λig)]− log[p(xt|λUBM )]. (8)

For speaker identification, we average over all SSR levels to
make the system less dependent on the SSR level [4]. Mean-
while we normalize all speakers scores at time instance t with
the corresponding UBM score. Another approach to mea-
sure similarity of a speech segment with a speaker model (λi)
is to make a model from the test utterance with MAP adap-
tation (λe) and calculate the distance between λe and the
speaker model. Since KLD distance cannot be directly eval-
uated for GMMs, we use the upper bound of KLD which
has successfully been applied to speaker verification [12]:

Algorithm 3.1: SPEAKER IDENTIFICATION()

Inputs:⎧⎪⎪⎨
⎪⎪⎩
{xt}

T
t=1 :Test sample feature vectors.

λig :One GMM per speaker per SSR level.
λUBM :Background model.
DTD Labels:∈ {Silent, Mixed, Spk1, Spk2}

forMixed frames of length T0, {xt, t ∈Mixed}⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

comment: Computing FLL

for i ← 1 to N⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for t ← 1 to T⎧⎪⎪⎪⎨
⎪⎪⎪⎩
for g ← 1 to G

compute s[i, g, t]

s[i, t] ← 1
G

∑G

g=1 s[i, g, t]
s′[i, t] ← arg max

g
{s[i, g, t]}

ϕ(s[i, t]) =

{
1 i = arg max

j
{s[j, t]}

0 otherwise.
FLL[i] =

∑
t
ϕ(s[i, t])

FLL[i] = FLL[i]−minFLL
maxFLL−minFLL

comment: Computing KLD

λe ← GMMADAPT({xt}
T
t=1, λUBM )

for i ← 1 to N⎧⎨
⎩
for g ← 1 to G

compute KLD[i, g]

KLD[i] ← 1
G

∑G

g=1 KLD[i, g]

KLD[i] = 1− KLD[i]−minKLD
maxKLD−minKLD

score = 0.5×KLD + 0.5× FLL
for each set of single-talk frames of length T1 and T2,

{xt, t ∈ Spk1} and {xt, t ∈ Spk2}⎧⎨
⎩

do Compute KLD
idx = arg min{KLD}
score[idx] = score[idx] + αT1/T ( or αT2/T )

KLDig = 1
2

∑M

m=1 wm(μme − μmig)TΣ−1
m

(μme − μmig). (9)

Here g ranges over a discrete set of SSR levels, μme is the mth
mean vector in λe and μmig is the mth mean vector in λig ,
whereas wm and Σm are the weights and the covariances of
the UBM, respectively. To sum up, we consider two different
scores for a speaker:
FLL: Frame level likelihood, where we are considering num-

ber of winning frames that speaker i is the most probable
speaker in that frame for speaker identification.

KLD: Kullback-Leibler divergence between λe and a set of
models λig , computed using (9). We form an N × G
distance matrix and average over SSR levels to raise the
speaker with minimum average distance.

As commonly done in speaker recognition, to enable using ben-
efits from different recognizers, we considered the fusion of the
scores with equal weights. Similar to [4], each speaker’s de-
cision score is computed as 0.5 × FLL + 0.5 × KLD. The
frames detected by DTD module to belong to a single speaker
only (1 or 2) are collected accordingly and passed to KLD
score computation. Since we believe that these frames be-
long to only one speaker, for the speaker that gets the min-
imum KLD, we add a bonus score to it’s decision score as
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score[idx] = score[idx] + αT1/T (or αT2/T ) where idx
is the identified speaker from single-talk frames. The bonus is
made relative to the number of single-talk frames identified to
belong to speaker 1 or 2 (T1 or T2) respect to total number of
frames in a given test signal (T ). The stressing factor α is a
control parameter. Details of the SID algorithm presented as a
pseudocode in Algorithm 3.1.

4. Experimental results
We evaluate the proposed system on the speech separation
database known as GRID corpus [2] composed of 34,000 dif-
ferent utterances. The sentences were originally sampled at 25
kHz with a duration of 2 seconds each. As we usually deal with
8 kHz speech in most of speech applications, we decreased the
sampling rate down to 8 kHz. The speaker models used for DTD
module are split-VQ codebooks [7] composed of sinusoidal am-
plitude and frequencies. For training the speaker models, we
used 11 bits for amplitude and 3 bits for frequency part. To
train gender-dependent models, we selected 10 female and 10
male speakers each producing 35 s of speech signal. Through-
out the experiments, a Hamming window of length 32 ms with
frame-shift equal to 8 ms is used to segment the speech files
both in the training and test phases. As our test data, we used
the mixture of target and masker speakers in the test setup of [3]
mixed at six SSR levels of {−9,−6,−3, 0, 3, 6} dB. The code-
book size for split-VQ was M=2048 and the sinusoidal model
order was set to 50.

For speaker identification, we extract features from 30 ms
frames multiplied by a Hamming window. A 27-channel mel-
frequency filterbank is applied on DFT spectrum to extract
12-dimensional mel-frequency cepstral coefficients (MFCCs),
followed by appending Δ and Δ2 coefficients, and using an
energy-based voice activity detector (VAD) for extracting the
feature vectors. We digitally add the signals with an average
frame-level SSR to construct the UBM and the target speakers
GMMs. For each of 34 speakers, 50 random files from each
speaker were mixed at SSRs levels {−9,−6,−3, 0, 3, 6} dB
with 50 random files from other speakers which gives us about
180 hour of speech for training UBM. The model order of the
GMM is set to 2048.

The speakers’ SSR-dependent GMMs, λig , trained by mix-
ing 100 random files from each speaker with 100 random files
from other speakers yielding about 1.8 hours data for each SSR.
Relevance factor was set to 16 for training speaker models, λig ,
where its value was set to 0 in training test model, λe, because
of availability of only 2 seconds of data for adaptation. For each
six test sets of two-talker signal, 600 utterances were provided
among which 200 were for same gender (SG), 179 for different
gender (DG), and 221 for same talker (ST) where the target and
masker signals are from the same speaker. To incorporate the
bonus for single-talk detected frames, we used α = 5.

Speaker identification results for the combined system pre-
sented in Table 1. Compared to the previous results without
DTD [4], embedding the DTD module enhances performance.
The improvement is higher on the different gender (DG) case
where the gender-dependent DTD module distinguishes be-
tween single-talk areas for two speakers accordingly. Compared
to the reported accuracy of 99% for the Iroquois system for de-
tecting target speakers among three most probable cases [2], the
proposed system achieves a comparable rate of 97.43%. Given
its relatively low complexity, our proposed system could be con-
sidered as an alternative or a pre-processing block for Iroquois
system.

Table 1: Speaker identification accuracy (% correct) where both
speakers are correctly found in the top-3 list. Yes/No indicates
whether the proposed DTD method is included. For the ST sce-
nario both of the systems provide 100 % accuracy.

SG DG Average
DTD No Yes No Yes No Yes
SSR
-9 dB 92.74 93.30 82.50 86.97 92.00 94.68
-6 dB 96.65 96.65 94.00 95.00 97.00 97.71
-3 dB 99.44 99.44 97.50 98.00 99.00 99.39
0 dB 98.32 98.32 99.00 98.00 99.17 99.39
3 dB 97.21 97.77 93.50 95.00 97.00 98.11
6 dB 93.85 94.41 90.50 89.50 95.00 95.63

Average 96.36 96.65 92.83 93.83 96.53 97.43

5. Conclusions
We introduced gender-dependent double talk detector for
monaural speech and applied it in speaker identification task for.
Speaker identification results on GRID corpus demonstrated the
improvement over the system without DTD. Overall speaker
identification performance is close to the results of the Iroquois
system using computationally simple approach.
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