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Multiple Description Trellis-Coded Quantization of Sinusoidal

Parameters
Morten Holm Larsen, Student Member, IEEE , Mads Græsbøll Christensen, Member, IEEE ,

Søren Holdt Jensen, Senior Member, IEEE

Abstract—A new scheme for sinusoidal audio coding
named multiple description spherical trellis-coded quanti-
zation is proposed and analytic expressions for the point
densities and expected distortion of the quantizers are de-
rived based on a high-resolution assumption. The proposed
quantizers are of variable dimensions meaning that any
number of sinusoids can be quantized jointly for each audio
segment whereby a lower distortion is achieved compared
to previously published scalar spherical quantizers. The
quantizers are designed to minimize a perceptual distortion
measure subject to an entropy constraint for a given packet-
loss probability. In experiments, the performance of the
quantizers is assessed and compared to the corresponding
single description spherical quantizer and associated bounds
under various conditions and is found to increase robustness
towards packet-loss.

I. Introduction

In recent years, there has been a significant interest in para-
metric audio coding in both academia and standardization bod-
ies. Parametric audio coding is based on the notion that most
audio signals can be efficiently described by a few physically or
perceptually meaningful parameters. This process can be seen
as vector quantization using a highly structured codebook that
allows for computationally efficient implementation. Perhaps
the most common incarnation is sinusoidal coding where the
individual audio segments are modeled as sums of sinusoids
each of which being characterized by an amplitude, a phase
and a frequency combining to form a point in a spherical
coordinate system. For each segment of audio, the task is
to find the parameters best describing the segment and to
quantize these parameters whereby transmission over channels
of limited capacity is facilitated. Various computationally effi-
cient ways of finding the parameters minimizing a perceptual
distortion measure exist (see, e.g., [1]) and the question of
optimal quantization of these parameters has been addressed
recently. The so-called polar and spherical quantizers of [2]–
[4] have proven successful in terms of achieved quality and
computational complexity by quantization of the parameters of
each sinusoid independently. The quantizers were designed to
minimize a perceptual distortion measure subject to an entropy
constraint based on a high-resolution assumption, i.e., a high
number of bits per sinusoid whereby analytic expressions for
the point densities of the quantizers were derived. In [5], the
spherical quantizers of [4] were improved by joint quantization
of the parameters of a variable number of sinusoids. Under a
high-resolution assumption, the optimal point densities of the
proposed quantization scheme, named spherical trellis-coded
quantization (STCQ), were derived for a given entropy.
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In services such as speech coding or audio streaming over
unreliable networks like the Internet, the transmitted audio
parameters should be protected to compensate for packet-
losses. One method intending to do this is multiple description
coding [6] where several complementary coarse descriptions of
the audio signal are constructed and transmitted. This way,
graceful degradation is achieved when packets are lost while
high quality reconstruction is possible when all packets are
received. Multiple description coding has recently been applied
to audio in the form of transform coding [7], [8] and low-delay
coding using pre- and post-filtering [9]. The multiple descrip-
tion coding schemes of [8] and [9] are based on the multiple
description lattice vector quantization (MDLVQ) of [10] and
[11], respectively. The MDLVQ is a very computational efficient
quantizer and flexible in the sense that it can be designed
analytically, except for the index assignment. A limitation of
the MDLVQ is that the dimension of the vector must be fixed

and known a priori. Therefore, the MDLVQ cannot readily
be applied to the problem of joint quantization of sinusoidal
parameters. On the other hand, multiple description trellis-
coded quantizer (MDTCQ) of [12]–[14] can handle variable
dimensions but requires training for a particular combination of
entropy constraint and packet-loss probability using the Lloyd
algorithm.

In this correspondence, we extend the spherical quantizers
of [4] to multiple descriptions to obtain robustness towards
packet-losses. Furthermore, we also propose joint quantiza-
tion of sinusoidal parameters using trellis-coded quantization.
The proposed quantization scheme, called multiple description
spherical trellis-coded quantization (MDSTCQ), is based on
high-resolution theory, from which analytic expressions for the
expected distortion and point densities are derived for a given
target entropy and packet-loss probability. The MDSTCQ is
based on a new quantization scheme named modified multiple
description trellis-coded quantization (MMDTCQ) that can be
analytically designed from its point density given a packet-
loss probability. Interestingly, the proposed MMDTCQ scheme
can readily be applied to a larger class of problems than
considered here. Throughout the deviation of the MDSTCQ,
some assumptions and approximations are applied with respect
to both the source and the multiple description coding part.
Most of these have already been discussed at great length in
prior works [2]–[4] and we will therefore, for the most part,
refrain from any further discussion of this.

The rest of this correspondence is structured as follows:
In Section II, we introduce the definitions, fundamentals and
the objective of multiple description audio coding. Then, in
Section III, the proposed MMDTCQ is presented. The optimal
point densities are derived for the MDSTCQ in Section IV, and
in Section V the experimental results are presented. Finally, we
conclude on our work in Section VI.
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II. Fundamentals

We start this section by introducing the mathematical prob-
lem statement of quantization in parametric audio coding
based on a perceptually relevant distortion measure. Let the
audio signal x at sample time n be represented as x(n) ≈
PL
l=1 al sin(νln + φl), where L is the number of sinusoidal

components and al, φl, νl are the amplitude, phase and fre-
quency of the l’th component, respectively, with al ≥ 0 and
φl, νl ∈ [0, 2π). The quantization distortion consists of the
contributions from the individual components and the cross-
terms between the components. Assuming a sufficiently large
window lengthW , so the sinusoids become orthogonal, the total
expected distortion can be approximated as the sum over the
L expected distortions for the individual components, denoted
E[D], with E[·] being the expectation operator. Therefore, we
will in the rest of this paper be concerned with the quantization
of a single set of parameters (a, φ, ν) thus ignoring the subscript
l. The present work is based on a perceptual distortion measure
[15] successfully applied to audio coding (see, e.g., [4], [16]–[18]).
The distortion measure is defined as

D =
1

2π

Z 2π

0

µx(a,φ,ν)(ω)|E(ω)|2dω, (1)

with E(ω) denoting the discrete-time Fourier transform of
the windowed error, i.e., E(ω) =

Pn0+W−1
n=n0

w(n)(x(n) −

x̃(n))e−jωn where w(n) is the window, µx(a,φ,ν)(ω) is the per-
ceptual weighting function calculated from the audio signal x
parameterized by (a, φ, ν). Furthermore, x̃ is the reconstructed
audio signal based on the quantized parameters (ã, φ̃, ν̃). For
more information on sinusoidal parameter estimation based
on the perceptual distortion measure in (1) see [1] and the
references therein. Next, we introduce the quantization errors
ǫa = a− ã, ǫφ = φ− φ̃, and ǫν = ν − ν̃. Then, assuming high-
resolution and a smooth masking curve combined with the prior
assumption that W is large, the perceptual distortion can be
approximated as (see, e.g., [4])

D ≈
µx(a,φ,ν)

2

„

‖w‖2(a2 + ã2) − 2aã

×

n0+W−1
X

n=n0

w2(n) cos (ǫνn+ ǫφ)

«

, (2)

where ‖w‖2 =
Pn0+W−1
n=n0

w2(n). Here, we have assumed thatW
is large whereby the perceptual weighting function reduces to a
scaling µx(a,φ,ν). Similarly to [2]–[4], we assume the perceptual
weighting function to be quantized and transmitted as side
information. To the best of our knowledge, the problem of
joint quantization of the perceptual weighting function and
the sinusoidal parameters remains unsolved and we will defer
from any further discussion of this difficult problem in this
correspondence.

By assuming that the phase is defined in the middle of the
segment, i.e., n0 = −W

2
, and by applying a truncated Taylor

expansion around zero, cos(y) ≈ 1 − y2/2, the distortion can
be shown to be

D≈
µx(a,φ,ν)
2‖w‖−2

„

ǫ2a + aã
`

ǫ2φ + ǫ2νσ
2´
«

, (3)

with σ2 = 1
‖w‖2

PW/2−1

n=−W/2 w
2(n)n2. We observe from (3) that

the amplitude, phase and frequency can be quantized inde-
pendently using the l2-norm by assuming a high-resolution,
i.e., aã ≈ a2. This provides inspiration to the proposed multi-
ple description spherical trellis-coded quantization (MDSTCQ)

c1 c3 cN−2

c2 c4 cN−3 cN−1

cN

Q1

Q2

g−1
y

Fig. 1. Illustration of the structure of the MMDTCQ. The upper
vertical lines illustrate the Voronoi regions of the two side quantizers
Qs while the lower dots illustrate the refined reconstruction points.

scheme consisting of three multiple description quantizers, one
for each of the parameters a, φ and ν. Multiple description is a
graceful degradation scheme where a low reconstruction quality
is obtained when only a few descriptions are received and a high
reconstruction quality is obtained receiving many descriptions.
We here focus on the common case of two descriptions. In this
case, a low quality description is obtained when only one of the
descriptions is received and the resulting distortion is called the
side distortion and is denoted as Ds, with s = {1, 2}. The low
quality reconstructions of (a, φ, ν) are written as (ãs, φ̃s, ν̃s).
When both descriptions are received, the resulting distortion is
referred to as the central distortion Dc and is based on the
reconstruction point (ãc, φ̃c, ν̃c). The aim of this work is to
protect the sinusoidal parameters transmitted over a packet
erasure channel where packets are dropped independently with
probability p. The average distortion in such a network is given
by

E[D] = (1 − p)2E[Dc] + 2p(1 − p)E[Ds] + p2E[x2], (4)

where E[x2] is the variance of the audio signal and balanced side
distortion E[D1] = E[D2]. We will derive the optimal design
of the proposed MDSTCQ scheme, for a given packet-loss
probability, such that the perceptual distortion is minimized
subject to an entropy constraint.

III. Modified Multiple Description Trellis-Coded

Quantization

Inspired by the structure of the MMDSQ in [19], we pro-
pose a modified multiple description trellis-coded quantizer
(MMDTCQ) composed of two stages. The first stage is to
quantize the input signal y using two uniform side quantizers,
Q1 and Q2 which are offset to each other and have step-sizes
equal to the reciprocal value of the point density gy. This
is depicted in Fig. 1. In the second stage, we perform joint
quantization using the joint Voronoi region, which is half the
size of the Voronoi region of the side quantizers, similarly to
the MMDSQ of [19]. Here, N reconstruction points are sorted
as c1 < c2 < · · · < cN and partitioned into four subsets
Cq = {cq, cq+4, · · · , cN−4+q}, where q = {1, 2, 3, 4}. In trellis-
coded quantization, the transitions in the trellis specify Cq by
one bit and log2(N/4) bits are used to specify the quantization
index within Cq. Since this refined trellis information is only
utilized when both descriptions are received, it is easily split
into the two descriptions whereby the otherwise difficult index
assignment (see, e.g., [10], [11], [20]) is solved in a straightfor-
ward manner. For more information about trellis-coded quan-
tization we refer the interested reader to e.g., [21]. Assuming
high-resolution such that the probability density function (pdf)
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inside the Voronoi regions Vi of the side quantizers Qs is uni-
form, the mean square-error distortion for each side quantizer
can be determined by summing over all Voronoi regions, i ∈ I,

E[Ds] =
X

i∈I

Z

Vi

fY (y)ǫ2ydy ≈
g−2
y

12
, (5)

where fY (y) is the source pdf and ǫy = y − ỹ. In [19] it was
shown that the side distortion is reduced by a factor of (2N)2,
but unfortunately, an exact expression of the expected distor-
tion does not exist for the trellis. Therefore, we will employ the
approximation proposed in [21] where the expected distortion is
written as the distortion for a uniform quantizer corrected by a
factor Γ. This factor depends on the trellis structure, dimension
and the number of states and is roughly independent of the
source pdf and encoding rate. Also, assuming high-resolution,
the central distortion can be written as

E[D0] ≈ Γ
(2N)2

E[Ds]. (6)

The Γ factor has been numerically determined by simulations
in [5].

Under high-resolution assumption and assuming a half bit
per description to specify the trellis transition, Cq, the entropy
of a MMDTCQ per description can be approximated by Hs ≈

h(Y ) +
R

fY (y) log2(gy)dy + 1
2

log2

“

Ny
2

”

, where h(Y ) is the

differential entropy of the source Y . Note that we here denote
random variables by upper case letters whereas realizations
are denoted by lower case. The complexity of the MMDTCQ
can be quantified as follows: In the first stage, two uniform
quantizations are performed or, alternatively, one quantization
on the subdivided Voronoi region and, subsequently, one check
on whether the index number is even or odd. The complexity
of the second stage is similar to four uniform quantizers plus
2S + 4 additions, 4 multiplications and S comparison of two
real valued numbers with S being the number of states.

IV. Multiple Description Spherical Trellis-Coded

Quantization

We start this section by introducing the details of the pro-
posed MDSTCQ coding scheme consisting of three MMDTCQs,
one for each of a, φ and ν. In deriving the optimal MDSTCQ
design, we need expressions for the quantization point densities
and the number N for the three MMDTCQs. To obtain these,
we first introduce the joint pdf f(A, φ, ν) and let Vi and I
denote the Voronoi regions and index sets for the respective
quantizers as indicated by subscripts a, φ, ν. We can now ex-
press the expected side distortion as

E[Ds] ≈
X

ia∈IA

X

iφ∈Iφ

X

iν∈Iν

Z

Via

Z

Viφ

Z

Viν

f(A, φ, ν)
1

2
µx(ν̃)

‖w‖2 `ǫ2a + aãs
`

ǫ2φ + ǫ2νσ
2´´ dadφdν ≈

‖w‖2

24

Z

A

Z

φ

Z

ν

f(A, φ, ν)µx(ν̃)
`

g−2
a + ã2

s

`

g−2
φ + σ2g−2

ν

´´

dadφdν (7)

by assuming that µx(a,φ,ν) is constant over the joint Voronoi
region of a, φ, ν. We have assumed high-resolution such that
aãs ≈ ã2

s and the probability mass function of the reconstruc-
tion points, Pr(ãia , φ̃iφ , ν̃iν ) can be found from the joint pdf

as f(ãia , φ̃iφ , ν̃iν )g
−1
a g−1

φ g−1
ν (see [4] for more details on this).

Here, the quantization point densities for a, φ, ν are written
as g{a,φ,ν}, though they at this point still depend on a, φ, ν.

Similarly, we can express the expected central distortion as

E[D0] ≈
‖w‖2

96
Γ

Z

A

Z

φ

Z

ν

f(A, φ, ν)µx(ν̃)

„

g−2
a

N2
a

+ã2
0

 

g−2
φ

N2
φ

+ σ2 g
−2
ν

N2
ν

!!

dadφdν, (8)

where, for simplicity, we have assumed an equal trellis struc-
ture, Γ = Γ{a,φ,ν}. Also, Na Nφ, Nν are the number of
reconstruction points for the various refined quantizers. Next,
assuming high-resolution we can write the entropy for each
description as

Hs ≈h(A,Φ,Υ) −
3

2
+

ZZZ

f(a, φ, ν)(log2 (gagφgν)

+
1

2
log2 (NaNφNν))dadφdν, (9)

with h(A,Φ,Υ) being the differential entropy. To simplify the
notation, we introduce H̃s = Hs−h(A,Φ,Υ) and write the cost
function as J = (1 − p)2E[D0] + 2p(1 − p)E[Ds] + λH̃ with λ
being the Lagrange multiplier.

From (7) and (8), we observe that there is the somewhat
subtle problem that the side and central distortions depend on
the reconstructed values ãs and ã0. Ideally, the point densitites
also depend on the amplitude a and in [4] it was argued that the
amplitude can be replaced by its reconstruction due to the high-
resolution assumption whereby a feasible solution is obtained.
Similarly, we here use ãs in lieu of ã0 (later we will evaluate the
loss, if any, of doing this). We now proceed to minimize this cost
function by taking the derivative with respect to ga, gφ, gν , Na,
Nφ and Nν . This results in Na=Nφ=Nν =

p

Γ(1 − p)/8p,N
and the following expressions for the point densities:

g2
a =

p(1 − p)µx(ν̃)‖w‖
2

12λ log2(e)
(10)

g2
φ =g2

aãs (11)

g2
ν =g2

aãsσ
2. (12)

We note in passing that N is independent of the source differ-
ential entropy as well as the target entropy, like the number
of refined lattice points in MDLVQ (see, e.g., [10]). Returning
now to our derivation, we insert the last three equations and the
expression for N into the definition of H̃s, whereby we obtain
the optimal λ∗ as

λ∗ =
Np(1 − p)‖w‖2

12 log2(e)
2

2

3
(h(a,φ,ν)−Hs+log2(σ)+2̺)+1+ψ, (13)

where ̺=
R

fA(a) log2(a)da with fA(a) being the pdf of a and
ψ=

RRR

f(a, φ, ν) log2 µx(a,φ,ν)dadφdν. Substituting λ∗ into the
expressions of ga, gφ and gν , we get the optimal point densities:

ga =

„

µx(ν̃)

2N

« 1

2

2
1

3
(Hs−h(a,φ,ν)−log2(σ)−2̺)−ψ

2 (14)

gφ =ãsga (15)

gν =σãsga. (16)

Next, by inserting (14)-(16) into (7),(8) and (4), we can finally
determine the expected distortion as

E[D] ≈‖w‖2

r

Γp

8
(1 − p)

3

2 2
2

3
(h(a,φ,ν)−Hs+log2(σ)+2̺)+ψ

+ p2E[x2]. (17)

The point densities for φ and ν can be seen to be functions
of ãs (or ã0), i.e., the point densitities depend on the recon-
structed amplitude. Since the fundamental notion of multiple
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description coding is to transmit complementary descriptions
that combined lead to a reduced distortion, the reconstructed
amplitudes in each of the descriptions will be different, i.e.,
ã1 6= ã2, leading to phase and frequency quantizers having
slightly different resolutions for each description. To arrive at
a feasible scheme, we encode φs and νs based on ãs for each
of the two descriptions with s = {1, 2}. In the ideal case,
the point densities for each description are equivalent and the
quantizers can be perfectly offset as illustrated in Fig. 1, in
which case the reconstruction points of the joint description can
be obtained as the mean of the reconstruction points of the two
descriptions plus the contribution from the refined trellis-coded

quantization, e.g., φ̃0 = φ̃1+φ̃2

2
+ φ̃TCQ. In our case, however,

the resolution of the two quantizers are slightly different, and
we propose to deal with this in the following way: We consider
the two descriptions as random variables from which we seek to
estimate the mean. Due to the slightly different amplitudes ã1

and ã2, the two observations have been subjected to additive
noise having different variances. Therefore, the mean can be
obtained for the phase as

φ̃0 = φ̃1ζφ + φ̃2(1 − ζφ) + φ̃TCQ, (18)

where 0 ≤ ζφ ≤ 1 is a weight. Since the quantizers are uniform,
the observation noise can be modeled as uniform random vari-
ables having a variance corresponding to their Voronoi regions
and the optimal weight ζφ can then easily be determined from
the two point densities as ζφ = g2

φ,1/(g
2
φ,1 + g2

φ,2) and similarly
for the frequency ν.

V. Experimental Results

We will now proceed to evaluate the performance of the
MMDTCQ before we evaluate the proposed MDSTCQ. Based
on the method described in Section III, we obtain the empirical
performance curve of the MMDTCQ and compare it to the
MMDSQ [19] and the corresponding theoretical bound [22]. We
draw 10,000 realizations from a Gaussian distributed source,
which are then quantized by a MMDTCQ and a MMDSQ.
Both designs have an entropy below three bits per description
and the MMDTCQ is a 256 state trellis with dimension 1,000.
The performances of the MMDTCQ, MMDSQ and the optimal
theoretically attainable (OPTA) bound are depicted in Fig. 2. It
can be seen that the MMDTCQ is outperforming the MMDSQ
and that the gap between the practical and the theoretically
bound is narrowing. Note that for low side distortion where N
is small, the two schemes have not been evaluated, since the
MMDTCQ requires N ≥ 4 and MMDSQ requires N ≥ 2.

The three following experiments are based on synthetic au-
dio, generated using a statistical model similar to that employed
in [4]. Specifically, the amplitudes and frequencies are generated

from a Rayleigh pdf, i.e., fY (y) = β−2ye−(y2β−2/2), with
β = {1000, 0.25}. The phase, on the other hand, is uniformly
distributed in the interval [0, 2π). Note that the amplitudes,
phases and frequencies are statistically independent. In this
work we focus on the performance gain achieved by joint quan-
tization and we will therefore, for simplicity, set the perceptual
weighting function to one and use a rectangular window where
W = 1023. We remark that the trellis is initialized in zero-state
and that no side information is needed.

We will now investigate the impact of the number of jointly
quantized sinusoids and the number of states in the trellis on
the expected distortion. Furthermore, we will illustrate the im-
pact of the estimation of φ0 and ν0 at the decoder as discussed
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Fig. 2. MMDTCQ (star) and MMDSQ (plus) performance for a
memoryless Gaussion source and 3 bits entropy per description. Also
shown is the theoretically bound (solid).

in Section IV. We generate 100,000 triplets (a,φ,ν), set the
target entropy to 15 bit/sinusoid per description, using 256
state trellis with N = 4 and quantize the triplets as described
in Section IV. As explained, the optimal reconstruction of
MDSTCQ is not feasible, but a feasible solution can be obtained
by estimating φ̃0 and ν̃0. The performance of two non-feasible
and the single feasible MDSTCQ schemes are shown on Fig. 3
for a range of dimension. From Fig. 3 it can be seen that we
gain about 1.2 dB when increasing the dimension from 10 to
10,000. Furthermore, it can be seen that there is a 2.2 dB gap
between the non-feasible method and the feasible MDSTCQ
method. Further simulations have shown the gap to be source
and rate dependent. But it is important to note that this gap
is due to a non-feasible assumption in the derivation of the
expected distortion and not necessarily a suboptimality in the
practical scheme. How to incorporate the feasibility criterion in
the derivation is subject of future research.
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Fig. 3. Performance of the feasible MDSTCQ scheme (dash-dotted)
compared to those of the two non-feasible MDSTCQ schemes where
a is known in both side decoders (solid) and where ã0 is known in
the two decoders (dashed).
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In the next experiment, we compare the performance of the
MDSTCQ to the theoretical expected distortion for both the
MDSTCQ and the single description STCQ of [5]. As before, we
generate 100,000 triplets and jointly quantize 1000 sinusoidal
parameters using a 256 state MDSTCQ with a target entropy
of 15 bit/sinusoid per description and a 256 state STCQ with
30 bit/sinusoid into one description and with a packet-loss
probability of p. The distortion is calculated as in the previous
experiment. The performance as a function of the packet-loss
probability is shown in Fig. 4. From the figure, it can be seen
that the theoretical bound of MDSTCQ is better than the
theoretical bound of STCQ for a large range of packet-loss
probabilities, except when packet-loss probabilities are close
to zero. For the practical MDSTCQ, we limit ourselves to
one design with N = 4 and compare it to the corresponding
MDSTCQ theoretical bound. Typically, Γ is constant and Γ ≈ 3
for a 256 state [5], but for small N this is not the case and by
simulation Γ ≈ 4 has been determined. In the figure, a 2.2 dB
gap between the practical and the theoretical performance can
be seen for low p. This is most likely the same suboptimality
observed in the previous experiment. However, we note that
even this constant MDSTCQ design will outperform the single
description STCQ for a large range of packet-loss probabilities.
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Fig. 4. The theoretical expected distortion of the MDSTCQ (solid)
together with the theoretical expected performance of the single
description STCQ (dashed). For N = 4, the theoretical expected
distortion of the MDSTCQ (dash-dotted) along with the practical
MDSTCQ (dotted).

Audio transmission over unreliable networks results in two
distortion contributions, namely quantization distortion and
packet-loss distortion. It seems natural to ask whether to
use bits on packet-loss concealment or on quantization. To
investigate this, the theoretical performance of the STCQ and
the MDSTCQ using equal entropy per sinusoidal has been
plotted in Fig. 5 for two packet-loss probabilities, p = 10%
and p = 20%. From the figure, it can be seen that the STCQ
scheme will not be improved beyond approximately 15 bit per
sinusoids. This is due to the fact that the quantization distor-
tion is neglectable for p = 10% and p = 20%. For MDSTCQ,
the performance can be improved by adjusting the trade-off
between the central and the side distortion. Furthermore, we
note that the performance of MDSTCQ also saturates for high
entropy indicating that at such rates, the MDSTCQ scheme
may benefit from more descriptions.
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Fig. 5. The theoretical expected distortion of the MDSTCQ at
10% (solid) and 20% (stars) packet-loss probability together with
the theoretical expected distortion of the STCQ at 10% (circles) and
20% (triangles) packet-loss probability.

VI. Conclusion

In this correspondence, we have proposed multiple descrip-
tion spherical trellis-coded quantization of sinusoids. The quan-
tizers are suitable for parametric audio coding where the num-
ber of sinusoids may vary and for transmission over unreliable
networks like the Internet. Under high-resolution assumptions
we have derived analytical expressions for the optimal design
and the expected perceptual distortion for a given target en-
tropy and packet-loss probability. A desirable feature of the
proposed scheme is that the sinusoidal parameters are quan-
tized jointly in a computationally efficient manner and without
requiring complex index assignment designing or storage unlike,
e.g., [8] and [9]. Experiments have shown significant perfor-
mance improvements of the proposed scheme as the number of
dimensions is increased. Furthermore, a significant performance
gain compared to the single description spherical trellis-coded
quantization scheme of [5] has been observed for a large range of
packet-loss probabilities. We have investigated the importance
of the entropy and packet-loss probability for both the proposed
scheme and the single description scheme, and experiments
have shown that the proposed scheme saturates at lower dis-
tortions for high entropies than the single description scheme
when packets are lost.

References

[1] M. G. Christensen and S. H. Jensen, “On perceptual distortion
minimization and nonlinear least-squares frequency estimation,”
IEEE Trans. Audio, Speech and Lang. Processing, vol. 14, no. 1,
pp. 99–109, January 2006.

[2] R. Vafin and W. Kleijn, “Entropy-constrained polar quantiza-
tion and its application to audio coding,” IEEE Trans. Speech
Audio Processing, vol. 13, no. 2, pp. 220–232, March 2005.

[3] R. Vafin, D. Prakash, and W. Kleijn, “On frequency quantiza-
tion in sinusoidal audio coding,” IEEE Signal Processing Lett.,
vol. 12, no. 3, pp. 210–213, March 2005.

[4] P. Korten, J. Jensen, and R. Heusdens, “High-resolution spheri-
cal quantization of sinusoidal parameters,” IEEE Trans. Audio,
Speech and Lang. Processing, vol. 15, no. 3, pp. 966–981, March
2007.

[5] M. H. Larsen, M. G. Christensen, and S. H. Jensen, “Variable
dimension trellis-coded quantization of sinusoidal parameters,”
IEEE Signal Processing Lett., vol. 15, pp. 17–20, 2008.



6

[6] V. Goyal, “Multiple description coding: compression meets the
network,” IEEE Signal Processing Mag., vol. 18, no. 5, pp. 74–
93, September 2001.

[7] R. Arean, J. Kovacevic, and V. Goyal, “Multiple description
perceptual audio coding with correlating transforms,” IEEE
Trans. Speech Audio Processing, vol. 8, no. 2, pp. 140–145,
March 2000.

[8] J. Østergaard, O. Niamut, J. Jensen, and R. Heusdens, “Percep-
tual audio coding using n-channel lattice vector quantization,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,
vol. 5, 2006, pp. 197–200.

[9] G. Schuller, J. Kovacevic, F. Masson, and V. Goyal, “Ro-
bust low-delay audio coding using multiple descriptions,” IEEE
Trans. Speech Audio Processing, vol. 13, no. 5, pp. 1014–1024,
September 2005.

[10] J. Østergaard, J. Jensen, and R. Heusdens, “n-channel entropy-
constrained multiple-description lattice vector quantization,”
IEEE Trans. Inform. Theory, vol. 52, no. 5, pp. 1956–1973, May
2006.

[11] J. Kelner, V. Goyal, and J. Kovacevic, “Multiple description
lattice vector quantization: variations and extensions,” in Proc.
IEEE Data Compression Conference, 2000, pp. 480–489.

[12] V. Vaishampayan, A. Calderbank, and J.-C. Batllo, “On reduc-
ing granular distortion in multiple description quantization,” in
Proc. IEEE Int. Symp. Information Theory, 1998, p. 98.

[13] H. Jafarkhani and V. Tarokh, “Multiple description trellis coded
quantization,”in Proc. IEEE Int. Conf. Image Processing, vol. 1,
1998, pp. 669–673.

[14] ——, “Multiple description trellis-coded quantization,” IEEE
Trans. Commun., vol. 47, no. 6, pp. 799–803, June 1999.

[15] S. van de Par, A. Kohlrausch, R. Heusdens, J. Jensen, and
S. H. Jensen, “A perceptual model for sinusoidal audio coding
based on spectral integration,”in EURASIP J. on Applied Signal
Processing, vol. 9, 2005, pp. 1292–1304.

[16] R. Heusdens, J. Jensen, W. B. Kleijn, V. Kot, O. A. Niamut, S.
van de Par, N. H. van Schijndel, and R. Vafin, “Bit-rate scalable
intra-frame sinusoidal audio coding based on rate-distortion
optimisation,” J. Audio Eng. Soc., vol. 54, no. 3, pp. 167–188,
March 2006.

[17] M. G. Christensen and S. van de Par, “Efficient parametric
coding of transients,” IEEE Trans. Audio, Speech and Lang.
Processing, vol. 14, no. 4, pp. 1340–1351, July 2006.

[18] M. G. Christensen, A. Jakobsson, S. V. Andersen, and S. H.
Jensen, “Amplitude modulated sinusoidal signal decomposition
for audio,” IEEE Signal Processing Lett., vol. 13, no. 7, pp. 389–
392, July 2006.

[19] C. Tian and S. Hemami, “A new class of multiple description
scalar quantizer and its application to image coding,” IEEE
Signal Processing Lett., vol. 12, no. 4, pp. 329–332, April 2005.

[20] V. Vaishampayan, “Design of multiple description scalar quan-
tizers,” IEEE Trans. Inform. Theory, vol. 39, no. 3, pp. 821–834,
May 1993.

[21] T. Fischer and M. Wang, “Entropy-constrained trellis-coded
quantization,” IEEE Trans. Inform. Theory, vol. 38, no. 2, pp.
415–426, March 1992.

[22] L. Ozarow, “On a source-coding problem with two channels and
three receivers,” Bell Syst. Tech. J., vol. 59, no. 10, pp. 1909–
1921, December 1980.


