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Variable Dimension Trellis-Coded Quantization of

Sinusoidal Parameters
Morten Holm Larsen, Student Member, IEEE , Mads Græsbøll Christensen, Member, IEEE ,

Søren Holdt Jensen, Senior Member, IEEE

Abstract—In this letter, we propose joint quantiza-
tion of the parameters of a set of sinusoids based on
the theory of trellis-coded quantization. A particular
advantage of this approach is that it allows for joint
quantization of a variable number of sinusoids, which
is particularly relevant in variable rate parametric
audio coding. Under high-resolution assumptions and
based on a perceptually relevant distortion measure,
we derive analytical expressions for the optimal design
subject to an entropy constraint. Numerical experi-
ments show a significant performance gain compared
to optimal spherical quantization at the cost of a slight
increase in computational complexity.

I. Introduction

In sinusoidal coding, the audio signal is divided into a
number of consecutive segments where each segment is
modeled as a sum of sinusoids. The sinusoidal parameters,
namely the amplitude, phase and frequency, are quantized
and transmitted. Sinusoidal coding is suitable for audio
coding at low bit-rates, where quantization of the sinu-
soidal parameters is of crucial importance for the audio
quality. For a desired target bit-rate the joint optimum
time segmentation (segment lengths), the distribution of
sinusoidal components and quantization can be solved
by dynamic programming [1]. To make the optimization
feasible, the quantization and design must be low in terms
of computational complexity, since distortion and rates
have to be determined for each possible segment length
and start position. Assuming high-resolution (high bit-
rate per sinusoid) a simple analytical expression for the
expected distortion and the spherical quantization (SQ)
design can be derived, e.g. [2]–[4]. It is well known that
vector quantization (VQ) outperforms scalar quantization
and can approach the Shannon rate-distortion bound when
the dimension is increased. For the problem at hand this
can be done by joint quantization of sinusoidal parameters
in a segment or even across segments. In [5], for example,
each segment can be encoded using a variable number
of sinusoids and using rate-distortion optimization, the
jointly optimal distribution of sinusoids and segmentation
are found. Assuming that each segment can be modeled
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using any number between 0 and 100 sinusoids and that
the rate-distortion optimization is performed over super
frames of about 0.5 s, we then get that, for a target bit-
rate of 24 kbits/s and an average bit allocation of 20
bits/sinusoid, we can, in principle, perform joint quanti-
zation of 600 sinusoids without introducing further encod-
ing delay. Usually, for a trained VQ using the K-means
algorithm or lattice vector quantizers, all elements in the
vector are quantized jointly, and the dimension must be
fixed and known a priori. Therefore, these methods cannot
readily be applied. The discipline of variable dimension
quantization, it appears, has not gained much attention.
Though, in [6], a method for variable dimension quantiza-
tion was proposed and then in [7], this method was applied
to the problem of quantization of sinusoidal parameters for
speech coding. Specifically, this was done by a variable-to-
fixed dimension transform followed by quantization.

In Trellis-Coded Quantization (TCQ) each transition
(in the trellis) entails quantization of one element in the
vector, and since the number of transitions is flexible, it
can quantize vectors having a variable dimension. Further-
more, TCQ has been shown to be an effective technique
both in terms of computations, storage and fidelity [8]–
[10]. In this letter, we propose joint encoding of the
sinusoidal parameters using a spherical trellis-coded quan-
tization (STCQ). Under a high-resolution assumption, we
derive analytical expressions of the expected distortion and
quantization point densities, for a given target entropy. In
this work, quantizers are specified in terms of their point
densities, i.e., the reciprocal value of the step-size of the
quantizer.

II. Spherical Trellis-Coded Quantization

We start this section by introducing the mathematical
problem statement of quantization in parametric audio
coding based on a perceptual relevant distortion measure.
Let the audio signal x be represented at sample time n for
a given segment by x(n) ≈

∑L
l=1 al sin(νln + φl), where

L is the number of sinusoidal components and al, φl, νl

are amplitude, phase and frequency of the l’th component,
respectively. Here al ≥ 0 and φl, νl ∈ [0, 2π). The quan-
tization distortion consists of the contributions from the
individual components and the cross-terms between the
components. Assuming a sufficiently large window length
N , or statistical independence between the components,
the total expected distortion can be approximated as the
sum over the L expected distortions for the individual
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components denoted E[D], with E[·] being the expectation
operator. Therefore, we will in the rest of this letter be con-
cerned with the quantization of a single set of parameters
(a, φ, ν) and drop the subscript l. A perceptual distortion
that has proven successful for audio coding applications
(see, e.g., [1], [4], [5], [11], [12]) was introduced in [13],
and is defined as

D =
1

2π

∫ 2π

0

µx(a,φ,ν)(ω)|E(ω)|2dω, (1)

where E(ω) denotes the discrete-time Fourier transform of
the windowed error, i.e.,

E(ω) =

n0+N−1
∑

n=n0

w(n)(x(n) − x̃(n))e−jωn, (2)

where w(n) is the window, µx(a,φ,ν)(ω) is the perceptual
weighting function that is calculated from the audio signal
segment x that is parametrized by (a, φ, ν) and x̃ is
the reconstructed audio signal based on the quantized
parameters (ã, φ̃, ν̃). The aim of this work is to construct
quantizers for (a, φ, ν) subject to an entropy constraint
such that the perceptual distortion in (1) is minimized.
For an overview of methods for modeling an audio seg-
ments using sinusoids such that (1) is minimized, we refer
the interested reader to [14] and the references therein.
Assuming a large N , high-resolution and smooth masking
curve, the perceptual distortion can be approximated as
(see e.g. [4])

D ≈
µx(a,φ,ν)

2

(

‖w‖2(a2 + ã2) − 2aã

×

n0+N−1
∑

n=n0

w2(n) cos
(

(ν − ν̃)n + φ − φ̃
)

)

, (3)

where ‖w‖2 =
∑n0+N−1

n=n0
w2(n). Here, we have assumed

that N is large such that the perceptual weighting function
reduces to a scaling µx(a,φ,ν) that depends on the realiza-
tion x(a, φ, ν). Similarly to [2]–[4], we in this work assume
the perceptual weighting function to be quantized and
transmitted as side information. To the best of our knowl-
edge, the problem of joint quantization of the perceptual
weighting function and the sinusoidal parameters remains
unsolved and we will defer from any further discussion of
this difficult problem.

Assuming that the phase is defined in the middle of
the segment, n0 = −N

2 , and applying a truncated Taylor
expansion around zero, cos(y) ≈ 1−y2/2, the distortion (3)
can be written as

D≈
µx(a,φ,ν)

2‖w‖−2

(

(a − ã)2 + aã
(

(φ − φ̃)2 + (ν − ν̃)2σ2
)

)

,

(4)

with σ2 = 1
‖w‖2

∑N/2−1
n=−N/2 w2(n)n2. We observe from (4),

that we can quantize the amplitude, phase and fre-
quency individually using the l2-norm, when assuming
high-resolution, aã ≈ a2. This provides inspiration to
the proposed STCQ coding scheme consisting of three
TCQs, for a, φ and ν respectively. In deriving the optimal

STCQ design, we need an expression for the expected
distortion for the TCQ. However, an exact expression
for the expected distortion does not exist for the TCQ.
Therefore, we will employ the approximation proposed
in [10] where the expected distortion is written as the
distortion for a uniform quantizer corrected by a factor
Γ. This factor depends on the trellis structure, dimension
and the number of states and is roughly independent of
the source pdf and encoding rate. Additionally, assuming
high-resolution the distortion for one Voronoi region in a
TCQ can be written as

∫ ỹ+ g−1

2

ỹ− g−1

2

Γ(y − ỹ)2dy = Γ
g−3

y

12
, (5)

where gy is the quantization point density and y and ỹ are
the source realization and its reconstruction, respectively.
In Table I the factor Γ has numerically been determined
by simulations. From (4) and the expected distortion for

TABLE I
Γ-values for various number of dimensions and states

determined by simulation.

Number of states
4 16 256 512

D
im

.

101 3.5102 3.5976 3.8780 3.9314
102 3.2107 3.1347 3.1019 3.1091
103 3.1872 3.0714 2.9908 2.9752
104 3.1829 3.0633 2.9745 2.9629

each of the three TCQs, as written in (5), we can now
determine the expected distortion for one Voronoi region
c, i.e.,

∫∫∫

c

Ddνdφda =
µx(a,φ,ν)

2‖w‖−2

∫ ã+
g−1

a
2

ã−
g
−1
a
2

∫ φ̃+
g
−1

φ

2

φ̃−
g
−1

φ

2

∫ ν̃+
g−1

ν
2

ν̃−
g
−1
ν
2

×
(

Γa(a − ã)2 + aã
(

Γφ(φ − φ̃)2 + Γν(ν − ν̃)2σ2
))

dadφdν

= g−1
a g−1

φ g−1
ν

µx(a,φ,ν)

24‖w‖−2
Γ

(

g−2
a + ã2

(

g−2
φ + σ2g−2

ν

))

, (6)

where we assume that µx(a,φ,ν) is constant over c and,
for simplicity, we also assume an equal trellis structure,
Γ = Γ{a,φ,ν}. Here, the quantization point densities for
a, φ, ν are written as g{a,φ,ν}, though it should be noted
that they at this point still depend on a, φ, ν but for now,
we shall omit this in our notation. The expected distortion
can then be written as,

E[D]=
∑

ia∈Ia

∑

iφ∈Iφ

∑

iν∈Iν

∫∫∫

c

f(a, φ, ν)Ddνdφda (7)

≈
∑

ia∈Ia

∑

iφ∈Iφ

∑

iν∈Iν

Pr(ãia
, φ̃iφ

, ν̃iν
)

g−1
a g−1

φ g−1
ν

∫∫∫

c

Ddνdφda (8)

≈
‖w‖2

24
Γ

∫∫∫

f(a, φ, ν)µx(a,φ,ν)

(

g−2
a

+ã2(g−2
φ + σ2g−2

ν )
)

dνdφda, (9)

where f(a, φ, ν) is the source pdf and Pr(ãia
, φ̃iφ

, ν̃iν
)

is the probability mass function of the reconstruc-
tion points. Here we assumed high-resolution such that
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Pr(ãia
, φ̃iφ

, ν̃iν
) = f(ãia

, φ̃iφ
, ν̃iν

)g−1
a g−1

φ g−1
ν . The en-

tropy of a single TCQ is given by H ≈ h(Y ) − 1 +
∫

fY (y) log2(gy)dy, where h(Y ) is the differential entropy
of the source Y and fY (y) is its pdf. Note that we here
denote random variables by upper case letters whereas
realizations are denoted by lower case. Assuming that the
amplitude, phase and frequency are independent, we can
then write the entropy as

H≈h(A,Φ,Υ)−3+

∫∫∫

f(a, φ, ν)log(gagφgν)dadφdν.

(10)
To simplify the notation, we get rid of the differential
entropy of the source, h(A,Φ,Υ), by introducing H̃ = H−
h(A,Φ,Υ) and we write the cost function J = E[D]+λH̃,
where λ is the Lagrange multiplier. We minimize the cost
function by taking the derivative with respect to ga, gφ

and gν and set to zero, whereby we obtain

ga =

(

Γµx(a,φ,ν)‖w‖2

12λ log2(e)

)1/2

(11)

gφ =

(

Γµx(a,φ,ν)ã
2‖w‖2

12λ log2(e)

)1/2

(12)

gν =

(

Γµx(a,φ,ν)ã
2σ2‖w‖2

12λ log2(e)

)1/2

. (13)

Inserting the three last equations into the definition of H̃,
we can express the optimal λ∗, as

λ∗ =
Γ‖w‖22ψ2

2

3 (2̺+log
2
(σ)−3−H̃)

12 log2(e)
, (14)

where ̺=
∫

fA(a) log2(a)da with fA(a) being the pdf of A
and ψ =

∫∫∫

f(a, φ, ν) log2(µx(a,φ,ν))dadφdν. Substituting
λ∗ into the expression of ga, gφ and gν , we get

ga =
(µx(a,φ,ν)

2ψ

)
1

2

2
1

3
(H̃+3−log

2
(σ)−2̺) (15)

gφ(ã) = ãga (16)

gν(ã) = σãga, (17)

where the quantization point densities of φ and ν are now
written as functions of ã to stress the dependencies on the
quantized amplitude. Inserting (15)-(17) into (9) we can
finally determine the expected distortion as

E[D] ≈
‖w‖2Γ2

−2

3
(H̃+3−2̺− 3

2
ψ−log(σ))

8
. (18)

From (18) and the expected distortion in [4], we can
calculate the theoretical performance gain between STCQ
and the SQ as 10 log10(4/Γ) in dB. Using the values of
Γ’s from Table I, the distortion gain has been tabulated
in Table II.

For the practical STCQ scheme, we observe from (15)-
(17), that we must first encode a as ã before we can
determine gφ(ã) and gν(ã) and subsequently encode φ
and ν. However, we see from equations (16) and (17)
that ã simply scales the quantization point densities. In
comparing the performance of various quantizers, it is
also important to take into account the computational

TABLE II
Theoretical performance gain between the STCQ and

SQ [4] in dB.

Number of states
4 16 256 512

D
im

. 101 0.5672 0.4605 0.1345 0.0752
102 0.9546 1.0586 1.1044 1.0942
103 0.9865 1.1472 1.2627 1.2855
104 0.9923 1.1587 1.2864 1.3035

complexity. The encoding complexity per sinusoid of the
STCQ is 12 uniform quantizers plus 3(2S + 4) additions,
12 multiplications and 3S comparison of two real value
numbers, where S is the number of states in the trellis.
This in contrast to the SQ having a complexity of 3
uniform quantizers per sinusoid. The decoding complexity
is very close to SQ decoding and thus negligible1. For a
detailed discussion of the complexity and implementation
details of the TCQ, we refer the interested reader to [9],
[10].

III. Experimental Results

The two following experiments are based on synthetic
audio, generated based on a statistical model similar to
that employed in [4]. Specifically, the amplitudes and fre-
quencies are generated from a Rayleigh pdf, i.e., fY (y) =
β−2ye−(y2β−2/2), with β = {1000, 0.25}. The phase, on
the other hand, is uniformly distributed in the interval
[0, 2π). Note that the amplitudes, phase and frequency are
independent. In this work we focus on the performance
gain that can be achieved by joint quantization and we
will therefore, for simplicity, set the perceptual weight-
ing function to one and use a rectangular window with
N = 1023. We remark that the trellis is initialized in
zero-state and that no side information is needed for the
trellis. In a first experiment, we illustrate the impact of
the number of sinusoids that are jointly quantized and the
number of states in the trellis on the performance of the
quantizers. We generate 100,000 triplets (a,φ,ν), set the
target entropy to 20 bit/sinusoid and quantize the triplets
according to (15)-(17). The performance of the STCQ for
four different number of states are shown in Fig. 1 together
with the corresponding SQ, all evaluated by quantizing
the triplets and then calculating the average distortion
using (3). From Fig. 1 it can be seen, that we gain about
1 dB for low dimensions and 1.7 dB at high dimensions
compared to the SQ of [4]. Furthermore, it can be seen
that it is not beneficial to have a high number of states at
low dimensions, but this may be improved by, e.g., a tail
biting trellis. In the second experiment, we compare the
performance of the STCQ to the SQ and the theoretical

1Another coding method is to construct a tensor product of
the amplitude-, phase- and frequency trellises and use the STCQ
encoding procedure, except that the Viterbi alg. is now applied on
the product trellis. We have investigated the performance difference
between this methods and the STCQ, and concluded that only at
low bit-rate (between 5 and 10 bits/sinusoid) this method is slightly
better the STCQ. Taking the complexity into an account, STCQ is
favoured.
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Fig. 1. The performance of the SQ and STCQ for four different
number of states.

expected distortion for both STCQ and SQ. Again, we
generate 100,000 triplets and jointly quantize 1000 sinu-
soids parameters using a 256 state STCQ. The distortion is
calculated as in the previous experiment. The comparison
for several target entropies are shown on Fig. 2. From
this figure, it can be seen that STCQ outperforms the SQ
and that the performance of the STCQ converges towards
the theoretical performance. This verifies that (18) is a
valid approximation. A likely explanation for the constant
performance of the STCQ and the SQ in the interval 0
to 5 bit is that the distortion is plotted as a function of
the target entropy. The same phenomenon was observed in
[4]. Simulations indicate that, when plotted as a function
of the resulting entropy, the distortion actually decreases
for low entropies.
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Fig. 2. The rate distortion performance of the STCQ (solid dotted
line) and the SQ (solid line with triangles) together with the theo-
retical expected performance of both the STCQ (solid line) and the
SQ (dashed line) [4].

IV. Conclusions

We have proposed spherical trellis-coded quantization of
sinusoids that is suitable for variable rate parametric audio
coding, where the number of sinusoids is variable. A promi-
nent feature of the proposed scheme is that the sinusoidal
parameters are quantized jointly in a computationally
efficient manner. Furthermore, we have derived analyti-
cal expressions for the optimal design and the expected
perceptual distortion under high-resolution assumptions.
Experiments have shown a significant performance gain
compared to the spherical quantization scheme of [4]. This
performance gain comes at the cost of a slight increase
in encoding complexity. Furthermore, the impact on the
performance when increasing the number of states in
the trellis and the number of sinusoids that are jointly
quantized has been investigated in experiments, and it
has been found that the performance of the proposed
scheme improves as the number of states and dimensions
is increased.
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