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Amplitude Modulated Sinusoidal Signal
Decomposition for Audio Coding

Mads Græsbøll Christensen∗, Andreas Jakobsson, Søren Vang Andersen, and Søren Holdt Jensen

Abstract— In this paper, we present a decomposition for
sinusoidal coding of audio, based on an amplitude modulation
of sinusoids via a linear combination of arbitrary basis vectors.
The proposed method, which incorporates a perceptual distortion
measure, is based on a relaxation of a nonlinear least-squares
minimization. Rate-distortion curves and listening tests show
that, compared to a constant-amplitude sinusoidal coder, the pro-
posed decomposition offers perceptually significant improvements
in critical transient signals.

EDICS: COM-CODE

I. INTRODUCTION

Perceptual audio coding aims at minimizing the perceived
distortion at a given bit-rate. In parametric audio coding this is
done by using signal models that capture the signal energy in
a few parameters. It is critical that the signal models can rep-
resent a wide range of different audio signals, and especially
transient signals have proven to be troublesome in that respect
over the years. A number of different, and complementary,
methods for dealing with transients have been proposed over
the years, namely adaptive segmentation, noise-shaping, and
variable rate [1]. Among these, adaptive segmentation is by
far the most common approach for dealing with transients in
audio coding. For an exhaustive discussion of the different
methods and how they relate, see [1], [2]. Recently, amplitude
modulated (AM) sinusoidal models have demonstrated to
lead to improved coding of transients in audio even when
rate-distortion optimal time segmentation [3] is employed
[2]. Sinusoidal modeling using both amplitude and frequency
modulation, in the form of low-order polynomials, has been
explored (see, e.g., [4], [5]). Although such models perform
well for slowly evolving signals, such as voiced speech, they
can not handle the steep transients often encountered in audio
signals satisfactorily.

In this paper, we treat a signal decomposition based on
a set of preselected, linearly independent, real-valued basis
vectors that describe the amplitude modulating signal and its
application to audio coding. Specifically, we examine how to
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incorporate a perceptual distortion measure efficiently in the
decomposition.

The rest of the paper is organized as follows: In Section II,
both the signal decomposition and the solution to the associ-
ated minimization problem are presented. Experimental results
are presented in Section III, and Section IV concludes on our
work.

II. PROPOSED DECOMPOSITION

In the proposed decomposition, the signal of interest is
modeled as a sum of L amplitude modulated sinusoids, i.e.,

x(n) =
L∑

l=1

γl(n) cos(ωln + φl), (1)

where ωl and φl denote the lth carrier frequency and phase,
respectively, and γl(n) is the amplitude modulating signal
formed as a linear combination of I basis functions,

γl(n) =
I∑

i=1

b(n, i)ci,l, (2)

where b(n, i) and ci,l denote the ith basis function evaluated
at time instance n and the (i, l)th AM coefficient, respectively.
We will here assume that the L carrier frequencies are distinct,
so that ωk �= ωl for k �= l. The additional flexibility in (1), as
compared to the traditional constant-amplitude (CA) models
with γl(n) = Al, allows for improved modeling of transient
segments. We note that the CA model is a special case of
the modulated model, with the amplitude modulating signal
being constant. Let xa(n) denote the discrete-time “analyti-
cal” signal constructed from x(n) by removing the negative
frequency components, such that the resulting signal may be
down-sampled by a factor two without loss of information
provided that there is little or no signal of interest near 0 and
π [6]. The signal model xa(n) can then be written as

xa(n) =
L∑

l=1

I∑
i=1

b(n, i)ci,le
jωln+jφl . (3)

Choosing the segment length, N , to be even, and introducing

xa =
[

xa(1) xa(3) · · · xa(N − 1)
]T

, (4)

where (·)T denotes the transpose, the down-sampled discrete-
time “analytical” signal can be expressed as

xa = [(BC) � Z] a, (5)

where � denotes the Schur-Hadamard (element-wise) product.
Further, Z ∈ CN/2×L with L < N/2 is constructed from the
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L complex carriers with the (k, l)th element being [Z]kl =
ejωl(2k−1) and

a =
[

ejφ1 · · · ejφL
]T

. (6)

The amplitude modulating signal is written using the known
AM basis vectors, [B]kl = b(2k−1, l), and the corresponding
coefficients, [C]kl = ck,l. Here, B ∈ RN/2×I with I < N/2
and C ∈ R

I×L. The problem of interest is, given a measured
signal, y(n), find x(n) such that

min
C,{φk},{ωk}

‖W (ya − xa) ‖2
2, (7)

where W is a perceptual weighting matrix, ya is formed
similar to xa, and ‖ · ‖2 denotes the 2-norm. Here, W is
derived from the auditory masking model proposed in [7].
This problem is nonlinear in the frequencies {ωk}L

k=1, and
is thus termed a nonlinear least-squares (NLS) minimization.
Typically, this type of problem requires a multidimensional
minimization which is computationally infeasible in most
situations. Herein, we propose an iterative method for the
minimization of (7). The method exploits that, for given
{ωk}L

k=1, the minimization problem with respect to C for
fixed {φk}L

k=1 is quadratic, and conversely the minimization
of {φk}L

k=1 for fixed C. We propose to iteratively find C
and {φk}L

k=1, minimizing the residual for each frequency in
a given finite set of frequencies, Ω. Let

ck =
[

c1,k · · · cI,k

]T
. (8)

At iteration k, assuming the k − 1 carriers and corresponding
coefficients known (i.e., found in prior iterations), we find
for each frequency ω ∈ Ω, the model parameters φk and
ck, minimizing the residual for that particular frequency. The
kth carrier is then found as the parameter set minimizing the
residual over Ω, i.e.,

ω̂k = arg min
ω∈Ω

‖W (
rk − ejφkDkBck

) ‖2
2, (9)

where Dk is the diagonal matrix constructed from the kth
carrier, with zk = ejωk , i.e.,

Dk = diag
([

z1
k z3

k · · · zN−1
k

])
. (10)

Furthermore,

rk =
[

rk(1) rk(3) · · · rk(N − 1)
]T

(11)

contains the kth residual, obtained as

rk(n) = ya(n) −
k−1∑
l=1

I∑
i=1

b(n, i)ĉi,le
jω̂ln+jφ̂l . (12)

In iteration 1, the residual is initialized as r1(n) = ya(n). For
each frequency ω, we iteratively solve for φk and ck (with
superscript (p) denoting the pth iteration of the alternating
minimization); for given ĉ(p−1)

k ,

φ̂
(p)
k = ∠

{(
c(p−1)

k

)T

BT DH
k Grk

}
, (13)

where G = WHW and with ∠(x) denoting the argument
of x. Given φ̂

(p)
k , the minimization with respect to the AM

coefficients reduces to

ĉ(p)
k = Re

{
e−jφ̂

(p)
k Πr(p)

k

}
, (14)

where
Π =

(
BTDH

k GDkB
)−1

BTDH
k G, (15)

with Re(x) denoting the element-wise real part of x. The
parameters in (13) and (14) are then found alternately, given
the other, until some stopping criterion is reached. For a given
ω the problem is convex, and the algorithm converges to a
global maximum. Hence, the 2-norm of the residual is a non-
increasing function of the number of iterations. It also follows
from the convexity that the initialization of the parameters in
(13) and (14) is not critical since the estimates will converge
to the same value regardlessly, but the required number of
iterations may vary depending on the initialization.

It is important to understand that there is an inherent tradeoff
between computational complexity and perceptual relevance in
the choice of the perceptual weighting matrix. For the general
case of the weighting matrix W having no particular structure,
as in [8], the complexity of the proposed decomposition may
be overwhelming. However, for certain structured matrices, the
decomposition can be simplified significantly. For the partic-
ular auditory masking model proposed in [7], the weighting
matrix W is a circulant and Hermitian matrix of the form

W =

⎡
⎢⎢⎢⎣

w0 wM−1 · · · w1

w1 w0 · · · wM−1

...
...

. . .
...

wM−1 wM−2 · · · w0

⎤
⎥⎥⎥⎦ , (16)

with M = N/2 and wn = 1
M

∑M−1
m=0

√
A(m)e−j2πmn/M [9].

A(m) is chosen as the reciprocal of the masking curve derived
from the model presented in [7]. It follows that the eigenvalue
decomposition (EVD) of G can be written as [10]

G = UΛUH , (17)

where the eigenvectors are

U =
1√
M

[
u0 u1 · · · uM−1

]
, (18)

with Λ = diag([ A(0) . . . A(M − 1) ]) and the columns
uf = [ u0

f · · · uM−1
f ]T being composed from uf = ej2πf/M .

Using the EVD, the calculation of the phase can be simplified
as

φ̂
(p)
k = ∠

{(
c(p−1)

k

)T

BT DH
k UΛUHrk

}
, (19)

which can be computed efficiently by calculating UΛUHrk

once for each k. Similarly, the computational complexity in
finding the AM coefficients can be reduced by combining (15)
and (17), yielding

Π =
(
BTDH

k UΛUHDkB
)−1

BT DH
k UΛUH . (20)

The significant reduction in complexity stems from U being
known and that all matrix-vector or matrix-matrix products
involving U can be calculated using FFTs. For a thorough
treatment on the application of the distortion measure to this
problem, we refer to the discussion in [2].
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Fig. 1. The AM bases b(n, i) for n = 1, 3, . . . N−1 used in the experiments
for a sampling frequency of 44.1 kHz and a segment size of 30 ms.

III. EXPERIMENTAL DETAILS AND RESULTS

Many audio segments are well-modeled using a CA sinu-
soidal model, and applying the proposed AM decomposition
is not always preferable from a rate-distortion point of view.
Rather, to enable efficient coding of both stationary and
transient segments, we propose the use of a combined coder,
containing both a CA sinusoidal coder and a coder based on
the AM decomposition. Herein, the AM decomposition has
been incorporated into the experimental coder described in [2].
Based on rate-distortion optimization [3], it is determined in
each segment whether an AM or CA sinusoidal model should
be used. We refer to such a combined coder as the AM/CA
coder, using the term CA coder for the pure CA-based coder.

In the experiments to follow, von Hann windows of length
30 ms were used in both analysis and overlap-add synthesis
with 50% overlap. Sinusoidal parameters are quantized as fol-
lows: phases are quantized uniformly using 5 bits/component,
whereas amplitudes and frequencies are quantized in the
logarithmic domain. We estimate the resulting rates as the
entropies of the quantization indices, which gives approxi-
mately 9 bits/component for frequencies and 6 bits/component
for amplitudes. The AM coefficients are also quantized using
the amplitude quantizer. This leads to an average of 30
bits/component for amplitude modulated sinusoids and 20
bits/component for CA. The quantizers were found to produce
perceptually transparent results compared original parameters.

In Figure 1, the particular AM bases used in the experiments
are depicted. The AM bases are constructed from tapered
cosine functions such that a smooth transitions are achieved.
These have been chosen because they posses a number of
attractive properties, namely that a linear combination of these
vectors will result in a smooth modulating signal, and that they
contain CA as a special case. The first property is desirable
since non-smooth modulations may results in a perceived
roughness in the synthesized signal, while the second property
is desirable because not all sinusoidal components may be
modulated in a particular segment. Here, we also note that
the estimate in (13) is initialized such that the corresponding
modulating signal has a constant amplitude and then (14) is
found using that estimate.

We have considered two different implementations of the
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Fig. 2. The top panel shows the castanet signal while the middle panel shows
the perceptual distortion as a function of the entropy for a particular segment.
The rate-distortion curves for the castanet signal in top panel are depicted in
the bottom panel.

AM/CA coder. One, termed AM/CA (2-norm), where the
perceptual distortion measure is only applied in the frequency
estimation in (9) and the 2-norm is used in finding the AM
coefficients, and one, termed AM/CA (p-norm), where the
perceptual distortion measure is also applied in (13) and (14).
The former is the least complex of the two, while the latter is
expected to result in lower distortions. That this is actually
the case is illustrated in Figure 2. The top panel of this
figures shows a piece of the castanet signal from SQAM
[11]. The middle panel shows the perceptual distortion of the
different decompositions as a function of the entropy (number
of bits or number of components) for the particular segment
indicated by vertical lines in the top panel. This illustrates
the convergence of the decompositions. In the bottom panel,
the rate-distortion curves (or more correctly the distortion-
rate curves) of the CA coder and the AM/CA coder are
shown. The curves are calculated as described in [3], using the
perceptual distortion measure in [7]. It can be seen that there
is a significant improvement in the rate-distortion tradeoff
resulting from the proposed decomposition as compared to
the CA coder. It can also be seen that the AM/CA (p-
norm) implementation is best in terms of perceptual distortion.
However, the complexity-reduced implementation AM/CA (2-
norm) achieves a performance very close to that of the AM/CA
(p-norm). Therefore, this implementation has been used in the
following listening tests.

Informal listening tests indicate that the combined AM/CA
coder results in high perceived quality of coded excerpts for
both stationary and transient parts. Generally, the type of
signals that benefit from AM are signals that exhibit sharp
onsets and stops, percussive sounds and changing signal types,
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TABLE I

RESULTS OF AB-PREFERENCE TEST.

Preference [%]
Excerpt AM/CA CA Significant

Castanets 100 0 Yes
Claves 80 20 Yes

Glockenspiel 63 37 Yes
Harpsichord 63 37 Yes
Vibraphone 57 43 No
Xylophone 78 22 Yes

Total 74 26 Yes

such as transitions from unvoiced to voiced in speech signals.
Often, the improvements are perceived as an increase in
bandwidth. Also, a blind AB preference test with reference
was carried out on headphones using 6 different critical
excerpts from SQAM [11] having a length of 5-10 s. The seven
listeners that participated were asked to choose between the
CA coder and the AM/CA coder, both operating at a bit-rate
of approximately 30 kbps. Each experiment was repeated 8
times in a randomized, balanced way. The results are shown
in Table I. Significance was determined using a binomial
distribution and a one-sided test with a level of significance
of 0.05. The test shows that performance can be improved
significantly using the proposed decomposition. We remark
that, as shown in [2], both the CA and AM/CA coders may
be further improved by the use of optimal segmentation [3].
This comes at the cost of increased delay and complexity,
which may be prohibitive for some applications, e.g. [12].

IV. CONCLUSION

We have proposed a signal decomposition based on am-
plitude modulated sinusoids, and we have demonstrated that
this decomposition may be used for high quality audio cod-
ing. Experiments indicate that a significantly higher rate of
convergence, in terms of rate-distortion, can be achieved for
transient segments when incorporating the proposed method
in a combined coder. This is also confirmed by listening tests,
showing that for a given bit-rate, significant improvements can
be gained for the coder using the proposed decomposition.
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