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On Perceptual Distortion Minimization and
Nonlinear Least-Squares Frequency Estimation
Mads Græsbøll Christensen∗, Student Member, IEEE, and Søren Holdt Jensen,Senior Member, IEEE

Abstract— In this paper, we present a framework for per-
ceptual error minimization and sinusoidal frequency estimation
based on a new perceptual distortion measure and we state its
optimal solution. Using this framework, we relate a number of
well-known practical methods for perceptual sinusoidal param-
eter estimation such as the pre-filtering method, the weighted
matching pursuit and the perceptual matching pursuit. In par-
ticular, we derive and compare the sinusoidal estimation criteria
used in these methods. We show that for the sinusoidal estimation
problem, the pre-filtering method and the weighted matching
pursuit are equivalent to the perceptual matching pursuit under
certain conditions.

I. I NTRODUCTION

T HE problem of estimating the parameters of a set of
sinusoids in noise arises in many different applications. In

digital processing of speech, the sinusoidal estimation problem
arises in such applications as speech modeling and coding [1]–
[5] and speech enhancement [6] and more recently, renewed
interest in sinusoidal coding of speech has been spurred by
the increasing interest in voice over packet-based networks
[7]–[10]. Also in the field of audio processing, the sinusoidal
signal model has been of interest for music analysis and
synthesis [11]–[13], and parametric coding of audio [14]–
[20]. In speech and audio processing the sinusoids can be
seen as a parametric representation of the quasi-periodic,i.e.
tonal, signal components, while the noise can be seen as the
unvoiced, stochastic signal components [13]. The latter could,
for example, be unvoiced speech, the bow noise of a violin,
quantization errors or processing noise.

The applications mentioned above have in common that it
is of interest to find a compact representation, or in other
words to represent the signal in as few, physically meaningful
parameters as possible. Since the end receiver of these signals
is the human auditory system, it is also of interest to represent
the perceptually most important components. In audio coding
in particular, it is of interest to estimate and transmit only
the parameters of audible sinusoids and in recent years,
much effort has been put into this problem. Many different
methods for solving this have been proposed, e.g. [21]–[28]
all implement this in what seem to be different ways. Often,
these methods rely heuristic rules taken from psychoacoustic
experiments, while estimation theory, on the other hand, relies
on statistical signal processing in finding model parameters. In

The authors are with the Department of Communication Technology, Aal-
borg University, Denmark (email:{mgc,shj}@kom.aau.dk , homepage:
http://kom.aau.dk/˜{mgc,shj} ).

This research was supported by the ARDOR (Adaptive Rate-Distortion
Optimized sound codeR) project, EU grant no. IST–2001–34095, and the
Intelligent Sound project, Danish Technical Research Council grant no. 26–
02–0092.

[25] sinusoidal components are found in an iterative manner
by assigning a perceptual weight to the spectrum and then
picking the most dominant peak of the weighted spectrum.
Another method is the so-called pre-filtering method, where
the observed signal is filtered using a perceptual filter in order
to achieve a weighting of the sinusoidal components, c.f. [26].
The methods of [27] and [28] are different methods yet—they
rely on loudness and excitation pattern similarity criteria for
sinusoidal component selection, respectively.

In coding applications it is of particular interest to state
the estimation criterion in a way that defines a distortion
measure or metric. A globally optimal solution that minimizes
this distortion measure ensures that at a given bit-rate (for a
certain number of sinusoids in the case of sinusoidal coding),
the lowest possible distortion is achieved. When the distortion
measure is a perceptual one, meaning that it reflects the
human auditory system, we can then claim that the perceived
distortion is minimized at the given bit-rate. In linear predictive
speech coding, for example, perception is traditionally taken
into account using a fairly simple approach, where the noise
spectrum is shaped by a perceptual weighting filter, which is
derived directly from the linear prediction filter of the speech
signal [29].

A recently published psychoacoustic masking model for au-
dio coding has been shown to form a distortion measure [30],
[31], and this distortion measure has been applied successfully
to the sinusoidal estimation problem in [15], [23], [32], [33].
Based on this we define the perceptual frequency estimation
problem and its optimal solution. We then analyze and relatea
number of different practical perceptual frequency estimators
that are all based on least-squares in this framework. In
particular, we study the estimation criteria of these estimators.
This allows us to analyze, quantify and understand the nature
of the approximations made in these estimators. An important
result is that the estimation criteria of the pre-filtering method
and the weighted matching pursuit can be derived from the
perceptual matching pursuit from the same assumption. Since
many applications rely on a physical interpretation of the es-
timated parameters, the statistical properties of the estimators
in question are also of significant importance. In that spirit
we also investigate how the least-squares based estimators
relate to estimation theory and maximum likelihood frequency
estimation.

The rest of this paper is organized as follows. In Section II
the frequency estimation problem is introduced along with
the nonlinear least-squares frequency estimator. Then, inSec-
tion III, we relate this to a simpler, common estimator, namely
matching pursuit. In Section IV we proceed to introduce a
perceptual distortion measure that can be written in the form
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of a circulant, symmetric perceptual weighting matrix. In
Section V we use this measure to formulate the perceptual
frequency estimation problem and its optimal solution in terms
of the perceptual nonlinear least-squares estimator. Moreover,
we relate this to an approximation, namely the perceptual
matching pursuit. The eigenvalue decomposition (EVD) of the
perceptual weighting matrix and approximations with applica-
tion to the problem at hand are studied in Section VI. In Sec-
tion VII we then show how this can be used to relate a number
of well-known perceptual sinusoidal frequency estimators. We
present some illustrative numerical examples in Section VIII,
and we summarize the results and give conclusions in Sections
IX and X, respectively.

II. T HE FREQUENCY ESTIMATION PROBLEM

The basic problem addressed in this paper can be stated as
follows. Given a real observed signalx(n) for n = 0, . . . , N−
1, find the parameters of the signal of interestx̂(n) in additive
noisee(n):

x(n) = x̂(n) + e(n). (1)

In our case the signal of interestx̂(n) is a sum of sinusoidal
components

x̂(n) =

L
∑

l=1

Al cos (ωln + φl) , (2)

with each component having a constant amplitudeAl, initial
phaseφl, and frequencyωl. The problem is then to esti-
mate these parameters, in particular the frequenciesω =
[ ω1 · · · ωL ]T . In the same process, the amplitudes and
phases are usually also found, but as we shall see, these can
written as complex linear parameters and can then be found
in straightforward way.

Supposing thate(n) is zero-mean white, i.i.d. (independent
and identically distributed over observations) Gaussian noise
of varianceσ2, the likelihood functionp(x; ω), which is a
function of the observed signal and the model parameters (here
only the frequencies) can be written as (see e.g. [34])

p(x; ω) =

N−1
∏

n=0

1√
2πσ2

exp

[

− 1

2σ2
|x(n) − x̂(n)|2

]

=
1

(2πσ2)
N

2

exp

[

− 1

2σ2

N−1
∑

n=0

|x(n) − x̂(n)|2
]

. (3)

Introducing a vector containing the observed signalx =
[ x(0) · · · x(N − 1) ]

T and a vector containing the modeled
signal x̂ = [ x̂(0) · · · x̂(N − 1) ]T , this can be written as

p(x; ω) =
1

(2πσ2)
N

2

exp

[

− 1

2σ2
‖x− x̂‖2

2

]

. (4)

Taking the logarithm, we get the log-likelihood function

ln p(x; ω) = −N

2
ln

(

2πσ2
)

− 1

2σ2
‖x− x̂‖2

2. (5)

We see that for white Gaussian noise, maximizing the like-
lihood function is the same as minimizing the squared er-
ror between the observed signal and the signal model. In

the nonlinear least-squares frequency estimator (NLS), the
sinusoidal frequencies are estimated by minimizing exactly
this error in a least-squares sense. The method is known as
nonlinear least-squares as the cost function is nonlinear in
the unknown frequencies. It is interesting, but perhaps not
surprising, that in this particular case, the statistical approach
of maximum likelihood (ML) turns into a deterministic method
that matches the signal model to the outcome of the random
process. The resulting estimator can be stated as the solution
to the following problem [35]:

min ‖x − x̂‖2
2 = min ‖x− Za‖2

2. (6)

Here, the matrixZ ∈ C
N×2L (N > 2L) is a so-called

Vandermonde matrix1 defined as

Z =











z0
1 z−0

1 · · · z0
L

z−0
L

z1
1 z−1

1 · · · z1
L

z−1
L

...
...

...
...

zN−1
1 z

−(N−1)
1 · · · zN−1

L
z
−(N−1)
L











, (7)

where signal poleszl = exp(jωl) come in complex conjugate
pairs. Assuming that the signal poles are distinct, the matrix
has full rank. Furthermore, we have thata ∈ C2L, a =
[ a1 a∗

1 · · · aL a∗

L
]
T with

al =
Al

2
exp(jφl). (8)

The NLS frequency estimates are then the combination of
L frequencies (witĥ· denoting estimates) that minimizes the
squared error, i.e.,

ω̂ = argmin
ω

‖(x − Za)‖2
2. (9)

This can be formulated as a maximization problem using the
principle of orthogonality:

ω̂ = argmin
ω

xHx − xHZ
(

ZHZ
)−1

ZHx (10)

= argmax
ω

xHZ
(

ZHZ
)−1

ZHx. (11)

The corresponding amplitude and phase estimates are the
solution to (6) given the frequencies:

â =
(

ZHZ
)−1

ZHx. (12)

For more on estimation of amplitudes and phases, we refer
the reader to the study in [37]. In order to solve the frequency
estimation problem this way, we have to search (numerically)
for the combination of theL complex sinusoids that minimize
the 2-norm of the error signal. This is essentially the subspace
pursuit of [38] with the sum of sinusoids being the target
subspace. Clearly, this is a complex procedure and it is not
easily solved. In most real-time applications, solving this
problem directly is not feasible. For more on the intractability
of this problem, we refer the reader to [39].

One may argue that this point of view is unrealistic both
in terms of solving the problem optimally and in terms of the
assumptions with respect to the noise, but the NLS frequency
estimator is very interesting from a theoretical point of view

1Vandermonde matrices are sometimes defined to be square [36].
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because it has excellent statistical performance. For the white
Gaussian noise case, it is efficient and unbiased—it attainsthe
Cramér-Rao Bound (see e.g. [35], [40], [41]).

In speech and audio processing the noise cannot generally
be assumed to be white. For the colored noise case, with the
Gaussian noisee(n) now having the positive definite (non-
diagonal) covariance matrixΣ, the likelihood function is [41]

p(x; ω) =Q exp

[

−1

2
(x− x̂)

H
Σ−1 (x − x̂)

]

, (13)

with
Q =

1

(2π)
N

2

√

det(Σ)
. (14)

The corresponding maximum likelihood estimator is then

ω̂ = argmin
ω

(x − x̂)
H

Σ−1 (x − x̂) . (15)

Without prior knowledge of the noise covariance matrixΣ,
this problem is clearly more difficult to solve than for white
noise whereΣ = σ2I and det(Σ) = σ2N . However, as
shown in [41], the NLS estimator in (11) is also asymptotically
efficient for colored noise under some mild conditions. For
more details on the relation between the NLS and ML esti-
mators for the colored noise case and the associated Cramér-
Rao bound, we refer the reader to [41], and for a practical
method that achieves the Cramér-Rao bound see [42]. For
non-Gaussian noise, the NLS estimator loses its maximum
likelihood interpretation [41]. Here it must be stressed that we
are not arguing as to the nature of noise in audio signals but
rather as to the optimality of some commonly used methods
that are based on least-squares.

III. R ELAXATION OF THE NLS ESTIMATOR

In this section we treat the relationship between the NLS
frequency estimator and a well-known method for sinusoidal
parameter estimation, namely matching pursuit [43]. As we
shall see, there is a close relation between the two, although
originally proposed in two entirely different contexts.

In matching pursuit a signal model is built iteratively by
solving for one component at a time. This is done by finding
the component from a dictionary, in this case composed
of a set of complex sinusoids of different frequencies, that
minimizes some norm (here the 2-norm) of the residual, which
is formed by subtracting thei-th component from thei-th
residual, i.e.,

ri+1(n) = ri(n) − Âi cos(ω̂in + φ̂i), (16)

with the residual being initialized asr1(n) = x(n). The Van-
dermonde matrixZ now contains the vectorz =

[

exp(jω0) -

· · · exp(jω(N − 1))
]T

and its complex-conjugate:

Z =
[

z z∗
]

. (17)

The frequency is then estimated as the minimizer of the 2-
norm of the residual at iterationi + 1

ω̂i =argmin
ω

‖ri+1‖2
2 = argmin

ω

‖ri − Za‖2
2 (18)

=argmax
ω

rH

i Z
(

ZHZ
)−1

ZHri, (19)

whereri =
[

ri(0) · · · ri(N − 1)
]T

. After i iterations, the
signal model is simply

x̂i(n) =

i
∑

l=1

Âl cos(ω̂ln + φ̂l). (20)

Writing out the estimation criterion (19) (here denotedJ), we
get

J = rH

i
Z

(

ZHZ
)−1

ZHri (21)

= rH

i

[

z z∗
]

[

zHz zHz∗

zT z zHz

]

−1 [

zH

zT

]

ri. (22)

We see that this is still a subspace pursuit, but in this case the
subspace is a function of one variableω. This is sometimes
referred to as a conjugate-subspace pursuit [38]. Assuming
that the complex sinusoid and its complex-conjugate are well
separated in frequency (not close to 0 orπ relative toN ), the
inner product between the two can be assumed to be zero2:

zHz∗ ≈ 0. (23)

The estimation criterion (22) can then be reduced significantly:

J = rH

i

[

z z∗
]

[

zHz 0
0 zHz

]

−1 [

zH

zT

]

ri (24)

= 2

∣

∣zHri

∣

∣

2

zHz
. (25)

The sinusoidal frequency estimation criterion can now be
written in the well-known form

ω̂i = argmax
ω

| 〈z, ri〉 |2
N

, (26)

with < ·, · > denoting the inner product. The associated
optimum complex scaling is

âi =
〈z, ri〉

N
, (27)

which relates to the amplitude and phase in (16) as described
in (8). We see that for the case of a sinusoidal dictionary MP
is the NLS estimator in the one sinusoid case. It can be solved
efficiently since the inner products〈z, ri〉 can be found using
FFTs. Clearly, matching pursuit is a simplified approximation
to (11). It can be seen as a relaxation of the original problem,
where instead of solving the multidimensional nonlinear prob-
lem, we break it into several one-dimensional minimizations
that have efficient implementations. Matching pursuit con-
verges in the respective norm asi grows and the distortion is a
non-increasing function ofi (see [43]). It does not, generally,
converge to zero in a finite number of iterations for the
sinusoidal case as later iterations may introduce new spectral
components due to the non-orthogonality of the components
of redundant dictionaries. Sometimes this is also referredto
as the readmission problem [44]. There are several ways to
compensate for these problems (see for example [39], [44]–
[47]).

2For the 2-norm case considered here, the conjugate-subspace pursuit can
be solved efficiently without this assumption. However, this is not the case
for the methods considered later in this paper.
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On a historical note, the estimation procedure of [5], [11]
first introduced in [48] is similar to that of matching pursuit
for complex sinusoids later introduced in [43]. The RELAX
algorithm [42] is an iterative sinusoidal frequency estimation
algorithm, where the efficient solution to the one-sinusoid
estimation problem is exploited in a recursive manner. It has
been demonstrated to have excellent statistical performance
achieving the Cramér-Rao bound for both white and colored
Gaussian noise [41].

IV. A PERCEPTUAL DISTORTION MEASURE

It is well-known that the 2-norm error measure does not
correlate well with human sound perception. The choice
of a distortion measure involves a trade-off between many
factors. On one hand we would like to have a measure that
takes as much of the processing in the human auditory into
account as possible, while on the other hand we would like to
have a measure which defines a mathematical norm. Another
desirable property of the measure is that it can be incorporated
in an efficient algorithm. A generalized perceptually weighted
2-norm can be written as

‖W (x − x̂)‖2
2 , (28)

where W is a so-called perceptual weighting or sensitivity
matrix (e.g. [25], [49]). Even very sophisticated distortion
measures can be expressed this way. For example, in [49] the
model of [50], [51] is linearized and put into the form of (28).
Since we are here concerned with the estimation of stationary
sinusoids, we assume the observed signal to be stationary. For
stationary signals, the masking in the human auditory system
is predominantly caused by simultaneous masking. Masking
analysis in audio coding usually only considers distortions in
the individual auditory filters, see e.g. ISO 11172-3 (MPEG-
1) Psychoacoustic Model 1 described in [52]. Recently, it has
been shown that significant improvements are gained by taking
spectral integration into account [30], [31]. Using the masking
model proposed in [30], [31], which was derived specifically
for sinusoidal coding, the distortionD for a particular segment
can be written as

D =

∫

π

−π

A(ω)|E(ω)|2dω, (29)

whereA(ω) is a real, positive perceptual weighting function
and E(ω) is the discrete-time Fourier transform of the error
e(n) = w(n) [x(n) − x̂(n)] wherew(n) is the analysis win-
dow. When the weighting function is chosen as the reciprocal
of the masking threshold, the error spectrum which results
from minimizingD will be shaped like the masking threshold.

In the coming analyses, we assume a rectangular window
(w(n) = 1 ∀n) for simplicity and mathematical convenience
since we shall rely on asymptotic properties. In practice, the
weighting functionA(ω) and the error spectrumE(ω) are
uniformly sampled spectraA(k) and E(k), respectively, and
the integral (29) can be calculated as a summation of point-
wise multiplications in the frequency domain:

D =

K−1
∑

k=0

|
√

A(k)E(k)|2. (30)

The point-wise spectral multiplication corresponds to circular
convolution in the time-domain, i.e.

K−1
∑

m=0

h(m)e((k − m) (mod K))↔
√

A(k)E(k), (31)

with ↔ denoting Fourier transform pairs. Furthermore, from
Parseval’s theorem, we have that the inner product can be
calculated in the frequency domain as

K−1
∑

n=0

x∗(n)y(n) =
1

K

K−1
∑

m=0

X∗(k)Y (k). (32)

This means that the discrete distortion measure (30) can be
written as the 2-norm of a circular convolution:

D =

K−1
∑

k=0

|
K−1
∑

m=0

h(m)e((k − m) (mod K))|2. (33)

The sampling frequency of the reciprocal of the masking
curve A(k) (and thus the length of the corresponding filter)
is determined by the human auditory system and not by the
input signal.

The distortion measure can now be put into the more
convenient matrix-vector notation:

D = ‖He‖2
2 (34)

with H being the perceptual weighting matrix, in this case a
filtering matrix, having the following structure

H =











h(0) h(K − 1) · · · h(1)
h(1) h(0) · · · h(K − 1)

...
...

. . .
...

h(K − 1) h(K − 2) · · · h(0)











, (35)

and e = [ e(0) · · · e(K − 1) ]
T . This means that there is a

duality between the spectral distortion measure and the two-
norm of the circularly filtered error signal. This interpretation
offers insights into the relation between a number of methods
for perceptual frequency estimation. We will return to thislater
in the paper.

We now discuss how to derive an appropriate filter from the
perceptual weighting functionA(k). As the perceptual filter
has to be derived for each segment, computational complexity
is of considerable importance. The simplest solution is to
compute the impulse response as the inverse Fourier transform
of

√

A(k) for n = 0, . . . , K − 1, i.e.,

h(n) =
1

K

K−1
∑

k=0

√

A(k) exp (j2πkn/K) (36)

=
1

K

K−1
∑

k=0

√

A(k) cos (2πkn/K) , (37)

where the last line follows fromA(k) being real and sym-
metric (A(k) = A(K − k)), which also means thath(n) is
symmetric, i.e.h(n) = h(K − n). This procedure leaves us
with an impulse response of lengthK while our observed
signal is of lengthN . Typically, the required length of the
spectral weighting function is higher than the number of time-
samples, i.e.N < K. The signal and model vectors can
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then easily be zero-padded to lengthK or the lastK − N
columns of H can be truncated. Filters of arbitrary order
can be obtained using standard methods, and in the following
sections we assume that the impulse response has been derived
such that it has lengthN .

V. PERCEPTUAL NLS AND MP

In many applications such as audio modeling and coding,
it is of interest to extract only the perceptually most relevant
sinusoidal component of the observed signal. Indeed, in audio
coding, where the problem can be stated as minimizing the
perceived distortion given some rate constraint, convergence
in the perceptual distortion as we increase the number of
sinusoids (and thus the rate) is desirable. Using the definitions
in Section IV, we can restate the NLS frequency estimator as
the following perceptually meaningful least-squares problem

min ‖H(x− x̂)‖2
2. (38)

Let ω = [ ω1 · · · ωL ]T be the set of frequencies that describe
the Vandermonde matrixZ ∈ CN×2L. Then the perceptual
NLS estimates of the frequencies (and the corresponding
optimal amplitudes and phases) are the solution to the problem

ω̂ = argmin
ω

‖H(x− Za)‖2
2. (39)

The vectorω̂ is the vector containing the set of the frequencies
of L sinusoids that minimize the filtered, weighted 2-norm
and the vector̂a contains the amplitudes and phases of those
sinusoids in polar form. Since the filtering matrix is real and
symmetric, i.e.HHH = H2, these can be estimated as

â =
(

ZHH2Z
)−1

ZHH2x. (40)

Substituting this into (39), we get

ω̂ = argmin
ω

‖H(x − Za)‖2
2 (41)

= argmax
ω

xHH2Z
(

ZHH2Z
)−1

ZHH2x. (42)

This re-statement of the NLS frequency estimator allows us
to estimate only the perceptually significant sinusoids and
disregard inaudible ones, and to find the amplitudes and
phases in such a way that artifacts are not introduced in the
decoded signal. This formulation is only relevant when we
are interested in a subset of the total number of sinusoids.
Otherwise, there is no need for the spectral weighting of the
error in the frequency estimation. However, the total number
of sinusoids is generally unknown and robustness with respect
to the number of sinusoids is desirable. We mention in passing
that it also may be advantageous to incorporate the perceptual
distortion in the estimation of amplitudes and phases as in (40)
since erroneous estimates may introduce components in parts
of the spectrum where no masker is present.

In terms of projections and transformations, the filtering
matrixH can be thought of as a transformation to a perceptual
domain and the problem of finding the optimal signal model
can be seen as a projection problem. Then, the transformed
input signal is projected orthogonally onto the column space of
the transformed signal model. This introduces an error which

He

HZa

Hx

R(HZ)

Fig. 1. Orthogonal projection of the filtered input onto the column space of
the filtered signal model.

is orthogonal to the signal model in the perceptual domain.
This is illustrated in Figure 1 withR(·) denoting the range.

In the perceptual matching pursuit [23], which is a special
case of the psychoacoustic adaptive matching pursuit with
no adaptive norm, the dictionary element that minimizes the
perceptual norm of the residualri is chosen. As in Section III,
this is just the one-sinusoid nonlinear least-squares estimator
operating on the residual. The matrixZ again reduces to the
vector z =

[

exp(jω0) · · · exp(jω(N − 1))
]T

, and the
estimator is

ω̂i = argmin
ω

‖H(ri − za)‖2
2. (43)

with ri again being the residual at iterationi (see section III).
Rewriting (43), we get the frequency estimator

ω̂i = argmax
ω

rH

i H2z
(

zHH2z
)−1

zHH2ri (44)

= argmax
ω

| 〈Hz,Hri〉 |2
‖Hz‖2

2

, (45)

and the associated optimal scaling, i.e. amplitude and phase,
is

âi =
〈Hz,Hri〉
‖Hz‖2

2

. (46)

The perceptual MP converges in the perceptual distortion
measure rather than the 2-norm. We see that as with match-
ing pursuit and the one-sinusoid NLS estimator, there is an
equivalence between the perceptual matching pursuit and the
perceptual NLS. The perceptual MP can be implemented
efficiently using two FFTs in each iteration.

VI. EVD OF THE PERCEPTUAL WEIGHTING MATRIX

A. Signal Model Assumption

We now consider the example of a signal model component
being an eigenvectorv of the perceptual weighting matrixH
with eigenvalueλ such that

Hv = λv. (47)

As we shall see in Section VII, this assumption leads to some
interesting results and is indeed valid for certain important
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cases. It is well-known that complex sinusoids are eigenvectors
of convolution operators, i.e.

v = [ exp(jω0) · · · exp(jω(N − 1)) ]T . (48)

For notational simplicity, we omit the dependence of the
eigenvalueλ on the frequencyω. Strictly speaking, (47) holds
only in general (i.e. for anyω) for the asymptotic caseN →
∞. For the following analysis, consider (47) to be simply an
approximation.

The above simplification requires the calculation of eigen-
values for the different eigenvector approximations. The op-
timal approximation of the eigenvalue for the vectorv in a
least-squares sense can be stated as

λ̂ = argmin
λ

‖Hv − λv‖2
2, (49)

which is the Rayleigh coefficient, i.e.,

λ̂ =
vHHv

vHv
. (50)

We see that when the vectorv is in fact an eigenvector ofH,
this will result in the correct eigenvalue. The goodness of the
eigenvalue approximation can conveniently be measured as

‖Hv − λ̂v‖2
2. (51)

B. EVD of Circulant Matrices

In Section VI-A we considered the assumption that the
signal model components are eigenvectors of the filtering
matrix. Now we take a look at the eigenvalue decomposition
of circulant matrices, i.e. the filtering matrixH, which is
also symmetric. A circulant matrix, sayC ∈ RM×M , has
the following structure

C =











c0 cM−1 · · · c1

c1 c0 · · · cM−1

...
...

. ..
...

cM−1 cM−2 · · · c0











, (52)

which is uniquely defined by the vectorc =
[ c0 · · · cM−1 ]

T . Defining the discrete Fourier transform
(DFT) matrix as

F =
1√
M

[

f0 f1 · · · fM−1

]

, (53)

with the individual Fourier basesfk =
[

f0
k

· · · fM−1
k

]T

being composed fromfk = exp(j2πk/M). It then follows
that the eigenvalue decomposition of the matrixC can be
written as [36]

C = UΛUH , (54)

with U = FH and Λ =
√

M diag(Fc). We see that the
eigenvalues in the diagonal matrixΛ are simply the DFT
coefficients ofc and the eigenvectors contained inU are the
Fourier bases of a DFT. For the special case of a symmetric
c, i.e. cm = cM−m, the eigenvalues are real.

C. Equivalent Forms

We now use the EVD to write the perceptual distortion
measure in a number of different but equivalent forms. First,
we write the perceptual distortion as

D = ‖H(x− x̂)‖2
2 = (x − x̂)HH2(x − x̂), (55)

whereH2 is also symmetric and circulant and has the eigen-
value decompositionUΛ2UH . Here it also interesting to note
that comparing (55) to (15), we see that there is an inherent
contradiction in the use of the perceptual weighting matrix
and the inverse covariance matrix in the maximum likelihood
estimator for the colored noise case sinceH2 6= Σ−1. Now
the perceptual weighting can be rewritten into the following
diagonal form:

D = (x − x̂)HUΛ2UH(x − x̂) (56)

= (UHx − UH x̂)HΛ2(UHx − UH x̂). (57)

We note that the signal model̂x may be chosen such that
UH x̂ can be found analytically or pre-computed and stored
in memory. Windowed sinusoids, for example, have simple
Fourier transforms. As another example of this, we now treat
the case of transform coding with the signal model components
being equivalent to the eigenvectors, i.e.x̂ = Uy. In trans-
form coding, the optimization problem concerns the transform
coefficientsy. Bits are allocated such that the perceptual error
is minimized. Now, the perceptual distortion can be rewritten
as

D = (UHx − y)HΛ2(UHx − y), (58)

or the equivalent form where the input signalx is pre-filtered:

D = ‖Hx − HUy‖2
2 = ‖Hx − UΛy‖2

2 . (59)

It can be seen that distortion calculations can be simplifiedthis
way. This is a significant advantage in coding based on rate-
distortion optimization [53], which requires the calculation of
distortions for different allocations and quantizers.

VII. R ELATION TO SIMPLIFIED ESTIMATORS

A. Pre-filtering Method

Using the eigenvector assumption in (47) the sinusoidal
frequency estimation criterion (38) can be significantly sim-
plified:

min ‖H(ri − r̂i)‖2
2 =min ‖H (ri − va) ‖2

2 (60)

=min ‖Hri − λva‖2
2, (61)

where a is a complex scale factor (amplitude and phase in
polar form), which is included here since we do not restrict
the norm or the phase ofv. The optimal value of this scale
factor can then easily be found as

â =
vHλ∗Hri

vH |λ|2v . (62)

Next, expressing the perceptual NLS in terms of the unknown
eigenvector, the frequency estimation criterion is simplified
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significantly:

ω̂i = argmin
ω

‖Hri − λva‖2
2 (63)

= argmax
ω

rH

i
HHλvvHλ∗Hri

vHλ∗λv
(64)

= argmax
ω

|〈v,Hri〉|2
N

. (65)

We see that the estimator reduces to maximizing the inner
product between the eigenvectorv and ri filtered by the
perceptual filter. This inner product is just the periodogram of
the perceptually filtered observed signal sincev is a complex
sinusoid. The modification of the signal model due to the
filtering cancels out in the selection criterion and can be
ignored. This is, however, not the case for damped sinusoids
and pre-filtering is not well justified in that case. In practice
this means that the input has to be filtered by the perceptual
filter and then a squared error measure may be minimized
in the estimation procedure if the model component is an
eigenvector ofH or is a reasonable approximation thereof.

The pre-filtering method has been applied to the perceptual
estimation problem in e.g. [26], [54].

B. Pre- and Post-filtering Method

In the pre- and post-filtering approach of [55], [56], mod-
eling is performed in the perceptual domain, i.e. operatingon
the pre-filtered signal:

min ‖Hri − p̂‖2
2 = min ‖p− p̂‖2

2. (66)

Afterward, the modeled signal̂p has to be mapped back to the
signal domain by the inverse filter (also called the post-filter)

r̂i = H−1p̂, (67)

which means that the post-filter has to be sent to the decoder
in coding applications. Otherwise, this approach differs from
the pre-filtering method in algorithmic form in that the signal
model is modified after the estimation/quantization rather
than before. This has the advantage that the structure of the
model, which may be lost by the filtering, is preserved in
the estimation/quantization process. However, to argue that
the signal model̂p should be posed in the perceptual domain
rather than in the signal domain seems somewhat contrived as
the physical meaning of the model parameters is potentially
lost in the transformation.

If the signal model component̂p is an eigenvector of the
inverse perceptual filterH−1, the post-filtering can be reduced
to a simple scaling,

r̂i = λp̂, (68)

in which case the signal model is valid also in the perceptual
domain and can be modified directly. Also, the post-filter does
not have to be transmitted to the receiver in this case.

For some types of estimators, though, the pre-filtering of
the input signal has some serious drawbacks. Since it colors
the signal, any noise will also be colored. The performance
of subspace-based estimators degrades when the noise is not
white [35]. Typically, this would be solved by applying pre-
whitening but that is not an option for this application. These

arguments favor NLS-based approximations such as matching
pursuit for perceptual frequency estimation since NLS is still
asymptotically efficient for colored noise [41].

C. Weighted Matching Pursuit

Since the filtering matrixH is symmetric, i.e.HH = H,
the inner product in the numerator of (65) can be written as

〈v,Hri〉 = vHHri = (λv)
H

ri, (69)

such that the component selection criterion becomes

ω̂i = argmax
ω

|〈v,Hri〉|2
N

= argmax
ω

|λ|2 |〈v, ri〉|2
N

. (70)

The perceptual filtering approach can thus be reduced to a
simple weighting of the inner products, where the weight
is the absolute value of the eigenvalue associated with the
eigenvectorv. This is in fact what the weighted matching
pursuit does [25]. In the weighted MP the eigenvalue of a
sinusoid of frequencyω is approximated as

λ̂ ≈
√

A

(⌊

ωK

2π
+

1

2

⌋)

, (71)

rather than the computationally more demanding least-squares
approximation in (50). We see from (70) that under certain
conditions on the perceptual filter, the sinusoidal estimator
weighted MP is identical to the pre-filtering method. In [25],
the weighting is introduced as a heuristic for incorporating
psychoacoustics. Here, we have established the method as an
approximation of the perceptual NLS.

The weighted MP has the problem that due to the perceptual
weighting, the selected components may not be spectral max-
ima and spectral distortion introduced by the side-lobes ofthe
sinusoidal components are not taken into account. This may
cause audible artifacts. In the perceptual MP these problems
are solved, and listening tests in [23] demonstrated its superior
performance. The problems of the weighted MP can though
easily be fixed by adding the constraints that the estimates
have to be spectral maxima.

VIII. N UMERICAL EXAMPLES

In this section we illustrate some of the points made in
the previous sections using an example of a sinusoidal audio
signal, the trumpet signal of SQAM [57]. In Figure 2 a
segment of this signal is shown. The signal is sampled at 44.1
kHz. The masking curve is derived using the model in [30] and
the corresponding perceptual weighting function is shown in
Figure 3 along with the periodogram of the segment in Figure
2. Note the very distinct peaks and the harmonic structure in
the periodogram.

The convergence of the perceptual MP in the perceptual
norm is illustrated in Figure 4, again for the trumpet signal
in Figure 2. Note how the perceptual distortion is a non-
increasing function of the number of components. The sinu-
soidal frequencies that are estimated in the individual iterations
of the perceptual MP (indicated by numbers) are shown in
Figure 5. The effect of the perceptual distortion measure can
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Fig. 2. Example of an audio segment, trumpet. The trumpet signal is a fairly
stationary, tonal signal.
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Fig. 3. Perceptual weighting function (dashed), masking curve (dotted) and
spectrum for the trumpet signal (solid) in Figure 2.

been observed in that although more energy is present at peak
2, the perceptual MP picks peak 1 first. From the figure it is
clear that the effect of the perceptual distortion measure is one
of ordering. In Figure 6 an illustration of the error introduced
by the eigenvector/-value approximation is shown. The figure
shows the perceptual weighting for a segment of the trumpet
signal and the error as defined by (51) introduced as a function
of frequency with the eigenvalues being approximated using
(50). Also shown is the signal-to-noise ratio (SNR), which is
calculated as

SNR = 10 log10

‖Hv‖2
2

‖Hv − λ̂v‖2
2

[dB]. (72)

The perceptual weighting was derived with a frequency reso-
lution of 4096 uniformly spaced points, and the corresponding
filter was calculated by taking the inverse discrete Fourier
transform of its square-root. The complex sinusoids were
windowed by a Hanning window having a length of 1544
samples and then zero-padded to length 4096 to match the
length of the perceptual filter. These are fairly typical choices
of constants in audio coding. From this figure, it is very
clear that these windowed, zero-padded complex sinusoids are
not eigenvectors of the filtering matrix, since the SNR is far
from the numerical noise floor (64 bit floating point). The
loss in estimator performance in terms of distortion may well
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Fig. 4. Convergence of the perceptual matching pursuit in the perceptual
distortion for the trumpet signal in Figure 2.
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Fig. 5. Frequencies estimated (crosses) in the individual iterations (indicated
by number) by the perceptual matching pursuit.

be worth it, though, as considerable complexity reductions
can be achieved. It can also be seen that the goodness of
the approximation is highly frequency dependent with the
approximation performing well at high frequencies for this
particular perceptual weighting function. This can be attributed
to the perceptual weighting function being flatter in this region.
Note that the perceptual weighting function will be dominated
by the threshold in quiet for very low and high frequencies.
When the length of the perceptual filter and the complex
sinusoids are the same and no window is applied, the error
hits the numerical noise floor as the complex sinusoids become
eigenvectors of the filtering matrix.

IX. RESULTS

In this section we briefly summarize and discuss the main
results of this paper. In particular we recapitulate the con-
ditions under which the different methods that have been
discussed are equivalent and optimal.

• When estimating the frequencies of sinusoids in additive
white and Gaussian noise, the nonlinear least-squares
method is the maximum likelihood estimator. The non-
linear least-squares method is efficient, i.e. in this case it
attains the Cramér-Rao bound and is hence optimal.
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Fig. 6. The error (solid) and SNR (dashed) as function of frequency
introduced by the eigenvector approximation for a particular perceptual
weighting function (dotted).

• Under the condition that the noise is Gaussian but col-
ored, there is an equivalence between maximum likeli-
hood and (weighted) least-squares based estimation. The
non-linear least-squares method is still asymptotically
optimal in this case.

• The matching pursuit algorithm is a (one-dimensional)
relaxation of the subspace pursuit of nonlinear least-
squares. It converges in the respective norm, here the 2-
norm, as a function of the number of components and has
an efficient implementation for the frequency estimation
problem.

• A recently established perceptual distortion measure,
which shapes the error spectrum according to the masking
threshold, can be shown to form a circulant and symmet-
ric perceptual weighting matrix, which can be interpreted
as a filtering matrix. Circulant and symmetric weighting
matrices have eigenvectors that are rectangularly win-
dowed complex sinusoids of uniformly spaced frequen-
cies. Asymptotically, sinusoids of arbitrary frequencies
are eigenvectors of the weighting matrix.

• When this perceptual weighting matrix is applied in
solving the least-squares problems in the NLS and MP
estimators, we get the perceptual nonlinear least-squares
estimator and the simpler perceptual matching pursuit.
The perceptual matching pursuit now converges in the
perceptual distortion.

• The pre-filtering method and the weighted matching
pursuit are equivalent to the perceptual matching pursuit
when the model components are eigenvectors of the
perceptual weighting matrix. This allows for very efficient
implementation of the perceptual weighting. In some
applications of the pre-filtering method and the weighted
matching pursuit, the model components are not eigen-
vectors of the weighting matrix; then, these methods are
only approximations of the perceptual matching pursuit.

X. CONCLUSION

We have introduced the perceptual frequency estimation
problem based on a spectral distortion measure and its optimal
solution, the nonlinear least-squares frequency estimator. The

nonlinear least-squares method has a strong background in
statistical signal processing and estimation theory and iswell-
known to have excellent statistical performance. We have
related this to a number of well-known methods for perceptual
parameter estimation, namely the perceptual matching pursuit,
the weighted matching pursuit and the pre-filtering method.It
has been shown that these methods can be seen as relaxations
and approximations of the optimal solution. Specifically, we
have established the perceptual matching pursuit as a relax-
ation of the nonlinear least-squares estimator, and we have
shown that it reduces to the pre-filtering method and the
weighted matching pursuit under certain conditions.
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