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On Perceptual Distortion Minimization and
Nonlinear Least-Squares Frequency Estimation

Mads Greesbgll ChristenserStudent Member, IEEEand Sgren Holdt Jensergenior Member, IEEE

Abstract—In this paper, we present a framework for per- [25] sinusoidal components are found in an iterative manner
ceptual error minimization and sinusoidal frequency estimation by assigning a perceptual weight to the spectrum and then
based on a new perceptual distortion measure and we state its picking the most dominant peak of the weighted spectrum.

optimal solution. Using this framework, we relate a number & . -
well-known practical methods for perceptual sinusoidal paam- Another method is the so-called pre-filtering method, where

eter estimation such as the pre-filtering method, the weigled the observed signal is filtered using a perceptual filter deor
matching pursuit and the perceptual matching pursuit. In pa- to achieve a weighting of the sinusoidal components, c].[2

ticular, we derive and compare the sinusoidal estimation dteria  The methods of [27] and [28] are different methods yet—they

used in these methods. We show that for the sinusoidal estitian |y ony Joudness and excitation pattern similarity criefor
problem, the pre-filtering method and the weighted matching . idal t selecti tivel

pursuit are equivalent to the perceptual matching pursuit inder ~ Sinusoldal component Selection, respectively.

certain conditions. In coding applications it is of particular interest to state

the estimation criterion in a way that defines a distortion
measure or metric. A globally optimal solution that miniesz
this distortion measure ensures that at a given bit-rategfo
HE problem of estimating the parameters of a set @krtain number of sinusoids in the case of sinusoidal cgding
sinusoids in noise arises in many different applications. the lowest possible distortion is achieved. When the distor
digital processing of speech, the sinusoidal estimatioblem measure is a perceptual one, meaning that it reflects the
arises in such applications as speech modeling and coding [human auditory system, we can then claim that the perceived
[5] and speech enhancement [6] and more recently, renevistortion is minimized at the given bit-rate. In linear gictive
interest in sinusoidal coding of speech has been spurred dpeech coding, for example, perception is traditionalketa
the increasing interest in voice over packet-based nesvoikto account using a fairly simple approach, where the noise
[7]-{10]. Also in the field of audio processing, the sinusdid spectrum is shaped by a perceptual weighting filter, which is
signal model has been of interest for music analysis adérived directly from the linear prediction filter of the sph
synthesis [11]-[13], and parametric coding of audio [14]signal [29].
[20]. In speech and audio processing the sinusoids can be\ recently published psychoacoustic masking model for au-
seen as a parametric representation of the quasi-perioglic, dio coding has been shown to form a distortion measure [30],
tonal, signal components, while the noise can be seen as [[B&], and this distortion measure has been applied suadissf
unvoiced, stochastic signal components [13]. The latteid;o to the sinusoidal estimation problem in [15], [23], [32]3]3
for example, be unvoiced speech, the bow noise of a violiBased on this we define the perceptual frequency estimation
guantization errors or processing noise. problem and its optimal solution. We then analyze and relate
The applications mentioned above have in common thatntimber of different practical perceptual frequency estimsa
is of interest to find a compact representation, or in otheiat are all based on least-squares in this framework. In
words to represent the signal in as few, physically meaningfparticular, we study the estimation criteria of these estars.
parameters as possible. Since the end receiver of thesalsigmhis allows us to analyze, quantify and understand the aatur
is the human auditory system, it is also of interest to reges of the approximations made in these estimators. An importan
the perceptually most important components. In audio @dinesult is that the estimation criteria of the pre-filteringthrod
in particular, it is of interest to estimate and transmityonland the weighted matching pursuit can be derived from the
the parameters of audible sinusoids and in recent yegserceptual matching pursuit from the same assumptioneSinc
much effort has been put into this problem. Many differemhany applications rely on a physical interpretation of tee e
methods for solving this have been proposed, e.g. [21]-[2@hated parameters, the statistical properties of thenestirs
all implement this in what seem to be different ways. Oftemn question are also of significant importance. In that spiri
these methods rely heuristic rules taken from psychoamouste also investigate how the least-squares based estimators
experiments, while estimation theory, on the other harliise relate to estimation theory and maximum likelihood freqeyen
on statistical signal processing in finding model paranseter estimation.

. o The rest of this paper is organized as follows. In Section |l
The authors are with the Department of Communication Telogyp Aal- he f . . bl .. d d al ith
borg University, Denmark (emaifmgc,shj}@kom.aau.dk , homepage: the req_uency estimation problem Is |ntr_0 uce aong_ wit
http://kom.aau.dk/{mgc,shj} ). the nonlinear least-squares frequency estimator. TheBem
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Intelligent Sound project, Danish Technical Research Cibgrant no. 26— matChing pu_rSUit-_ In Section IV we proceed_to ir!troduce a
02-0092. perceptual distortion measure that can be written in thenfor

I. INTRODUCTION



of a circulant, symmetric perceptual weighting matrix. Ithe nonlinear least-squares frequency estimator (NLS3, th
Section V we use this measure to formulate the perceptsausoidal frequencies are estimated by minimizing eyactl
frequency estimation problem and its optimal solution g this error in a least-squares sense. The method is known as
of the perceptual nonlinear least-squares estimator. Mere nonlinear least-squares as the cost function is nonlinear i
we relate this to an approximation, namely the perceptufile unknown frequencies. It is interesting, but perhaps not
matching pursuit. The eigenvalue decomposition (EVD) ef ttsurprising, that in this particular case, the statistiggraach
perceptual weighting matrix and approximations with aggeli of maximum likelihood (ML) turns into a deterministic metho
tion to the problem at hand are studied in Section VI. In Sethat matches the signal model to the outcome of the random
tion VII we then show how this can be used to relate a numbgrocess. The resulting estimator can be stated as themoluti
of well-known perceptual sinusoidal frequency estimative to the following problem [35]:

present some illustrative numerical examples in Sectiadl, VI

. T . _ 2
and we summarize the results and give conclusions in Section min f[x — x| = min [|x — Zal5. ®6)
IX and X, respectively. Here, the matrixZ € CN*2L (N > 2L) is a so-called
Vandermonde matrixdefined as
Il. THE FREQUENCY ESTIMATION PROBLEM 29 270 e 29 27°
The basic problem addressed in this paper can be stated as 21 2t s 2}t 2t
follows. Given a real observed signain) forn =0,..., N — Z=. : : : . (N
1, find the parameters of the signal of interggt) in additive 'ZN_I 'Z_(N_l) 'ZN_I 'Z_(N_l)
noisee(n): 1 1 L L
z(n) = &(n) + e(n). (1) where signal poles; = exp(jw;) come in complex conjugate

is a sum of sinusoidal pairs. Assuming that the signal poles are distinct, the imnatr
has full rank. Furthermore, we have thate C2!, a =
[a1 a} -+ ag a} | with

In our case the signal of interestn)
components

L
Z(n) = ZAI cos (win + ¢;) , (2) a; = % exp(jor)- (8)
1=1

The NLS frequency estimates are then the combination of
L frequencies (with denoting estimates) that minimizes the
squared error, i.e.,

with each component having a constant amplitude initial
phase¢;, and frequencyw;. The problem is then to esti-
mate these }f)arameters, in particular the frequencies-
[wi -+ wr ]". In the same process, the amplitudes and @ = argmin ||(x — Za)||2. (9)
phases are usually also found, but as we shall see, these can @

written as complex linear parameters and can then be fouhkiis can be formulated as a maximization problem using the
in straightforward way. principle of orthogonality:

Supposing that(n) is zero-mean white, i.i.d. (independent
and identically distributed over observations) Gaussiaisen
of variances?, the likelihood functionp(x;w), which is a
function of the observed signal and the model parametere (he
only the frequencies) can be written as (see e.qg. [34])

@ = argminxx — xZ (ZHZ)i1 ZHx (10)

w

= argmaxx”Z (2"2) "' 2" x. (11)

The corresponding amplitude and phase estimates are the
N-1 solution to (6) given the frequencies:

‘w) = #ex ——z(n) — 2(n)|?
p(x;w) };IOW P[ 202| (n) ()|] é:(ZHZ)_leX. (12)

1 N2 3) For more on estimation of amplitudes and phases, we refer
(27”}_2)% AP Z j2(n) — & (n)| the reader to the study in [37]. In order to solve the freqyenc
=0 estimation problem this way, we have to search (numerically

Introducing a vector containing the observed sigmal= " for the combination of thé. complex sinusoids that minimize
[2(0) - (N —-1)] anda vector containing the modelednhe 2-norm of the error signal. This is essentially the sabsp
signalx = [ 2(0) --- (N —1) |", this can be written as  pyrsuit of [38] with the sum of sinusoids being the target
1 1 subspace. Clearly, this is a complex procedure and it is not
p(x;w) = ~ €Xp {—an—ﬂ%} : (4) easily solved. In most real-time applications, solvingsthi
(2ﬂ-0—2) 2 o

problem directly is not feasible. For more on the intradibi
Taking the logarithm, we get the log-likelihood function of this problem, we refer the reader to [39].
N 1 One may argue that this point of view is unrealistic both
Inp(x;w) = -5 In (27ro—2) - THX — %3 (5) in terms of solving the problem optimally and in terms of the

assumptions with respect to the noise, but the NLS frequency

We see that for white Gaussian noise, maximizing the likgstimator is very interesting from a theoretical point aéwi
lihood function is the same as minimizing the squared er-

ror between the observed signal and the signal model. Irtvandermonde matrices are sometimes defined to be square [36]



because it has excellent statistical performance. For thieew wherer; = [ r;(0) --- r;(N — 1) }T. After { iterations, the
Gaussian noise case, it is efficient and unbiased—it atth&s signal model is simply
Cramér-Rao Bound (see e.g. [35], [40], [41]). i

In speech and audio processing the noise cannot generally #i(n) = ZAl cos(@yn + le)- (20)
be assumed to be white. For the colored noise case, with the =

Gaussian noise(n) now having the positive definite (non- L o
diagonal) covariance matrix, the likelihood function is [41] WWriting out the estimation criterion (19) (here denotéd we

1
pix;w) =Qexp | —5 (x — HTE T (x-%)|, @13 J=rl1Z (ZHZ)_1 yASY (21)
ith H H,« 1711 H
" Q= — ay "z ] [ s } [ZT }r 22

(27)% \/det(Z)

) ) . ) ) We see that this is still a subspace pursuit, but in this dase t
The corresponding maximum likelihood estimator is then subspace is a function of one variabbe This is sometimes
& = argmin (x — ,A()H > (x—x%). (15) referred to as a conjugate-subspace pursuit [38]. Assuming
w that the complex sinusoid and its complex-conjugate aré wel
Without prior knowledge of the noise covariance matklx separated in frequency (not close to Ororelative to V), the
this problem is clearly more difficult to solve than for whiteénner product between the two can be assumed to bé&:zero
noise whereX = ¢%I and det(X) = o2V. However, as
shown in [41], the NLS estimator in (11) is also asymptotical

efficient fo.r colored noisg under some mild conditions. Fo!rhe estimation criterion (22) can then be reduced signifigan
more details on the relation between the NLS and ML esti-

zfz* ~ 0. (23)

mators for the colored noise case and the associated Cramér- H N iz 0 7' [ 2H

Rao bound, we refer the reader to [41], and for a practical — [ z z ] { 0 zz ] { z! } ti (24)
method that achieves the Cramér-Rao bound see [42]. For ]zHr-]2

non-Gaussian noise, the NLS estimator loses its maximum = 2%. (25)

likelihood interpretation [41]. Here it must be stresseat the . . o o
are not arguing as to the nature of noise in audio signals Bifte sinusoidal frequency estimation criterion can now be
rather as to the optimality of some commonly used methoWéitten in the well-known form

that are based on least-squares. | (z,1;) |2
w; = argmax ——————,

w N
I_%th < -, > denoting the inner product. The associated

(26)
IIl. RELAXATION OF THE NLS ESTIMATOR

In this section we treat the relationship between the N

. . . gptimum complex scaling is
frequency estimator and a well-known method for sinusoidal P g

parameter estimation, namely matching pursuit [43]. As we 6 = (z,1;) 27)
shall see, there is a close relation between the two, althoug ! N’
originally proposed in two entirely different contexts. which relates to the amplitude and phase in (16) as described

In matching pursuit a signal model is built iteratively by, (8). We see that for the case of a sinusoidal dictionary MP
solving for one component at a time. This is done by finding the NLS estimator in the one sinusoid case. It can be solved
the component from a dictionary, in this case composegiciently since the inner products, r;) can be found using
of a set of complex sinusoids of different frequencies, thgfTs. Clearly, matching pursuit is a simplified approxiroati
minimizes some norm (here the 2-norm) of the residual, whigh (11). It can be seen as a relaxation of the original problem
is formed by subtracting the-th component from theé-th  \yhere instead of solving the multidimensional nonlineatpr
residual, i.e., lem, we break it into several one-dimensional minimization
riv1(n) = ri(n) — A, cos(@in+éi), (16) that haye efficient implemen;ations. Matching purfsuit_ con-

verges in the respective normagrows and the distortion is a

with the residual being initialized as (n) = z(n). The Van- non-increasing function of (see [43]). It does not, generally,
dermonde matriZ now contains the vector = | exp(jw0) - converge to zero in a finite number of iterations for the

- exp(jw(N — 1)) }T and its complex-conjugate: sinusoidal case as later iterations may introduce new ipect

7 _ [ —— } (17) components du_e .to thg non-orthc_>gonal|ty qf the components
: of redundant dictionaries. Sometimes this is also refetoed
The frequency is then estimated as the minimizer of the @s the readmission problem [44]. There are several ways to
norm of the residual at iteratioin+- 1 compensate for these problems (see for example [39], [44]-
&; =argmin ||r;;1]|3 = argmin ||r; — Za||3 (18) 47D
w w

o Hon—1 5 2For the 2-norm case considered here, the conjugate-sugpasuit can
=argmaxr; Z (Z Z) Z"r;, (19) be solved efficiently without this assumption. Howeverstls not the case
w for the methods considered later in this paper.



On a historical note, the estimation procedure of [5], [1IThe point-wise spectral multiplication corresponds teaiar
first introduced in [48] is similar to that of matching pursuiconvolution in the time-domain, i.e.
for complex sinusoids later introduced in [43]. The RELAX K-1
algorithm [42] is an iterative sinusoidal frequency estioa Z h(m)e((k —m) (mod K))—+/A(k)E(k), (31)
algorithm, where the efficient solution to the one-sinusoid .,
estimation problem is exploited in a recursive manner. # Nty . denoting Fourier transform pairs. Furthermore, from

been demonstrated to have excellent statistical perfargarp, seval's theorem. we have that the inner product can be
achieving the Cramér-Rao bound for both white and colored ., jated in the frequency domain as
Gaussian noise [41]. K

1 K—-1
IV. A PERCEPTUALDISTORTION MEASURE > @ (m)y(n) = K > X (R)Y (). (32)

It is well-known that the 2-norm error measure does not . "0 . m.:O .
correlate well with human sound perception. The choicﬁ1_IS means that the dlscret_e distortion measure (30) can be
of a distortion measure involves a trade-off between maPW'tten as the 2-norm of a circular convolution:
factors. On one hand we would like to have a measure that Kol R )
takes as much of the processing in the human auditory into D= Z | Z h(m)e((k —m) (mod K))|".  (33)
account as possible, while on the other hand we would like to k=0 m=0
have a measure which defines a mathematical norm. Anotfi&e sampling frequency of the reciprocal of the masking
desirable property of the measure is that it can be incotpdracurve A(k) (and thus the length of the corresponding filter)
in an efficient algorithm. A generalized perceptually weggh is determined by the human auditory system and not by the

2-norm can be written as input signal.
2 The distortion measure can now be put into the more
W (x = %)l , (28)

convenient matrix-vector notation:

where W is a so-called perceptual weighting or sensitivity D = ||He)? (34)
matrix (e.g. [25], [49]). Even very sophisticated distorti

measures can be expressed this way. For example, in [49] With H being the perceptual weighting matrix, in this case a
model of [50], [51] is linearized and put into the form of (28)filtering matrix, having the following structure

Since we are here concerned with the estimation of statjonar h(0) WK —1) - h(1)

sinusoids, we assume the observed signal to be statiorary. F h(1) h(0) o WK -1)

stationary signals, the masking in the human auditory syste H = , (35)

is predominantly caused by simultaneous masking. Masking : : ' :

analysis in audio coding usually only considers distosion h(K —1) h(K-2) -- h(0)

the individual auditory filters, see e.g. ISO 11172-3 (MPEGa-nde — [e(0) - e(K —1) ]T. This means that there is a

1) Psychoacousnc_ Mp_del 1_descr|bed in [52]. Re_cently, g h%uality between the spectral distortion measure and the two
been shown that significant improvements are gained bydakin

. o . . norm of the circularly filtered error signal. This interpaébn
speciral |ntegrat|qn Into account [.30]' [31]. Us_lng the kl_a_g offers insights into the relation between a number of method
model proposed in [30], [31], which was derived specificall

for sinusoidal coding, the distortiaP for a particular segment ?/or perceptual frequency estimation. We will return to tater

can be written as in the baper. : . .
. We now discuss how to derive an appropriate filter from the
D= A(W)|E(w)|?dw, (29) perceptual weighting functioni(k). As the perceptual filter
—n has to be derived for each segment, computational complexit

where A(w) is a real, positive perceptual weighting functions of considerable importance. The simplest solution is to
and E(w) is the discrete-time Fourier transform of the erroompute the impulse response as the inverse Fourier tramsfo
e(n) = w(n) [z(n) — &(n)] wherew(n) is the analysis win- of \/A(k) forn =0,...,K — 1, i.e.,

dow. When the weighting function is chosen as the reciprocal

of the masking threshold, the error spectrum which results h(n) =

=

1

=
N

from minimizing D will be shaped like the masking threshold.
In the coming analyses, we assume a rectangular window
(w(n) = 1 ¥n) for simplicity and mathematical convenience
since we shall rely on asymptotic properties. In practibe, t =0
weighting function A(w) and the error spectrunki(w) are \yhere the last line follows fromA(k) being real and sym-
uniformly sampled spectra (k) and E(k), respectively, and myetric (k) = A(K — k)), which also means that(n) is
th_e integr_al _(29_) can be calculated as a Sl_Jmmation of po“%gimmetric, i.e.h(n) = h(K — n). This procedure leaves us
wise multiplications in the frequency domain: with an impulse response of lengtli while our observed
K-1 signal is of lengthN. Typically, the required length of the
D= Z IV A(R)E(k)|?. (30) spectral weighting function is higher than the number ofetim
k=0 samples, i.e.N < K. The signal and model vectors can

T
|
— o

VA(K) exp (j2rkn/K) (36)
! VA(K)

cos (2mkn/K), (37)

=l



then easily be zero-padded to lengkh or the lastK — N
columns of H can be truncated. Filters of arbitrary order
can be obtained using standard methods, and in the following
sections we assume that the impulse response has beerdderive
such that it has lengthv.

Y

V. PERCEPTUALNLS AND MP

In many applications such as audio modeling and coding,
it is of interest to extract only the perceptually most ralet
sinusoidal component of the observed signal. Indeed, imbaud
coding, where the problem can be stated as minimizing the
percelved distortion _glver_l some rate_ constraint, converge Fig. 1. Orthogonal projection of the filtered input onto treuenn space of
in the perceptual distortion as we increase the number tg% filtered signal model.
sinusoids (and thus the rate) is desirable. Using the defisit
in Section IV, we can restate the NLS frequency estimator as
the following perceptually meaningful least-squares faob

is orthogonal to the signal model in the perceptual domain.
min |[H(x — %)|3. (38) This is illustrated in Figure 1 witfR(-) denoting the range.

T ) . In the perceptual matching pursuit [23], which is a special
Letw =[wi -~ wy |" be the set of frequencies that describg,ge of the psychoacoustic adaptive matching pursuit with

i Nx2L
the Vano!ermonde matri& € C o Then the perceptual no adaptive norm, the dictionary element that minimizes the
NLS estimates of the frequencies (and the CorresF)Ond'ﬁgrceptual norm of the residuglis chosen. As in Section 1,

optimal amplitudes and phases) are the solution to the @noblyiq is just the one-sinusoid nonlinear least-squaresnatti

& = argmin |[H(x — Za)|2. (39) operating on the residual. The mati#again rec:ipuces to the
w vectorz = | exp(jw0) -+ exp(jw(N — 1)) |, and the
The vectorw is the vector containing the set of the frequenciegstimator is
of L sinusoids that minimize the filtered, weighted 2-norm
and the vectoh contains the amplitudes and phases of those
sinusoids in polar form. Since the filtering matrix is reatlan
symmetric, i.e H” H = H?, these can be estimated as

&; = argmin |H(r; — za)||3. (43)

with r; again being the residual at iteratioifsee section III).
Rewriting (43), we get the frequency estimator

a—=(z"A?z) ' ZHH2x. (40) ~
( ) &; = argmaxr H%z (zHsz) ! z"H?r; (44)
Substituting this into (39), we get w )
. 2 g L ) 2 .5
@ =argmin |H(x — Za)||5 (41) - arsiax [Hz|3 49)
w
= argmaxx H?Z (ZHH?z)_1 7Z"H%x.  (42) and the associated optimal scaling, i.e. amplitude andephas
w is
This re-statement of the NLS frequency estimator allows us . _ (Hz,Hry)
. . . . a; = 3 (46)
to estimate only the perceptually significant sinusoids and |Hz|3

dlsregar_d inaudible ones, anq to find the_amphtudes_ ahfe perceptual MP converges in the perceptual distortion
phases in such a way that artifacts are not introduced in

. . L feasure rather than the 2-norm. We see that as with match-
decoded signal. This formulation is only relevant when w.

. qi b f th | b i .Ng pursuit and the one-sinusoid NLS estimator, there is an
are interested in a subset of the total number of sinusol %{uivalence between the perceptual matching pursuit aad th

Otherwise, there is no need for the spectral weighting of ﬂﬂferceptual NLS. The perceptual MP can be implemented
error in the frequency estimation. However, the total nu'mbgfficiently using two FFTs in each iteration

of sinusoids is generally unknown and robustness with spe

to the number of sinusoids is desirable. We mention in pgssin

that it also may be advantageous to incorporate the pereptu V!- EVD OF THE PERCEPTUALWEIGHTING MATRIX
distortion in the estimation of amplitudes and phases a40 ( A. Signal Model Assumption

since erroneous estimates may introduce components is partW ider th le of a sianal model ¢
of the spectrum where no masker is present. € now consider the example of a signal model componen

In terms of projections and transformations, the filterin €ing an eigenvector of the perceptual weighting matrid
|th eigenvalue\ such that

matrix H can be thought of as a transformation to a percept
domain and the problem of finding the optimal signal model Hv — \v. (47)

can be seen as a projection problem. Then, the transformed

input signal is projected orthogonally onto the column gpafc  As we shall see in Section VII, this assumption leads to some
the transformed signal model. This introduces an error vhiinteresting results and is indeed valid for certain impairta



cases. It is well-known that complex sinusoids are eigaiovec C. Equivalent Forms

of convolution operators, i.e. We now use the EVD to write the perceptual distortion

_ (00 .- w(N — 117 4g) Measure in a number of different but equivalent forms. First
v = [exp(ju0) exp(je( 2 (48) we write the perceptual distortion as
For notational simplicity, we omit the dependence of the
eigenvalue\ on the frequencw. Strictly speaking, (47) holds

only in general (i.e. for anw) for the asymptotic cas&/ —  \hereH? is also symmetric and circulant and has the eigen-
oo. For the following analysis, consider (47) to be simply agajue decompositio®JA?U* . Here it also interesting to note
approximation. that comparing (55) to (15), we see that there is an inherent
The above simplification requires the calculation of eigerpntradiction in the use of the perceptual weighting matrix
values for the different eigenvector approximations. Tipe 0and the inverse covariance matrix in the maximum likelihood
timal approximation of the eigenvalue for the vectolin a gstimator for the colored noise case sirfld@ £ 27! Now

D=|Hx-%)3=(x-%x"H(x-%), (55

least-squares sense can be stated as the perceptual weighting can be rewritten into the follogvin
A = argmin |[Hv — Av]|2, (49) diagonal form:
A D = (x — *)PUA*U" (x — %) (56)
which is the Rayleigh coefficient, i.e., = (Uflx — UHR)H A2(Ux — UF%). (57)

VHHV. (50) We note that the signal mod&l may be chosen such that
viv UF % can be found analytically or pre-computed and stored
We see that when the vecteris in fact an eigenvector dff, in memory. Windowed sinusoids, for example, have simple
this will result in the correct eigenvalue. The goodnesshef t Fourier transforms. As another example of this, we now treat
eigenvalue approximation can conveniently be measured athe case of transform coding with the signal model companent
. being equivalent to the eigenvectors, ise= Uy. In trans-

[Hv — Av|3. (51) form coding, the optimization problem concerns the tramsfo
coefficientsy. Bits are allocated such that the perceptual error
is minimized. Now, the perceptual distortion can be rewenitt

5\:

B. EVD of Circulant Matrices

as
In Section VI-A we considered the assumption that the - oo
signal model components are eigenvectors of the filtering D=(U"x-y)"A"(U"x —y), (58)

matrix. Now we take a look at the eigenvalue decomposition . . . i )
. ) . - . . . orthe equivalent form where the input signals pre-filtered:
of circulant matrices, i.e. the filtering matri, which is
also symmetric. A circulant matrix, sa¢ € RM*M  has D =||Hx — HUy|? = |[Hx — UAy|?. (59)
the following structure
It can be seen that distortion calculations can be simpltfiex!
o CM-1 - G way. This is a significant advantage in coding based on rate-
C— ‘1 o T CM-1 (52) distortion optimization [53], which requires the calcidat of
N : U ’ distortions for different allocations and quantizers.

CM-1 Cm-2 -+ Co

. . . . VII. RELATION TO SIMPLIFIED ESTIMATORS
which is uniquely defined by the vectorc =

[co -+ ep—1|". Defining the discrete Fourier transformA. Pre-filtering Method

(DFT) matrix as Using the eigenvector assumption in (47) the sinusoidal

1 £ f P £3 frequency estimation criterion (38) can be significantiy-si
F=— P S
\/M[ o -1 ] (53) plified:

with the individual Fourier base§, = [ f2 --- fli"fflf min [|H(x; — #;)|3 =min ||H (r; - va) |3 (60)
being composed fronf;, = exp(j2rk/M). It then follows = min |[Hr; — Avalj3, (61)
that the eigenvalue decomposition of the mat€ix can be

. wherea is a complex scale factor (amplitude and phase in
written as [36] b (amp P

polar form), which is included here since we do not restrict
C = UAU", (54) the norm or the phase of. The optimal value of this scale
factor can then easily be found as
with U = F¥ and A = /M diag(Fc). We see that the VvV Hys
eigenvalues in the diagonal matrix are simply the DFT a= Higz (62)
coefficients ofc and the eigenvectors containedlihare the VAPV
Fourier bases of a DFT. For the special case of a symmetNext, expressing the perceptual NLS in terms of the unknown
c, i.e. ¢, = cp—m, the eigenvalues are real. eigenvector, the frequency estimation criterion is sifrgdi



significantly: arguments favor NLS-based approximations such as matching
pursuit for perceptual frequency estimation since NLS iilf st

wi = argjnin |Hr; — Aval; (63) asymptotically efficient for colored noise [41].
= argmax ri HY v A"Hr, (64) . . .
w v < v C. Weighted Matching Pursuit
~ argmax |<V,Hri>|2' (65) Since the filtering matriXt is symmetric, i.eHY = H,
w N the inner product in the numerator of (65) can be written as

We see that the estima_tor reduces to ma_ximizing the inner (v,Hr;) = v Hr; = Owv)7 1, (69)
product between the eigenvecter and r; filtered by the
perceptual filter. This inner product is just the periodogi@ such that the component selection criterion becomes
the perceptually filtered observed signal sinces a complex Hr ) [2 N2
sinusoid. The modification of the signal model due to the ¢, :argmaxu = argmax|/\|2M. (70)
filtering cancels out in the selection criterion and can be w N w N
ignored. This is, however, not the case for damped sinusoitise perceptual filtering approach can thus be reduced to a
and pre-filtering is not well justified in that case. In praeti simple weighting of the inner products, where the weight
this means that the input has to be filtered by the perceptimlthe absolute value of the eigenvalue associated with the
filter and then a squared error measure may be minimizeienvectorv. This is in fact what the weighted matching
in the estimation procedure if the model component is gursuit does [25]. In the weighted MP the eigenvalue of a
eigenvector ofH or is a reasonable approximation thereof. sinusoid of frequency is approximated as

The pre-filtering method has been applied to the perceptual

estimation problem in e.g. [26], [54]. A~ \/A q% 4 ED (71)
2 21)’

B. Pre- and Post-filtering Method rather than the computationally more demanding leastregua
In the pre- and post-filtering approach of [55], [56], modapproximation in (50). We see from (70) that under certain

eling is performed in the perceptual domain, i.e. operating conditions on the perceptual filter, the sinusoidal estimat

the pre-filtered signal: weighted MP is identical to the pre-filtering method. In [25]

the weighting is introduced as a heuristic for incorpomgtin

psychoacoustics. Here, we have established the method as an

Afterward, the modeled sign@ has to be mapped back to theapproximation of the perceptual NLS.

signal domain by the inverse filter (also called the postdilt  The weighted MP has the problem that due to the perceptual
P = H P (67) weighting, the selected components may not be spectral max-
’ ’ ima and spectral distortion introduced by the side-lobethef

which means that the post-filter has to be sent to the decodiusoidal components are not taken into account. This may

in coding applications. Otherwise, this approach diffemf cause audible artifacts. In the perceptual MP these prablem

the pre-filtering method in algorithmic form in that the sign are solved, and listening tests in [23] demonstrated iteisap

model is modified after the estimation/quantization rathg@erformance. The problems of the weighted MP can though

than before. This has the advantage that the structure of #asily be fixed by adding the constraints that the estimates

model, which may be lost by the filtering, is preserved ihave to be spectral maxima.

the estimation/quantization process. However, to arga¢ th

the signal modep should be posed in the perceptual domain VIIl. N UMERICAL EXAMPLES

rather than in the signal domain seems somewhat contrived a

the phvsical meaning of the model parameters is potentia Th this section we illustrate some of the points made in
pny 9 P P ”¥e previous sections using an example of a sinusoidal audio
lost in the transformation.

If the signal model componerfi is an eigenvector of the signal, the trumpet signal of SQAM [57]. In Figure 2 a

inverse perceptual filtel—!, the post-filtering can be reduce egment of thls. signal is _show_n. The _S|gnal IS sampled at44.1
. . Hz. The masking curve is derived using the model in [30] and
to a simple scaling,

#; = Ap (68) the corresponding perceptual weighting function is shown i
! ’ Figure 3 along with the periodogram of the segment in Figure

in which case the signal model is valid also in the perceptual Note the very distinct peaks and the harmonic structure in
domain and can be modified directly. Also, the post-filterdod¢he periodogram.
not have to be transmitted to the receiver in this case. The convergence of the perceptual MP in the perceptual

For some types of estimators, though, the pre-filtering abrm is illustrated in Figure 4, again for the trumpet signal
the input signal has some serious drawbacks. Since it colarsFigure 2. Note how the perceptual distortion is a non-
the signal, any noise will also be colored. The performanagcreasing function of the number of components. The sinu-
of subspace-based estimators degrades when the noise issn@tal frequencies that are estimated in the individugitens
white [35]. Typically, this would be solved by applying pre-of the perceptual MP (indicated by numbers) are shown in
whitening but that is not an option for this application. $he Figure 5. The effect of the perceptual distortion measure ca

min |[Hr; — |3 = min||p — p|3. (66)



SINARRANA AR

500

Amplitude

-500

-1000 u

-1500

-2000 . . . v . v
0 5 10 15 20 25 30 35
Time [ms]
Fig. 2. Example of an audio segment, trumpet. The trumpeiasig a fairly
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Fig. 3. Perceptual weighting function (dashed), maskinyeydotted) and Fig 5. Frequencies estimated (crosses) in the individestions (indicated
spectrum for the trumpet signal (solid) in Figure 2. by number) by the perceptual matching pursuit.

been observed in that although more energy is present at psgk
2, the perceptual MP picks peak 1 first. From the figure it ISh
clear that the effect of the perceptual distortion meassiomne
of ordering. In Figure 6 an illustration of the error intrashd
by the eigenvector/-value approximation is shown. The &gu
shows the perceptual weighting for a segment of the trum
signal and the error as defined by (51) introduced as a fumcti
of frequency with the eigenvalues being approximated usi
(50). Also shown is the signal-to-noise ratio (SNR), whish i
calculated as

worth it, though, as considerable complexity reductions
be achieved. It can also be seen that the goodness of
the approximation is highly frequency dependent with the
approximation performing well at high frequencies for this
articular perceptual weighting function. This can beiladtied
Slhe perceptual weighting function being flatter in thigioa.
Rote that the perceptual weighting function will be dométht
the threshold in quiet for very low and high frequencies.
When the length of the perceptual filter and the complex
sinusoids are the same and no window is applied, the error
hits the numerical noise floor as the complex sinusoids becom

SNR=10lo
810 eigenvectors of the filtering matrix.

— (72)
[Hv — Av|j3

The perceptual weighting was derived with a frequency reso-
lution of 4096 uniformly spaced points, and the correspogdi

filter was calculated by taking the inverse discrete Fourier ) ] ] ) ) )
transform of its square-root. The complex sinusoids were !N this section we briefly summarize and discuss the main

windowed by a Hanning window having a length of 1544€sults of this paper. In particular we recapitulate the-con
samples and then zero-padded to length 4096 to match fiéons under which the different methods that have been
length of the perceptual filter. These are fairly typicalices discussed are equivalent and optimal.

of constants in audio coding. From this figure, it is very « When estimating the frequencies of sinusoids in additive

IX. RESULTS

clear that these windowed, zero-padded complex sinusoids a
not eigenvectors of the filtering matrix, since the SNR is far
from the numerical noise floor (64 bit floating point). The
loss in estimator performance in terms of distortion mayl wel

white and Gaussian noise, the nonlinear least-squares
method is the maximum likelihood estimator. The non-
linear least-squares method is efficient, i.e. in this case i
attains the Cramér-Rao bound and is hence optimal.
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Fig. 6. The error (solid) and SNR (dashed) as function of dezgy
introduced by the eigenvector approximation for a paréicuperceptual
weighting function (dotted).

« Under the condition that the noise is Gaussian but ¢

nonlinear least-squares method has a strong background in
statistical signal processing and estimation theory amekis
known to have excellent statistical performance. We have
related this to a number of well-known methods for percdptua
parameter estimation, namely the perceptual matchingupiurs
the weighted matching pursuit and the pre-filtering methiod.
has been shown that these methods can be seen as relaxations
and approximations of the optimal solution. Specificallg w
have established the perceptual matching pursuit as a-relax
ation of the nonlinear least-squares estimator, and we have
shown that it reduces to the pre-filtering method and the
weighted matching pursuit under certain conditions.
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ored, there is an equivalence between maximum likeli-
hood and (weighted) least-squares based estimation. The
non-linear least-squares method is still asymptotically
optimal in this case. !
The matching pursuit algorithm is a (one-dimensionalf
relaxation of the subspace pursuit of nonlinear least-
squares. It converges in the respective norm, here the %
norm, as a function of the number of components and has
an efficient implementation for the frequency estimatior{3]
problem.

A recently established perceptual distortion measure,
which shapes the error spectrum according to the masking
threshold, can be shown to form a circulant and symmet-
ric perceptual weighting matrix, which can be interpreted5]
as a filtering matrix. Circulant and symmetric weighting
matrices have eigenvectors that are rectangularly win-
dowed complex sinusoids of uniformly spaced frequenL6
cies. Asymptotically, sinusoids of arbitrary frequencies
are eigenvectors of the weighting matrix. (7]
When this perceptual weighting matrix is applied in
solving the least-squares problems in the NLS and MRk
estimators, we get the perceptual nonlinear least-squares
estimator and the simpler perceptual matching pursuit.
The perceptual matching pursuit now converges in they
perceptual distortion.

The pre-filtering method and the weighted matchin
pursuit are equivalent to the perceptual matching pursuﬁllt
when the model components are eigenvectors of the
perceptual weighting matrix. This allows for very efficient!!]
implementation of the perceptual weighting. In some
applications of the pre-filtering method and the weightddz]
matching pursuit, the model components are not eigen-
vectors of the weighting matrix; then, these methods are
only approximations of the perceptual matching pursuiti3]

X. CONCLUSION

We have introduced the perceptual frequency estimatigr!
problem based on a spectral distortion measure and its aptim
solution, the nonlinear least-squares frequency estimate
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