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ABSTRACT
In this paper, we study and compare a number of subspace-
based methods for determining the the number of sinusoids
in noise. These are based on the subspace orthogonality and
and shift-invariance properties that are known from the MU-
SIC and ESPRIT frequency estimators. The method based
on the orthogonality property has not previously appeared in
the literature. We compare, in simulations, the various sub-
space methods. These show that the subspace methods can
estimate the correct order with a high probability for suffi-
ciently high SNRs and number of observations with MUSIC
performing the best. Also, unlike the commonly used statis-
tical methods, the subspace methods do not depend on the
probability density function of the noise being known.

1. INTRODUCTION

Estimating the order of a model is an important problem.
However, most of the literature on parameter estimation as-
sumes prior knowledge of the model order. In many cases,
however, the order cannot be known a priori and may change
over time. In that case, an adaptive order estimate is de-
sirable. Perhaps the most commonly used approaches for
order estimation are the statistical methods (see, e.g., [1])
such as the minimum description length (MDL), the Akaike
information criterion (AIC), and the maximum a posteri-
ori (MAP) rule. The problem considered in this paper is
the specific problem of finding the number of sinusoids in
white noise, which can be defined mathematically as fol-
lows. Consider a complex signal consisting of sinusoids
having frequencies{ωl} which is corrupted by an additive
noise,w(n), for n = 0, . . . , N − 1,

x(n) =

L∑

l=1

Ale
j(ωln+φl) + w(n), (1)
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whereAl > 0 andφl are the amplitude and the phase of the
l’th sinusoid. Here,w(n), is assumed to be white complex
symmetric zero-mean noise. The problem is to estimate the
model order,L. In this paper, we compare and study esti-
mation criteria based on subspace methods. Specifically, the
criteria considered are based on the orthogonality property
used in the MUSIC (MUltiple SIgnal Classification) method
[2, 3] and the shift-invariance property of (1) originally ap-
plied to parameter estimation in [4] and later extended to or-
der estimation in the SAMOS (Subspace-based Automatic
Model Order Selection) [5] and ESTER (ESTimation ER-
ror) [6] methods. The orthogonality property of MUSIC
has, to the best of our knowledge, not previously been ap-
plied to the order estimation problem, aside from the more
specific problem considered in our previous publication [7].

The subspace methods are all based on the following
principles: The eigenvectors of the covariance matrix can
be partitioned into a set spanning the signal subspace and a
set spanning the noise subspace. For the correct partition-
ing of the eigenvectors (a) the signal subspace model and the
noise subspace are orthogonal, and (b) the signal subspace
eigenvectors have the shift-invariance property. Based on
these observations, the order can be estimated by introduc-
ing appropriate metrics. Compared to statistical models for
order estimation, the subspace-based order estimation crite-
ria do not require prior knowledge of the probability density
function (pdf) of the observation noise. This means that the
subspace methods will work in situations where the statis-
tical methods will break down due to the assumed pdf not
being a good approximation of the observation noise.

The remaining part of this paper is organized as follows.
In Section 2, the fundamentals of the subspace decompo-
sitions and methods that form the basis of this paper are
briefly reviewed. Then, the order estimation criteria, includ-
ing the new one, are presented in Section 3. In Section 4,
numerical results are presented, while the conclusions are
presented in Section 5.



2. SUBSPACE PROPERTIES

We start out this section, in which we will present some fun-
damental definitions, relations and results, by definingx(n)
as a signal vector containingM samples of the observed
signal, i.e.,x(n) = [ x(n) x(n + 1) · · · x(n + M − 1) ]

T ,
with (·)T denoting the transpose. Then, assuming that the
phases{φl} are independent and uniformly distributed on
the interval(−π, π], the covariance matrixR ∈ C

M×M

(with L < M ) of the signal in (1) can be shown to be

R = E
{
x(n)xH(n)

}
= APAH + σ2IM , (2)

whereE {·} and(·)H denote the statistical expectation and
the conjugate transpose, respectively. The decompositionin
(2) does not depend on the noise being Gaussian but only
white. Additionally,P is a diagonal matrix containing the
squared amplitudes, i.e.,P = diag

(
[ A2

1 · · · A2
L ]

)
, and

A ∈ C
M×L a full rank matrix constructed as

A =
[

a(ω1) · · · a(ωL)
]
, (3)

wherea(ω) = [ 1 ejω · · · ejω(M−1) ]T . Also, σ2 denotes
the variance of the additive noise,w(n), andIM is theM ×
M identity matrix. We note thatAPAH has rankL. Let

R = QΛQH (4)

be the eigenvalue decomposition (EVD) of the covariance
matrix. Then,Q contains theM orthonormal eigenvectors
of R, i.e., Q =

[
q1 · · · qM

]
andΛ is a diagonal

matrix containing the corresponding eigenvalues,γk, with
γ1 ≥ γ2 ≥ . . . ≥ γM . The subspace-based methods are
based on a partitioning of the eigenvectors into a set be-
longing to the signal subspace spanned by the columns of
A and an orthogonal complement known as the noise sub-
space. LetS be formed from the eigenvectors correspond-
ing to theL most significant eigenvalues, i.e.,

S =
[

q1 · · · qL

]
. (5)

The subspace that is spanned by the columns ofS we de-
noteR (S) and is henceforth referred to as the signal sub-
space. Similarly, letG be formed from the eigenvectors
corresponding to theM − L least significant eigenvalues,
i.e.,

G =
[

qL+1 · · · qM

]
, (6)

whereR (G) is referred to as the noise subspace. Using
the EVD in (4), the covariance matrix model in (2) can now
be written asQ

(
Γ − σ2IM

)
QH = APAH . Introducing

Ψ = diag
(
[ γ1 − σ2 · · · γL − σ2 ]

)
, we can write this as

SΨSH = APAH . (7)

From this equation, it can be seen that the columns ofA

span the same space as the columns ofS and thatA there-
fore also must be orthogonal toG, i.e., R (S) = R (A)

andR (G) ⊥ R (A), and thus we arrive at the subspace
orthogonality property:

AHG = 0. (8)

Then, by post-multiplication of (7) byS, the following rela-
tion between the signal subspace eigenvectors and the Van-
dermonde matrix can be established (see [1]):

S = AC (9)

with C = PAHSΨ−1. Next, we define matrices theA1

andA2, constructed by removing the last and first rows of
A, i.e.,

A1 = [ IM−1 0 ]A and A2 = [ 0 IM−1 ]A. (10)

Similarly, we define fromS,

S1 = [ IM−1 0 ]S and S2 = [ 0 IM−1 ]S. (11)

From these definitions and (9), the matricesS1 andA1 can
be related through the matrixC asS1 = A1C. Then, due to
the particular structure ofA known as the shift-invariance
property, the following can be seen to hold:

A2 = A1D and S2 = S1Γ, (12)

with D = diag
(
[ ejω1 · · · ejωL ]

)
. Then, the matrix relat-

ing S1 to S2 can be written as follows:

Γ = C−1DC. (13)

Thus,Γ andD are related through a similarity transform.

3. ORDER ESTIMATION CRITERIA

For completeness, we will briefly review two other sub-
space methods for order estimation, namely the ESTER [6]
and SAMOS [5] methods that have been proposed recently,
before proceeding to introduce the here proposed MUSIC-
based order estimation technique. Both methods are derived
from the ESPRIT (Estimation of Signal Parameters by Ro-
tational Invariance Techniques) method [4], which is based
onR (S) = R (A) and the shift-invariance property of the
matrix A. The sinusoidal parameters are found using (12)
by constructing the matricesS1 andS2 as shown in (11) and
then solving forΓ in

S2 ≈ S1Γ, (14)

in some sense. For instance,

Γ̂ = arg min
Γ

‖S2 − S1Γ‖
2
F (15)

=
(
SH

1 S1

)−1
SH

1 S2, (16)



where the sinusoidal frequencies are found as the eigenval-
ues ofΓ̂ via the relation in (13). The key observation is
that equation (14) holds only when the eigenvectors ofR

are partitioned into a signal and a noise subspace such that
the rank of the signal subspace equals the true number of
sinusoids.

An order estimate is obtained using the ESTER method
in the following way: First, the sample covariance matrix
and its EVD are found. Then, the matricesS1 andS2 are
constructed for eachL from the EVD and the matrixΓ is
estimated. Then, the order is found by measuring the good-
ness of the fit in (14) as

J(L) = ‖S2 − S1Γ̂‖
2
2, (17)

for various candidate ordersL and then picking the one for
which the modeling error is minimized in the sense of (17).

The SAMOS method works in a similar way. It is based
on the rationale that the extent to which the relation in (14)
holds can be measured from the singular values{νk}

2L
k=1 of

the augmented matrixΦ = [ S1 S2 ] for variousL as

J(L) =
1

L

2L∑

k=L+1

ν2
k , (18)

sinceΦ will have rankL when the columns ofS1 can be
described accurately as linear combinations of the columns
in S2. The order estimate is then found as the minimizer of
the cost function (18). This method requires that a singular
value decomposition is calculated for each candidate order
L.

The MUSIC algorithm is based on the observationR (G)
⊥ R (A), i.e., that the Vandermonde matrix is orthogonal
to the noise subspace. Specifically, parameters are found
as follows: The sample covariance matrix is estimated for
a signal segment and the EVD is calculated. Then, the pa-
rameters are estimated by finding the rankL model that is
orthogonal to the noise subspace, i.e.,AHG = 0, or is the
closest to being so in the sense of a norm, say

{ω̂l} = arg min
{ωl}

‖AHG‖2
F , (19)

with ‖ · ‖F denoting the Frobenius norm. Since the squared
Frobenius norm is additive over the columns ofA, we can
find the individual sinusoidal frequencies forl = 1, . . . , L
as

ω̂l = arg min
ωl

‖aH(ωl)G‖2
F . (20)

The reciprocal form of the cost function in (20) is some-
times referred to as spectral MUSIC and1/‖aH(ωl)G‖2

F

as the pseudo-spectrum from which theL frequencies are
obtained as the peaks. A common trait of both MUSIC and
ESPRIT is that it is not necessary to solve for the amplitude
and phase parameters to find the frequencies. The effects of

order estimation errors, i.e., the effect of choosing an erro-
neousG in (20), on the parameter estimates obtained using
MUSIC has been studied in [8] in a slightly different con-
text and it was concluded that the MUSIC estimator is more
sensitive to underestimation ofL than overestimation. The
statistical properties of MUSIC for a known order have been
studied extensively in [9, 10, 11].

Equation (8) can only be expected to hold when the
eigenvectors ofR are partitioned into a signal and a noise
subspace such that the rank of the signal subspace is equal
to the true number of sinusoids. In practice, however, only
an estimate of the covariance matrix is available, and the
model in (2) can therefore only be expected to hold approx-
imately. The question is then how to measure to what extent
the relation (8) holds. We propose to measure this as

J(L) = min
{ωl}

‖AHG‖2
F

‖A‖2
F ‖G‖2

F

(21)

=
1

ML(M − L)
min
{ωl}

Tr
{
AHGGHA

}
, (22)

whereG is the rankM − L noise subspace eigenvectors
that are found from the EVD of the sample covariance ma-
trix. The normalization in the denominator is introduced to
compensate for the bias of the numerator in (22) with re-
spect to the dimensions of the matrices. Finally, we propose
to estimate the model order as

L̂ = arg min
L

J(L), (23)

The only cases that the proposed subspace-based order esti-
mation criterion cannot differentiate between areL = 0 and
L > 0. This is also the case for the ESTER and SAMOS
methods. Additionally, there are certain conditions that must
be fulfilled for the subspace methods to result in unique or-
der estimates. The SAMOS method, being based on the
singular values of the augmented matrixΦ, is restricted to
candidate orders1 ≤ L ≤ M−1

2 . The ESTER method
is restricted to candidate orders in the interval1 ≤ L ≤
M − 2, while for MUSIC, the interval is1 ≤ L ≤ M −
1. This favors the MUSIC and ESTER methods over the
SAMOS method. Regarding the computational complex-
ity, the ESTER requires that a least-squares (or total least-
squares) problem be solved for every candidate order. Sim-
ilarly, the SAMOS requires that a singular value decompo-
sition is calculated for each candidate order. In contrast,
the MUSIC cost function requires that the matrix products
AHG be calculated for different orders. However, this can
be done efficiently by first taking an FFT of each of the
columns of the eigenvectors inU from which the mini-
mization in (20) can be performed andJ(L) calculated by
simply changing the summation limits. Alternatively, the
minimization in (20) can be solved by polynomial rooting
[12]. We here stress that the MUSIC-based method pre-



sented here is more general than those based on the shift-
invariance property [6, 5], meaning that the relation (8) can
be used for a more general class of signal models.
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Fig. 1. Example of cost functions for 10 complex sinusoids
in white Gaussian noise withN = 50, M = 25, and an
SNR of 40 dB.
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Fig. 2. Percentage of correctly estimated model orders as a
function of the number of observations.

We now present some results starting with an illustra-
tive example of the cost functions of the proposed methods.
These are shown in Figure 1 for MUSIC and ESPRIT for
a true model order of 10 withN = 50, M = 25 and an
SNR of 40 dB. It can be seen from the figure that the three
cost functions have a minimum at the true model order. It
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Fig. 3. Percentage of correctly estimated model orders vs.
the SNR.

can also be observed that the cost functions are rather com-
plicated containing several minima. Next, we evaluate the
performance of the estimators under various conditions us-
ing Monte Carlo simulations where we generate signals ac-
cording to the model in (1) with Gaussian noise. From these
signals, we form a persymmetric estimate of the covariance
matrix R. This estimate is used for the implementation of
MUSIC and ESTER while for SAMOS, following the sug-
gestion of [5], we used a(N − M + 1) × M Hankel data
matrix.

In the experiments to follow, all amplitudes are set to
unity, i.e., Al = 1 for all l and the signal-to-noise ratio
(SNR) is defined asSNR = −10 log10 σ2 [dB]. The si-
nusoidal phases and frequencies are generated according to
a uniform pdf. We will now evaluate the performance in
terms of the percentage of correctly estimated orders under
various conditions. For each combination of the parame-
tersN , L andSNR, 1000 Monte Carlo simulations were
run. First, we will vary the number of observationsN while
keeping the SNR fixed at 40 dB and then we will keepN
fixed at 50 while varying the SNR. The results are shown
in Figure 2 and Figure 3. In both cases, a true model order
of 5 was used andM = N

2 . Next, we evaluate the perfor-
mance as a function of the true model order forN = 100,
SNR = 40 dB andM = 25. Note that the choice ofM
limits the number of possible sinusoids sinceM > L. The
results are depicted in Figure 4. First of all, we can see from
the figures, that the estimators have the desirable properties
that the performance improves as the SNR and/or the num-
ber of observations increases, and, as a consequence, that
the model order can be determined with high probability
based on the subspace methods for a high SNR and/or a
high number of observations. Interestingly, MUSIC seems
to consistently outperform ESTER and SAMOS. This may



be somewhat surprising since ESPRIT is known to produce
more accurate results than MUSIC for sinusoidal frequency
estimation. Moreover, we observe from Figure 4 that the
performance of all the methods deteriorates as the number
of parameters approachesN andM .
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Fig. 4. percentage of correctly estimated model orders as a
function of the true model order.

5. CONCLUSION

We have considered three subspace-based methods for find-
ing the number of complex sinusoids in white noise with
one new method being based on the subspace orthogonal-
ity property known from the MUSIC algorithm. The two
other methods are based on the shift-invariance property
of the ESPRIT method. The three methods have in com-
mon that they are based on the eigenvectors of the covari-
ance matrix rather than the more commonly used eigenval-
ues. In this sense, the methods are based on the geometry
of the subspaces rather than energy distribution. We have
compared the three methods analytically and experimen-
tally with the experiments showing that the new method
based on the subspace orthogonality property outperform
the two others. Aside from having the best performance,
the new method is also more general than the other meth-
ods, being based on less restrictive model assumptions.
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