

User Manual for SSG Power Simulation 2

Meinert, Palle; Gilling, Lasse; Kofoed, Jens Peter

Publication date: 2006

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Jensen, P. M., Gilling, L., & Kofoed, J. P. (2006). User Manual for SSG Power Simulation 2. Aalborg: Department of Civil Engineering, Aalborg University. Hydraulics and Coastal Engineering, No. 44

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

User manual for SSG Power simulation 2

DEPARTMENT OF CIVIL ENGINEERING

AALBORG UNIVERSITY SOHNGAARDSHOLMSVEJ 57 DK-9000 AALBORG DENMARK TELEPHONE +45 96 35 80 80 TELEFAX +45 98 14 25 55

June 06

DEPARTMENT OF CIVIL ENGINEERING

AALBORG UNIVERSITY SOHNGAARDSHOLMSVEJ 57 DK-9000 AALBORG DENMARK TELEPHONE +45 96 35 80 80 TELEFAX +45 98 14 25 55

Hydraulics and Coastal Engineering No. 44

ISSN 1603-9874

12 June 2006

User manual for SSG Power simulation 2

Bу

Palle Meinert, Lasse Gilling og Jens Peter Kofoed Aalborg University

DEPARTMENT OF CIVIL ENGINEERING

AALBORG UNIVERSITY

SOHNGAARDSHOLMSVEJ 57 DK-9000 AALBORG DENMARK TELEPHONE +45 96 35 80 80 TELEFAX +45 98 14 25 55

Preface

This program has been developed at Aalborg University on behalf of WAVEenergy AS, Norway as phase 5 of the cooperation contract.

This manual gives a detailed description of the use of the computer program *SSG Power Simulation 2*. Furthermore, the underlying mathematics and algorithms are briefly described. The program is based on experimental data from model testing of Seawave Slot-Cone Generator (SSG) presented in Kofoed (April 2005) and Kofoed (June 2005).

For further information please contact Palle Meinert (i5pmj@civil.aau.dk) or Jens Peter Kofoed (i5jpk@civil.aau.dk).

Aalborg, 12 June 2006

Content

1	SYM	BOLS	.1				
2	INTF	RODUCTION	3				
3 NUMERICAL MODEL							
	3.1	GEOMETRY	5				
	3.2	CONTINUITY EQUATION	6				
	3.3	EXPERIMENTAL DATA	.6				
	3.4	GENERATION OF TIME SERIES	.7				
	3.5	TURBINE CHARACTERISTICS	.8				
	3.6	TURBINE STRATEGY	.9				
	3.7	PRODUCED ENERGY	.9				
	3.8	SIMULATION ALGORITHM	10				
	3.9	EFFICIENCIES	12				
4	USE	OF THE PROGRAM	13				
	4.1	INPUT PARAMETERS	14				
	4.1.1	Conditions	15				
	4.1.2	Structure	18				
	4.2	SIMULATIONS RESULTS	20				
	4.2.1	Summary	20				
	4.2.2	Step plots	21				
R	EFEREN	ICES	23				

1 Symbols

Symbol	Unit		Description
$\mu_{turb,j}$	$[m^3/s]$:	Turbine efficiency in a time step
A, B, C		:	Constants used in formula for estimating mean overtopping
			for a reservoir. The value used are $A = 0.197$, $B = -1.753$
			and $C = -0.408$.
$A_{res,j}$	$[m^2]$:	Area of reservoir
С		:	Constant $c = 1.21$
f_n	[m]	:	Freespace. Distance between the crest and the water surface inside the reservoir. The magnitude of freespace is used to control turbine activation.
g	$[m/s^2]$:	Gravity acceleration $g=9.82$
$\overline{h_j}$	[m]	:	Mean head for reservoir j
h_i	[m]	:	Actual head in reservoir j at the beginning of the time step
h_n	[m]	:	Head. Distance between water surface in reservoir and MVL. The head is used to determine turbine production.
H_s	[m]	:	Significant wave height
j		:	Counter of reservoirs
MWL	[m]	:	Mean water level
$N_{reservoirs}$:	Number of reservoirs
$N_{substeps}$:	Number of time steps in each wave period
N _{waves}		:	Number of waves
Р	[W]	:	Power
P_{ov}		:	Probability that a wave does not overtop the crest of the reservoir
P_{turb}	[W]	:	Total mean Power production
$p_{turb,j}$	[W]	:	Mean Power production in a time step
p_w		:	Random number
q	$[m^3/s]$:	Mean water flow into reservoir
Q_{in}	$[m^3/s]$:	Overtopping from wave
q_{in}	$[m^3/s]$:	Overtopping flow in wave
$q_{in,i}$	$[m^3/s]$:	Overtopping flow in a time step
Q_{over}	$[m^3/s]$:	Total mean reservoir overflow
Q_{res}	$[m^3/s]$:	Total mean flow change in reservoir
Q_{turb}	$[m^3/s]$:	Total mean turbine flow
$q_{turb,i}$	$[m^3/s]$:	Flow through turbine in a time step
$Q_{upper.over}$	$[m^3/s]$:	Spillage from upper reservoir
\overline{R}_c	[m]	:	Crest freeboard height
$R_{c.n}$	[m]	:	Crest level of the reservoir
T_e	[s]	:	Energy period $T_e = T_p / 1.15$
T_m	[s]	:	Mean wave period $T_m = \frac{T_p}{1.2}$
T_p	[s]	:	Peak wave period
<i>z</i> ₁	[m]	:	Lower vertical boundary of the reservoir, which corre-

Symbol	Unit		Description
			spond to the crest level, $z_1 = R_{c,n}$
Z_2	[m]	:	Upper vertical boundary of the reservoir, which correspond
			to the crest level of the upper reservoir, $z_2 = R_{c,n+1}$. For the
			uppermost reservoir, the upper boundary is in principle
			infinite, but the program uses twice the lower boundary z_2
			$= 2z_{1}.$
η_j		:	Efficiency of the turbines in reservoir j
ρ	[kg/m ³]	:	Density of seawater $\rho = 1025$

2 Introduction

Seawave Slot-Cone Generator is a wave energy converter of the overtopping type. Water from the waves is captured in a number of reservoirs above the mean water level. The potential energy is transformed to electrical energy when the water is led through a turbine on its way back to the sea.

SSG Power simulation 2 is a complete rewrite version 1, with increased flexibility and performance in mind. The program simulates a time series of overtopping into the reservoirs and the energy produced by the turbines.

The intention of the program is to allow the user to determine the optimal geometry and turbine strategy by simulation. Therefore, the user can alter various parameters describing geometry, sea state, turbine configuration and turbine strategy. Based on the parameters the program simulates wave series and generates a report containing:

- Water volume/flow into each reservoir
- Water volume/flow through each turbine
- Spillage volume/flow when the reservoirs are full
- Produced energy
- Average power
- Hydraulic efficiency of overtopping into reservoirs
- Efficiency of the reservoirs
- Efficiency of the turbines
- Total efficiency

Optionally plots of water movement and power generation for every time step can be produced.

Chapter 2

3 Numerical model

3.1 Geometry

The SSG2 program is capable of simulating a Sea Slot-cone structure with n reservoirs, each reservoir with an independent turbine setup. A sketch of the geometry with indication of the governing symbols is shown in Figure 1:

Figure 1 SSG Geometry sketch

Where:			
Symbol	Unit		Description
MWL	[m]	:	Mean water level
$R_{c.n}$	[m]	:	Crest level of the reservoir
f_n	[m]	:	Freespace. Distance between the crest and the water surface inside
			the reservoir. The magnitude of freespace is used to control turbine
			activation.

 h_n [m] : Head. Distance between water surface in reservoir and MVL. The head is used to determine turbine production.

The size of each reservoir is also important for the outcome of the simulation. Therefore, reservoir length (along the waterfront) and width (perpendicular to waterfront) are also needed as input to the simulation.

3.2 Continuity equation

The program is based on the continuity equation

$$Q_{in} = Q_{over} + Q_{turb} + Q_{res} \tag{1}$$

Or with overflow to next reservoir enabled, the extended version

$$Q_{in} + Q_{upper.over} = Q_{over} + Q_{turb} + Q_{res}$$

Where:

Symbol	Unit		Description
Q_{in}	$[m^3/s]$:	Overtopping from wave
$Q_{upper.over}$	$[m^3/s]$:	Spillage from upper reservoir
Q_{over}	$[m^3/s]$:	Overflow if reservoir is full
Q_{turb}	$[m^3/s]$:	Flow through turbines
Q_{res}	$[m^3/s]$:	Flow in reservoir

(2)

The continuity equation must be satisfied in each time step and for each separate reservoir.

If *overflow to next reservoir* (see section 4.1.1) is disabled finding the flows for the full structure is as easy as summing up the flows for all reservoirs. If *overflow to next reservoir* is enabled, it is a bit trickier, since overflow water from upper reservoirs is reused. Therefore, when *overflow to next reservoir* is enabled, the overflow of the lowest reservoir alone represents the full overflow of the structure.

The following sections describe how the flows are determined.

3.3 Experimental data

Generation of the time series is based on the mean water flow into each reservoir. The mean water flow is found by experiments with a model of SSG. According to Kofoed (April 2005) the mean water flow into the nth reservoir can be estimated using:

$$q_{n}(z_{1}, z_{2}) = \sqrt{gH_{s}^{3}} \frac{A}{B} e^{C\frac{R_{c,1}}{H_{s}}} \left(e^{B\frac{z_{2}}{H_{s}}} - e^{B\frac{z_{1}}{H_{s}}} \right)$$
(3)

Where:

Symbol	Unit		Description
g	$[m/s^2]$:	Gravity acceleration, $g = 9.82$
H_s	[m]	:	Significant wave height
z_1	[m]	:	Lower vertical boundary of the reservoir, which correspond to
			the crest level, $z_1 = R_{c,n}$
Z_2	[m]	:	Upper vertical boundary of the reservoir, which correspond to
			the crest level of the upper reservoir, $z_2 = R_{c,n+1}$. For the
			uppermost reservoir, the upper boundary is in principle infinite,
			but the program uses twice the lower boundary $z_2 = 2z_1$.

Symbol	Unit	Description
A, B, C	:	Constants found by non-linear regression analysis. The value
		used are $A = 0.197$, $B = -1.753$ and $C = -0.408$.

A newer set of data presented in Kofoed (June 2005) is showing better performance of SSG with a structure consisting of 3 reservoirs with crest levels of 1.5, 3 and 5 meters. In Figure 3 the new data has been idealized and are compared to formula (3).

Figure 2 Comparison of experimental data from Kofoed (April 2005) and Kofoed (June 2005).

3.4 Generation of time series

As described in Jacobsen and Frigaard (1999) the wave overtopping is given by a random process compiled of two steps. References are made to Franco et al. (1994) and van der Meer and Jansen (1995) from which the equations are cited

$$P_{ov} = e^{\left(-\left(c\frac{H_s}{R_c}\right)^{-2}\right)}$$
(4)

$$q_{in} = 0.84 \frac{q}{P_{ov}} \left(-\ln(1 - p_w) \right)^{0.75}$$
(5)

Where:

Symbol	Unit		Description
P_{ov}		:	Probability that a wave does not overtop the crest of the reservoir
С		:	Constant $c = 1.21$
R_c	[m]	:	Crest freeboard height
q_{in}	$[m^3/s]$:	Overtopping flow in wave
q	$[m^3/s]$:	Mean water flow into reservoir
T_p	[s]	:	Peak wave period
T_m	[s]	:	Mean wave period $T_m = \frac{T_p}{1.2}$
p_w		:	Random number

The overtopping flow of a wave is determined by Algorithm 1.

Algorithm 1, Calculation of overtopping volume from a single wave.

For every wave, the program calculates the overtopping flow into each reservoir.

3.5 Turbine characteristics

The turbine characteristics describe the relationship between the head, flow and efficiency of the turbine. The turbine characteristic is used to determine the flow and efficiency at a given head.

The flow through the turbines depend on the head which constantly changes when water passes through the turbine, for simplification the flow is either based on initial head or an estimated average head. If the gradient of the turbine characteristic is large, the error of the simplification may be significant. To minimize the error of the simplification each wave period is divided into a user-specified number of time steps.

3.6 Turbine strategy

The turbine strategy determines when the turbines start and stop. The turbine strategy is based on a term called freespace f (see Figure 1), which is defined as the distance between the crest of the reservoir and water surface inside the reservoir.

Turbine activation is done according to a linear function, which has the wave height as input.

If $f < f_{on}(H_s)$ then Start turbine Where : $f_{on}(H_s) = Min(Max((A \cdot H_s + B), C), D)$ A = Turbine on Hs gain B = Turbine on Hs offset C = Turbine on lower limit D = Turbine on upper limit

Setting C = D will disable influence from wave-height. Turning off the turbines is controlled in similar fashion:

If $f > f_{off}(H_s)$ then Start turbine Where : $f_{off}(H_s) = Min(Max((A \cdot H_s + B), C), D)$ A = Turbine on Hs gain B = Turbine on Hs offset C = Turbine on lower limit D = Turbine on upper limit

3.7 Produced energy

The produced power in each time step is calculated using

$$P = \sum_{j=1}^{N_{\text{Reservoirs}}} \rho g h_j q_{\text{turb},j}(h_j) \eta_j(h_j)$$
 (6)

Where:			
Symbol	Unit		Description
Nreservoirs		:	Number of reservoirs
P	[W]	:	Power
j		:	Counter of reservoirs
ρ	$[kg/m^3]$:	Density of seawater $\rho = 1025$

g	$[m/s^2]$:	Gravity acceleration, $g=9.82$
h_j	[m]	:	Actual head in reservoir <i>j</i> at the beginning of the time step
$q_{turb,j}(h_j)$	$[m^3/s]$:	Flow through the turbine in reservoir <i>j</i> as a function of head
$\eta_j(h_j)$:	Efficiency of the turbine in reservoir <i>j</i> as a function of head

3.8 Simulation algorithm

The principle of the algorithm for simulating power production is outlined in Algorithm 2. The reservoirs are indicated by subscript *j*.

: *H_s*, *T_p*, *N_{waves}*, *N_{substeps}*, geometry and turbine characteristics Input **Output** : Q_{in} , \dot{Q}_{turb} , Q_{res} and P_{Turb} // Calculate constant parameters in the time series: $T_m = \frac{T_p}{1.2}$ $\Delta t = \frac{T_m}{N_{steps}}$ for j = 1 .. $N_{reservoirs}$ do $P_{ov,J} = e^{\left(-\left(c\frac{H_s}{R_{c,J}}\right)^{-2}\right)}$ end Determine mean water flow q_i into each reservoir // Loops to generate time series: for $k = 1 \dots N_{waves}$ do p = new random number $p_w =$ new random number // Loop over number of reservoirs: for j = 1... $N_{reservoirs}$ do if $p > P_{ov, j}$ then $q_{_{in}} = 0.84 \frac{q_{_j}}{P_{_{ov,i}}} \left(-\ln(1-p_w)\right)^{0.75}$ else $q_{_{in}} = 0$ end for $m = 1 \dots N_{substeps}$ do // Determine current head depending of crest height and current freespace $h = R_{c,j} - f_j$ // Determine if turbines should be turned on in the current time step if $f_1 < F_{on}(H_s)$ then Start turbine j end if $f_j > F_{off}(H_s)$ then Stop turbine *j* end if Turbines turned on then $(q_{turb_i}, \eta_{turb})$ = TurbineCharacteristic(*h*) else $\left(q_{turb,},\eta_{turb}\right)=(0,0)$

end $f_{res,j} + = \frac{\left(q_{in,j} - q_{turb,j}\right)\Delta t}{A_{res,j}}$ **if** $f_{res,j} < 0$ then $q_{over} = \frac{f_{res,j} A_{res,j}}{\Delta t}$ $f_{res,j} = 0$ end $Q_{in,j} + = q_{in}$ $Q_{turb,j} + = q_{turb}$ $Q_{over,j} + = q_{over}$ $Q_{res,j} + = q_{in} - q_{over} - q_{turb}$ $P_{Turb,j} + = q_{turb} g \rho h \eta_{turb}$ end end end for j = 1 .. $N_{reservoirs}$ do $Q_{in,j} / = T_m N_{waves}$ $Q_{over,j} / = T_m N_{waves}$ $Q_{res,j} / = T_m N_{waves}$ $Q_{turb,j} / = T_m N_{waves}$ $P_{turb,j} / = T_m N_{waves}$ end

Algorithm 2, Main	1 algorithm	to compute	produced	electrical	energy.
-------------------	-------------	------------	----------	------------	---------

TT1 C 11 '		°° 1 1 1	1
The following no	t nreviously det	fined symbols at	e nced
The following no	t previously del	incu symbols a	c uscu.
0		2	

Symbol	Unit		Description
N _{substeps}		:	Number of time steps in each wave period
N _{waves}		:	Number of waves
$A_{res,j}$	$[m^2]$:	Area of reservoir
$q_{in,j}$	$[m^3/s]$:	Overtopping flow in a time step
$q_{turb,j}$	$[m^3/s]$:	Flow through turbine in a time step
$\mu_{turb,j}$	$[m^3/s]$:	Turbine efficiency in a time step
$p_{turb,j}$	[W]	:	Mean Power production in a time step
Q_{in}	$[m^3/s]$:	Total mean flow in
Q_{turb}	$[m^3/s]$:	Total mean turbine flow
Q_{res}	$[m^3/s]$:	Total mean flow change in reservoir
Q_{over}	$[m^3/s]$:	Total mean reservoir overflow
P _{turb}	[W]	:	Total mean Power production

3.9 Efficiencies

According to Falnes, referred to in Kofoed (April 2005), the total available energy per second per meter wave front is:

$$P_{wave} = \frac{\rho g^2}{64\pi} T_e H_s^2 \tag{7}$$

Where:

where.			
Symbol	Unit		Description
T_e	[S]	:	Energy period $T_e = T_p / 1.15$

The efficiency of the SSG is determined at three levels:

- Potential energy overtopping the crests
- Potential energy stored in the reservoirs. This will be less than above, because the head of the reservoir water surface is less than the crest level. If the head reaches crest level, overflow happens and potential energy will be lost.
- Energy transformed into kinetic energy by turbines. This will be less than above, due to start/stop penalties and turbine efficiency generally below 100%.

The efficiencies are determined by (8), (10) and (12):

$$\eta_{in} = \frac{P_{in}}{P_{wave}} \tag{8}$$

where

$$P_{in} = \sum_{j=1}^{N_{reservoirs}} Q_{in,j} R_j \rho g$$
(9)

$$\eta_{res} = \frac{P_{res}}{P_{wave}} \tag{10}$$

where

$$P_{res} = \sum_{j=1}^{N_{reservoirs}} (Q_{in,j} - Q_{over,j}) \overline{h_j} \rho g$$
(11)

$$\eta_{turb} = \frac{P_{turb}}{P_{wave}} \tag{12}$$

where

$$P_{turb} = \sum_{j=1}^{N_{reservoirs}} P_{turb,j}$$
(13)

Where:

Symbol	Unit		Description
$\overline{h_i}$	[m]	:	Mean head for reservoir j
$P_{turb,j}$	[W]	:	The cumulated mean power of reservoir j, as found in Algorithm 2

4 Use of the program

SSG2 program can perform a series of SSG simulations. The program starts with an empty simulation list.

Figure 3, the SSG2 program with empty simulation list

A new simulation can be initiated by pressing _____ or a previous simulation list can be loaded for modification. The main form will then open up for the necessary input fields described in the following section.

4.1 Input parameters

Initiating a new simulation will transform the appearance of SSG2.

SSG Power Simulation 2			
New 🦻 Open 🖡	Save 📕 Save <u>a</u> s 🕭 Print	Copy 🌍 <u>R</u> un	<u></u>
	Input parameters		
+ ×	Conditions	+ Structure	×
Simulation 0	Computational settings	Decenyoir 1	
	Total number of wayoo 1		
Simulation U	Timestens nerwaye neriod 1	Creational [m] 1,000	
	Water flow model General	Reservoir length [m] 1,000	
	Simulated seastate Waves SeaState wa	Beservoir width [m] 1.000	
	Overflow to next reservoir False	Initial freespace [m] 1,000	
	Compute plot values True	Turbine on lower limit 0.000	
	Use average head True	Turbine on upper limit 0.000	
	Random seed value (0=No se 0	Turbine on Hs gain 0.000	
	Overtop distribution Even	Turbine on Hs offset 0.000	
	Overtop spreading (1 - 100%) 100	Turbine Off lower limit 1.000	
		Turbine Off upper limit 1.000	
		Turbine Off Hs gain 0.000	
	Flow model: General	Turbine Off Hs offset 0.000	
	0.03	Turbine ramp type Cosine 🔛	
	ලී 0.02	- U.U 0	
	 <u></u> <u></u> <u></u> <u></u>	g 0.0	
	- 0.01		
	0.00		
	0 0.2 0.4 0.0 0.0 1 Hs [m]		
	Res1	1.0	
		E	
	Overtop distribution: General	.= U.5	
	1.00	0.0	
	0.50	- Startup - Shutdown Time fel	
	0.00		
	0	Turbine characteristic	
	Timestep	Head [m] Q [M^3/s] Efficiency [%]	
	Sea states	1.000 1.000 1.000	
	Hs Tp Prob. Waves		
	1 000 1 000 1 000 1		
	1.000 1.000 1	— Q [m^3/s] — Eff. [%]	
		ହିଁ 1.0	
		<u>د</u> ۲	
	<	Head [m]	
		Import characteristic from file	
	Import sea states from file	Import characteristic from the	
		p	

Figure 4, the SSG2 program with newly initiated simulation list

The simulation parameters are split into two main parts:

Conditions:

Parameters controlling simulations conditions. This includes:

- Sea-states
- Number of waves to simulate
- Computation specific parameters

Structure:

Geometry and configurations of the structure. This includes:

- Number of reservoirs
- Reservoir geometries
- Turbine configuration

4.1.1 Conditions

The simulation conditions are made up of computational conditions and sea-states to simulate.

Figure 5, Condition panel.

Computational settings:

Parameter	Description
No of model waves	: How the number of simulated waves are entered:
	Sea State waves:
	Uses the Waves column from the sea states grid.
	Prob of total:
	The Total number of waves is covering all sea states.
	The number of waves per sea-state is hereby computed
	from the probability in the time domain.
Total number of waves	: Used when No of model waves is set to Prob of total.
0	See description for No of model waves
Time steps per wave period	: Number of sub-step each wave is divided into during
	the simulation. More sub-steps results that are more
	precise at the cost of longer computations time.
Water flow model	: Which water model to use (see section 3.3).
5	General:
	Model based on experimental data from Kofoed (April
	2005)
	3res.Opti.:
	Model based on experimental data from Kofoed (June
	2005). This model is optimized for a specific geometry
	and gives better results this geometry. The geometry is
	locked to 3 reservoirs with Crest levels of 1.5m, 3m
	and 5m.
	The amount of overtopping discharge for each
	reservoir depending on the significant wave height is
	illustrated graphically on a chart below the parameters.
Overflow to next reservoir	: If enabled, spillage from upper reservoirs will be
0	added to the amount of incoming water in the reservoir
	below.
Compute plot values	: If activated, state values are stored for all time steps.
I I I I I I I I I I I I I I I I I I I	This can be used to produce charts for water
	movement, energy production and turbine efficiency.
	Notice that this is not especially time consuming but
	very memory intensive and the number of possible
	very memory intensive and the number of possible time steps will be limited by the installed amount of
	very memory intensive and the number of possible time steps will be limited by the installed amount of memory in the computer.
Use average head	very memory intensive and the number of possible time steps will be limited by the installed amount of memory in the computer.: If <i>deactivated</i>, the head used for turbine characteristic
Use average head	 very memory intensive and the number of possible time steps will be limited by the installed amount of memory in the computer. If <i>deactivated</i>, the head used for turbine characteristic is the head at the beginning of the time step.
Use average head	 very memory intensive and the number of possible time steps will be limited by the installed amount of memory in the computer. If <i>deactivated</i>, the head used for turbine characteristic is the head at the beginning of the time step. If <i>activated</i>, the head used for turbine characteristic is
Use average head	 very memory intensive and the number of possible time steps will be limited by the installed amount of memory in the computer. If <i>deactivated</i>, the head used for turbine characteristic is the head at the beginning of the time step. If <i>activated</i>, the head used for turbine characteristic is reduced to an estimated mean, using the head before
Use average head	 very memory intensive and the number of possible time steps will be limited by the installed amount of memory in the computer. If <i>deactivated</i>, the head used for turbine characteristic is the head at the beginning of the time step. If <i>activated</i>, the head used for turbine characteristic is reduced to an estimated mean, using the head before and after a normal time step. In theory this should be

Parameter	Description
Random seed value :	The overtopping formula is given by a random process
	(see section 3.4). Setting a seed value, allows
	repeating the exact same series of random numbers
	and hereby the overtopping discharges used (if sea-
	states and number of waves remain unchanged). This
	eliminates the uncertainty of random noise when doing
	parameter optimization.
Overtop distribution :	How the overtop discharge is modelled throughout a
	wave period. The distribution on all sub steps of a
	wave is illustrated graphically on a chart below the
	parameters.
Overtop spreading :	Percentage of wave period with overtopping dis-
	charge.

Sea states:

Parameter	unit		Description
Hs	[m]	:	Significant wave height
Тр	[s]	:	Peak period
Prob.		:	Probability of that sea state
Waves		:	Number of waves to base the results on; see description for
			simulated sea state waves under computational settings.

Sea states can be added and removed, by right clicking with the mouse and selecting from a popup-menu or using the <INSERT> and <DELETE> keys. Sea states can be imported from text file in the format:

Hs	Тр	Prob	No waves
0.5	5.0	0.135	20000
1.0	6.1	0.303	20000
•	•	•	•
•	•	•	•
•	•	•	•

4.1.2 Structure

The structure of the Seawave slot-cone generator is built up by a series of reservoirs on top of each other (see Figure 1). The number of reservoirs is changed by pressing the add- or remove-button in top of the panel.

+	Structure				×				
Reservoir 1	Reservoir 2			×	Reservoir 3			×	
Parameter	Value	Parameter		1	Value	Parameter			Value
Crest level [m]	1.500	Crest level [m] 3.000				Crest level [m] 5.000			
Reservoir length [m]	10.000	Reservoir length [m] 10.000				Reservoir length [m] 10.000			
Reservoir width [m]	15.000	Reservoir width [m] 13.000				Reservoir width [m] 10.000			10.000
Initial freespace [m]	0.600	Initial freespace [m] 0.900			Initial freespace [m] 1.2			1.200	
Turbine on lower limit [m]	0.100	Turbine on lo	wer limit [m]	(0.150	Turbine on lower limit [m] 0			0.200
Turbine on upper limit [m]	0.100	Turbine on u	pper limit [m]	(0.150	Turbine on upper limit [m] 0.20			0.200
Turbine on Hs gain	0.000	Turbine on H	ls gain	(0.000	Turbine on H	Hs gain		0.000
Turbine on Hs offset	0.000	Turbine on H	s offset	(0.000	Turbine on H	ls offset		0.000
Turbine Off lower limit [m]	0.600	Turbine Off Ic	ower limit [m]	(0.900	Turbine Off I	ower limit [m]		1.200
Turbine Off upper limit [m]	0.600	Turbine Off u	pper limit [m]	(0.900	Turbine Off (upper limit [m]		1.200
Turbine Off Hs gain	0.000	Turbine Off H	ls gain	(0.000	Turbine Off I	Hs gain		0.000
Turbine Off Hs offset	0.000	Turbine Off H	ls offset	(0.000	Turbine Off I	Hs offset		0.000
Turbine ramp type	Cosine	Turbine ramp	o type	(Cosine	Turbine ram	p type		Cosine
Turbine startup time [s]	10.000	Turbine start	up time [s]	1	10.000	Turbine star	tup time [s]		10.000
Turbine shutdown time [s]	10.000	Turbine shutdown time [s] 10.000				Turbine shut	tdown time [s]		10.000
Turbine produce power on start	ip False	Turbine prod	luce power on	n startup F	False	Turbine proc	duce power or	n startup	False
0.0 9 1 0				8 U.U 8 1.0					
└── On		On - Off Hs [m]				<u> On </u>	Off Hs[n	n]	
1.0	1.0		~		1.0		~		
0.5 0.0		U.5				U 0.0			<u> </u>
-10 -5 0	-10	-5 0	5 wn Tim	1	-10	-5 0	5 WD Tin	. [-]	
Clartop	nime [s]	Otartap	Chatao		ie [s]	Otartup	Cildido		ne [s]
Turbine characteristic		-Turbine cha	racteristic			-Turbine che	aracteristic		
Head [m] Q [M^3/s] Effic	iency [🔼	Head [m]	Q [M^3/s]	Efficienc	⊃y [% <mark>^</mark>	Head [m]	Q [M^3/s]	Efficier	icy 🔺
0.500 3.342 60.4	00 📃	1.500	1.796	81.800		3.000	0.924	85.700	
0.625 3.491 75.6	00 🗸	1.688	1.842	85.300	~	3.250	0.941	87.300	~
	>	<			>	<			>
— Q [m^3/s] — Eff. [%]	00	-Q	[m^3/s] — E	ff. [%]	90	<u> </u>	[m^3/s] — Eff	f. [%]	
Se 4.0	80 70 %	⁹⁰ ⁹⁰ ⁸⁵ ³			ໂສ ກັບ 1.0			88 😽	
£ 3.5	60	± 1.8		+	4	E 0.9			86
0.6 0.8 1 1.2 1 Head [m]	.4	1.5 2 2.5 3 Head [m]				3 3.5 4 4.5 5 Head [m]			
Import characteristic from	file	Impo	rt characteristi	ic from file		Impor	t characteristic	c from file	9

Figure 6, Structure panel.

Parameters:

Parameter	Unit		Description
Crest level	[m]	:	Distance from mean sea-water level (MWL) to crest of reservoir
Reservoir Length Reservoir width	[m] [m]	:	The length of the reservoir along the water front The length of the reservoir perpendicular to the water front

Parameter	Unit		Description
Initial freespace	[m]	:	The distance between reservoir crest and water
			surface inside reservoir at simulation start.
Turbine on lower limit	[m]	:	Turbine activation is done according to a linear
			function, see section 3.6 for more information
Turbine on upper limit	[m]	:	- see above -
Turbine on Hs gain	[-]	:	- see above -
Turbine on Hs offset	[m]	:	- see above -
Turbine off lower limit	[m]	:	- see above -
Turbine off upper limit	[m]	:	- see above -
Turbine off Hs gain	[-]	:	- see above -
Turbine off Hs offset	[m]	:	- see above -
Turbine ramp type		:	Ramp type defines how the starting up and
			shutting down of the turbine should be modelled
			in order to introduce a start/stop penalty
			CstReduc:
			The turbine is working at half its capacity
			Linear:
			The turbine characteristic scales linear with the
			start/stop time
			Cosine:
			The turbine characteristic scales according to a
			cosine function with the start/stop time.
<i>Turbine start up time</i>	[s]	:	Start up time for the turbine. Zero seconds will
— 1. 1 1 .			result in no penalty for starting up.
Turbine shutdown time	[s]	:	Shutdown time for the turbine. Zero seconds
<i>T</i> 1. 1			will result in no penalty for shutting down.
<i>Turbine produce power</i>		:	It enabled, the turbine will produce power
on start up			during its start up.

Turbine characteristic:

	Onu		Description
Head	[m]	:	Head of incoming water
Q	$[m^3/s]$:	Turbine throughput at current head
Efficiency	[%]	:	Turbine efficiency at current head

Turbine characteristic can be imported from text file in the format:

H[m]	Q[m^3/s]	eta[%]
0.500	3.342	60.4
0.625	3.491	75.6
0.750	3.625	83.2
0.875	3.748	87.0
1.000	3.864	88.9
1.125	3.974	89.6
1.250	4.078	89.7
1.375	4.178	89.4
1.500	4.275	88.8

4.2 Simulations results

After a simulation has been completed, a new tab called *Simulation results* appears (next to the *Input parameters* tab), where the results are presented. The results are presented in two ways.

- 1. A summary report.
- 2. Step plots (if Compute plot values were enabled).

4.2.1 Summary

Input p	arameters	Simu	ulation results									
Summary Step plots												
Simul	ation: Sir	mulati	ion 0, 19-0	5-2006 09:5	i1:23						*	
RESUL	TS (Flow)	:										
		=										
TOTAL	S:											
Res	 Wate:	r	Water	Water	Water.cl	ha Pro	duced	Average				
No.	i	n c	overflow	through	reservo	ir	power	power				
	[m^3/s]	1	[m^3/s]	[m^3/s]	[m^3/s	s] [kW	h/vr]	[kW]				
1	2.286+E	0 1	L.052+E0	1.234+E0	0.666-1	23 85.80	7+E03	9.789+E0)			
2	0.998+E	0 0	0.519+E0	0.477+E0	0.001+H	20 87.98	6+E03	10.037+E0)			
3	0.432+E	0 0	0.284+E0	0.146+E0	0.001+H	52.31	2+E03	5.968+E0)			
Sum	3.716+E	0 1	1.855+E0	1.857+E0	0.003+H	226.10	5+E03	25.794+E0)			
				Eff.	Turb				Turb			
Res	E	ff	Eff.	through	work	Turb	.on	Turb.on	charac			
No.	overto	op	res.	turb	eff	t	ime	pct	eff			
	[4	€]	[%]	[%]	[%]	[3/	yr]	[%]	[%]			
1	12	.3	5.4	5.4	3.5	12958	931	41.1	26.9			
2	10.7		4.5	4.5	3.6	8199	857	26.0	32.2			
3	7.	.7	2.4	2.4	2.1	4635	4635928		24.6			
Sum	30	.7	12.3	12.4	9.2	25794	716	81.7	83.7			
SIMULATED SEASTATES:												
			-									
				Model	Model	Prototype	Proto	type	Wave	Average		
No.	Hs	Tp	Prob	waves	time	waves		time	Energy	power		
[-]	[m]	[s]	[%]	[-]	[3]	[1/yr]	[3	/yr]	[kWh/yr]	[kW]		
1	0.5	5.0	13.5	1000	4167	1022444	426	0183 9	.485+E3	8.015+E0		
2	1.0	6.1	30.3	1000	5083	1880999	956	1743 103	3.890+E3	39.115+E0		
3	1.7	7.9	26.5	1000	6583	1270265	836	2581 340	.074+E3	146.398+E0		
4	2.4	9.3	16.4	1000	7750	667785	517	5333 493	3.801+E3	343.491+E0		
5	3.6	10.6	8.3	1000	8833	296516	261	9223 640	.902+E3	880.889+E0		
6	4.7	11.7	3.5	1000	9750	113281	110	4492 508	1.454+E3	1.657+£3		
1 7	5.9	12.7	1.5	1000	10583	44726	47	3354 372	./36+E3	2.835+£3		
											×	
Flov	Flow/Volume/											

Figure 7, Summary report.

The summary tab presents the simulation results in report format. The units of the report can be changed by choosing the flow- or volume-tab at the bottom.

4.2.2 Step plots

If *Compute plot values* where enabled during simulation it is possible to make *Step plots*.

Figure 8, Step plots.

Chapter 4

References

Franco, L., de Gerloni, M., and van der Meer, J., 1994. *Wave overtopping on vertical and composite breakwaters*. Proceedings on 24th International Conference on Coastal Engineering.

Jacobsen, K. P. and Frigaard, P., 1999 User's manual for the program Wave Dragon - Power Simulation. Aalborg University.

Kofoed, J. P. 2005, April *Model testing of the wave energy converter seawave slot-cone generator.* Hydraulics and Coastal Engineering No. 18, ISSN 1603-9874. Aalborg University.

Kofoed, J. P., 2005, June *Experimental hydraulic optimization of the wave energy converter seawave slot-cone generator*. Hydraulics and Coastal Engineering No. 26, ISSN 1603-9874. Aalborg University.

van der Meer, J. W. and Jansen, J. P. F. M., 1995 *Wave run-up and wave overtopping at dikes*. Task Committee Reports 21.