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Performance analysis of sensor
self-localization algorithms
Martin B. Hansen and Jakob G. Rasmussen

Abstract

In this paper the self-localization problem for sensor networks is discussed. We suggest to use the configuration
of sensors that has overall maximum probability, given the observations. In a Bayesian framework this corresponds
to maximum a posteriori (MAP) estimation. However, there isa main reservation concerning this approach: The
computational problem of solving the complex nonlinear optimization problem seems at first glance to be enormous.
We suggest in the present paper to reduce the computational burden by a simple coordinatewise greedy algorithm,
which is nothing else than the successful iterative conditional modes (ICM) algorithm from spatial statistics and
image analysis. The advantages are that it is 1) distributed, 2) simple and 3) easy to implement. A theoretical lower
bound on the average mean square error (AMSE) for all localization estimators in multihop sensor networks is
presented under suitable regularity conditions on the sensor positions. A simulation study is conducted and it is
shown that the AMSE of the proposed estimator for a variety ofparameters is close to the lower bound on the
AMSE.

Index Terms

Mean square error methods, MAP estimation, distance measurements, position measurements, networks.

I. INTRODUCTION

SELF-LOCALIZATION of wireless devices is interesting for a number of military and civil applica-
tions. The basic problem is to deploy a large number of sensors that acquire and process data. In the

situation where the location of the sensors is not availablethere is an interest in developing methods where
the sensors are localizing themselves based on observations from their neighbourhood. Furthermore, it is
desirable to distribute the computational burden across the network and minimize the amount of inter-
sensor communication to avoid congestion problems.

Generally we assume in the present paper a localization problem in which each sensor has available noisy
distance measurements to neighbouring sensors. These measurements can be e.g. time of arrival (TOA) or
received signal strength (RRS) suitably inverted to distance measurements. A straightforward approach to
solving such a localization problem is to minimize the sum ofthe squares of the differences between inter-
sensor distances and measured distances, leading to a nonlinear least-squares (NLS) optimization problem
[1], [2]. A more formal and model-based approach is to use maximum likelihood (ML) estimators [3],
[4]. We suggest to use the configuration of sensors that has overall maximum probability, given the
observations. In a Bayesian framework this corresponds to maximum a posteriori (MAP) estimation.

In general, finding the NLS, ML and MAP estimates of the sensorlocations all results in complex
nonlinear optimization problems. This motivates a systematic study of the whole battery of nonlinear-
optimization techniques invented in e.g. image analysis, optimal control and spatial statistics. Various
methods have been suggested e.g. simulated annealing [5]. Simulated annealing is tempting as convergence
results can be proved. However, annealing with a theoretically optimal cooling schedule may work very
slowly, which is in contrast with the desire for fast computational schemes. Therefore, in practice faster
cooling schedules like ’zero temperature sampling’ are adopted. These algorithms usually terminate in a
local minimum close to the initial configuration after a few iterations. The results depend on the initial
configuration and on the visiting scheme. Despite its obvious drawbacks, it is popular since it is fast and
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easy to implement. Performance of the estimators is often investigated and compared by the average mean
square error [6], [7].

In Section II, we formalize the problem and discuss the signal propagation model used in this paper.
Section III introduces Bayesian estimation theory as inferential tool and we suggest to use the average
mean square error to evaluate the performance of the estimator. By means of van Trees’ inequality [8], [9]
we are able to derive a lower bound on the AMSE for all estimators under suitable regularity conditions
on the sensor positions. To our knowledge results along these lines have been restricted to Cramér-Rao
lower bounds [3]. The Cramér-Rao bound is limited to unbiased estimates whereas the estimators are
typically biased in sensor localization problems. Although this can be remedied by analyzing the bias
sensitivity of the position estimates [10, Section 3.5] or focusing on the one-dimensional case [11], our
approach works in general. We suggest in Section IV to use ’coordinatewise’ maximal descent, which is
common in combinatorial optimization. In the statistical community, it is usually called ICM and credited
to Besag in [12] and the further development in [13] (it was suggested independently by [14]). It was
Green who in the discussion of [13] pointed out the close relation to ’zero temperature sampling’ in
simulated annealing. In Section V we treat the case where allpairwise distances have been measured. An
estimator is suggested and the van Trees lower bound is calculated for a bivariate beta a priori distribution
on the sensor positions. The situation where every sensor only detects a distance from a subset of the
remaining sensors is treated in Section VI. Simulation results are reported in Section VII and it is shown
how the AMSE of the estimator, for realistic parameter settings, comes close to the theoretical lower
bound.

II. M ODEL FORMULATION

A. Notation

Assume we have a set ofN sensors, labeledV = {1, . . . , N}, scattered aroundS ⊆ R
2, each with an

associated locationz1, . . . , zN . The positions of the firstM sensors,K = {1, . . . , M}, zK = (z1, . . . , zM)
are known, whereas the positions of the rest of the sensors,U = {M + 1, . . . , N}, zU = (zM+1, . . . , zN)
are unknown.

B. Signal propagation model

For the distance measurements in the model we adopt the approach of [15] and [16] in the following
way. Sensori ∈ U obtains a noisy measurementdij of its distance from sensorj ∈ V . We assume in
the present paper a Gaussian measurement model, that isdij ∼ N(‖ zi − zj ‖, σ2)-distributed. We use a
binary random variableoij to indicate whether the distance between sensori andj is observed or not. The
indicatoroij is assumed to be Bernoulli distributed with a probability depending on the distance between
sensori andj, in the following way

Po(zi, zj) = exp

(

−‖ zi − zj ‖2

2R2

)

. (1)

This model assumes that the probability of detecting nearbysensors falls off exponentially with squared
distances. Throughout the paper we will assume the measurements and indicators to be independently
distributed.

C. A Bayesian hierarchical model

In reality the measured distancesdij anddji may be different, and it is even possible to haveoij 6= oji.
It will later be a convenient assumption to assumedij = dji, but the set-up is easily generalized to the
non-symmetric case at the cost of additional computations.Moreover, we assume the vector of unknown
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nodes is anN −M-dimensional random vector with a priori probability density function p. Hence, the
model is naturally formulated as a Bayesian hierarchical model [17],

zU ∼ p

oij |zi, zj ∼iid bin(1, Po(zi, zj)), i ∈ U, 1 ≤ j < i

dij |zi, zj ∼iid N
(

‖ zi − zj ‖, σ2
)

, i ∈ U, 1 ≤ j < i.

Now the set ofobserved/availabledistancesd = {dij|oij = 1} is a random variable taking values in
∪L

n=0R
n, whereR

0 = ∅ and L = (N − M)(N + M − 1)/2. The latter number is easily obtained by
induction.

III. STATISTICAL INFERENCE

We will in this section approach the inferential problem by Bayesian estimation theory. This is a huge
area and a total review is out of scope of the present paper, werefer to e.g. [18] for a comprehensive
treatment.

A. Position estimates

There are many ways to pick âzU which represents the true configuration of positions, i.e. which is
in proper balance between the a priori expectation and the fidelity to the data. By Bayes theorem the a
posteriori distribution of the sensor localization given the measurements can be expressed by

p(zU |d) ∝zU
p(d|zU)p(zU),

wheref(x, y) ∝x g(x, y) means there exists a constantc(y) such thatf(x, y) = c(y)g(x, y).
One possible rule is to choose âzU which is most favourable forp(zU |d), i.e. to maximize the a

posteriori distribution. Henceforth, we definêzU to be the maximum a posteriori estimate ofzU given d.

B. Performance of the estimator

In Bayesian estimation theory estimators are studied in terms of loss functions. The “loss” of estimating a
true zU by ẑU or the “distance” between̂zU andzU is measured by a loss functionL(zU , ẑU). The choice
of L is problem specific. In accordance with previous literature[6], [7] on the subject we choose the
average square error loss function

L(zU , ẑU) =
1

N −M

∑

i∈U

‖ zi − ẑU,i ‖2.

The Bayes risk of the estimator̂zU is the mean loss or in our context the AMSE

AMSE =
1

N −M

∑

i∈U

EzEd|z‖ ẑU,i(d)− zU,i ‖2

=
1

N −M

∑

i∈U

EzEd|z

(

(x̂U,i(d)− xU,i)
2 + (ŷU,i(d)− yU,i)

2
)

.

HereEd|z denotes expectation with respect to possible realizationsof data given positionsz of the sensors
and Ez denotes expectation with respect to the a priori distribution of the sensor positions. A natural
estimator to choose is the one which minimizes this risk. It can be proved that the Bayes estimator for
the average square error loss function is the expected mean of the a posteriori distribution. It turns out,
however, that it is possible to make a distributed algorithmto calculate this estimator, but the method is
quite computer intensive, see [19]. We therefore study various approximations of the MAP in more detail
and show by simulation that they work quite well according tothe lower bound on the AMSE.
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The Cramér-Rao lower bound has turned out be a popular meansto characterize uncertainty of position
estimates. As noted by [3], this approach is questionable asthe Cramér-Rao bound only holds if the
estimator is unbiased, whereas most estimators in general and the maximum likelihood estimator for
localization in particular are biased.

Here we show that a Bayesian version of the Cramér-Rao bounddue to van Trees [8] remedies some
of the problems and directly provides a lower bound on the AMSE for any estimator̂zU . First we should
note that van Trees’ inequality is derived under suitable regularity conditions on the functionsp(d|zU) and
p(zU), see [9, Section 4] and references therein for details. These rather technical conditions can easily
be verified for the situations we are considering in the present paper and are left for the interested reader.
Then define the expected Fisher information matrix for the position parameter and a priori distribution

I(zU) = −Ed|z

(

∂2 log p(d|zU)

∂(xU , yU)T∂(xU , yU)

)

,

and

I(p) = −Ez

(

∂2 log p(zU)

∂(xU , yU)T∂(xU , yU)

)

.

Finally, van Trees’ inequality [8, page 84] yields

AMSE≥ 1

N −M
tr (EzI(zU) + I(p))−1 . (2)

This is similar to the Cramér-Rao lower bound but does not require that the estimator is unbiased, as long
as we put a suitable a priori distribution on the sensor positions.

IV. THE ICM ALGORITHM

As indicated in Section I there exists a wealth of methods to approximate the MAP estimate, but
we choose in this paper to focus on the ICM algorithm, which was introduced in Section I as the
’coordinatewise’ steepest descent algorithm. Specifically, for eachi ∈ U choose the localization of sensor
i to be the maximizer of the marginal a posteriori distribution

p(zi|zV \{i}, d) ∝zi
p(d|zi, zV \{i}, d)p(zi|zV \{i}). (3)

This method has a computational advantage if both terms of the right-hand side have local dependence
properties. This will indeed be the case for the models introduced below. The ICM scheme is iterated
until sufficiently converged. The sensors will be visited according to some visiting scheme, i.e. a sequence
(Un)n≥1 of nonempty subsets ofU . The visiting scheme has to coverU again and again and therefore
we require

U =

τ(k)
⋃

j=τ(k−1)+1

Uj, for everyk ≥ 1 (4)

for some increasing sequenceτ(k), k ≥ 1, of times. Finally, we setτ(0) = 0. Such a visiting scheme
could be either deterministic or stochastic. In the presentpaper we simply for convenience use sequential
visiting, but in reality the network should use some sort of pseudo-random visiting scheme to avoid
complicated clock-synchronisation problems.

In the literature several suggestions have been proposed for choosing the initial configuration of the
ICM scheme. In the present paper we choose the sum-dist algorithm [20], which is a simple solution for
determining the distance to the sensors with known positions by adding the ranges encountered at each
hop during a initial network broadcast. For more details, see Section VII. The ICM algorithm for sensor
self-localization is schematically given in Algorithm IV.1.

Finally we note that
p(zU |d) = p(zi|zV \{i}, d)p(zV \{i}|d),
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Algorithm IV.1 ICM for sensor self-localization

INITIALIZE z
(0)
U by the sum-dist algorithm (see Section VII)

n := 0
REPEAT

FOR i ∈ Un{
z

(n)
i := arg maxzi

p
(

d|zi, z
(n)
V \{i}

)

p
(

zi|z(n)
V \{i}

)

}
z(n+1) := z(n)

n := n + 1

UNTIL sufficiently converged (see Section VII)

so by (3)p(ẑ
(n)
U |d) never decreases. It is our experience that convergence, to what must therefore at least

be a local minimum ofp(zU |d), seems extremely rapid, with few changes after the 10th cycle, see Section
VII.

V. FULL OBSERVATIONS

First we consider the situation wherePo ≡ 1, i.e. each sensor detects a distance measurement from
every other sensor, called the full observations case. Under these circumstances, by Bayes theorem, the a
posteriori distribution is given by

p(zU |d) ∝zU
p(d|zU)p(zU)

=
∏

i∈U,1≤j<i

(

1

σ
√

2π
exp

(

−(dij − ‖ zi − zj ‖)2

2σ2

))

× p(zU), (5)

whereby the marginal a posteriori pdf, to be plugged into theICM Algorithm IV.1, is given by

p(zi|zV \{i}, d)

∝zi

∏

j∈V \{i}

(

1

σ
√

2π
exp

(

−(dij − ‖ zi − zj ‖)2

2σ2

))

× p
(

zi|zV \{i}

)

. (6)

Although locally specified point processes can be a powerfulmodelling tool, we shall only consider a
simple example here.

Example 1 (Binomial point process):Let p be a probability density function (pdf) onS ⊂ R
2. A point

process ofn iid points with pdfp is called a binomial point process ofn points inS with pdf p. If we
assumezU is a binomial point process ofN −M points with pdfp, we get the following simultaneous
pdf for zU

p (zU ) =
∏

i∈U

p(zi).

In this case we get the following plug-in for the ICM Algorithm IV.1

p
(

zi|zV \{i}

)

= p(zi).

This expression in turn obviously only involves a local computation. Hence, running the ICM algorithm
is straightforward.
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To derive a van Trees lower bound on the AMSE, form three(N −M)× (N −M) matricesI(zU)xx,
I(zU)xy andI(zU)yy (see also [3, (7)]) with elements

[I(zU)xx]ij =
1

σ2

{

∑

k∈K

(xi−xk)2

‖ zi−zk ‖2
+
∑

k∈U\{i}
(xi−xk)2

‖ zi−zk ‖2
i = j

− (xi−xj)2

‖ zi−zj ‖2
i 6= j

[I(zU)xy]ij =
1

σ2

{

∑

k∈K
(xi−xk)(yi−yk)

‖ zi−zk ‖2
+
∑

k∈U\{i}
(xi−xk)(yi−yk)

‖ zi−zk ‖2
i = j

− (xi−xj)(yi−yj)

‖ zi−zj ‖2
i 6= j

[I(zU)yy]ij =
1

σ2

{

∑

k∈K

(yi−yk)2

‖ zi−zk ‖2
+
∑

k∈U\{i}
(yi−yk)2

‖ zi−zk ‖2
i = j

− (yi−yj)2

‖ zi−zj ‖2
i 6= j

.

Next, we form the2(N −M)× 2(N −M) expected Fisher information matrix for the position parameter

I(zU) =

[

I(zU)xx I(zU)xy

I(zU)xy I(zU)yy

]

. (7)

In accordance with previous simulation studies we now assume the sensors to be distributed within a square
areaS = [0, 1]× [0, 1], (e.g. [4], [6] and [7]). A natural and quite flexible class ofa priori distributions
on S is bivariate beta distributions, see [21, Chapter 49] for a good review. Although we could develop
our methods for these general classes of distributions, we for ease of exposition assume that the positions
of the N −M sensors with unknown positions follow a bivariate beta distribution with density

f(zi) =
Γ(α)4

Γ(2α)2
(xiyi)

α−1((1− xi)(1− yi))
α−1

for zi ∈ S andα > 0, i.e. all coordinates are mutually independent and identically distributed as well as
symmetrically distributed around1/2. By varying α we can get a uniform distribution of positions with
α = 1, a “bell-shaped” pdf byα > 1 and a “well-shaped” pdf byα < 1. It is now easy to show that the
following expectations exist and by symmetry we have

Ez

(xi − xk)
2

‖ zi − zk ‖2
= 1/2

Ez

(xi − xk)(yi − yk)

‖ zi − zk ‖2
= 0

for all i, k ∈ U . If we let X andY denote two independent and Beta(α, α)-distributed random variables,
we also have

ηk = Ez

(xi − xk)
2

‖ zi − zk ‖2
= EX,Y

(

1 +

(

Y − yk

X − xk

)2
)−1

(8)

ζk = Ez

(xi − xk)(yi − yk)

‖ zi − zk ‖2
= EX,Y

(

X − xk

Y − yk

+
Y − yk

X − xk

)−1

(9)

for all i ∈ U andk ∈ K. The mean values in (8) and (9) are easily calculated by numerical integration.
Now, let η =

∑

k∈K ηk and ζ =
∑

k∈K ζk, then we obtain

EzI(zU)xx =

(

η +
N −M

2

)

I − 1

2
H (10)

EzI(zU)xy = ζI, (11)

whereI denotes the(N − M) × (N − M) identity matrix andH is the (N − M) × (N − M) matrix
of all ones. AsEzI(zU)yy = EzI(zU)xx andEzI(zU)yx = EzI(zU)xy, the matrixEzI(zU) can easily be
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constructed by use of (7). The expected Fisher information matrix for the a priori distribution is now
derived forα > 2 in the following way

−Ez

∂2

∂x2
i

log p(zU) = 2(α− 1)

∫ 1

0

Γ(α)2

Γ(2α)
xα−3(1− x)α−1 dx

=
(α− 1)(α− 2)

2α− 1

−Ez

∂2

∂xi∂xj

log p(zU) = 0, i 6= j

−Ez

∂2

∂xi∂yj

log p(zU) = 0.

Hence,

I(p) = ξ

[

I O
O I

]

, (12)

whereξ = (α−1)(α−2)
2α−1

andO is the (N −M) × (N −M) zero matrix. Inserting (10), (11) and (12) into
(2), we obtain

AMSE≥ 1

N −M
tr

[(

η + N−M
2

+ ξ
)

I − 1
2
H ζI

ζI
(

η + N−M
2

+ ξ
)

I − 1
2
H

]−1

. (13)

VI. PARTIAL OBSERVATIONS

Now consider the situation where every sensor only detects adistance from a subset of the remaining
sensors, modelled by the probabilityPo discussed in Section II-B. We call this the partial observations case
as opposed to the previous full observations case. We split the partial observations case into two separate
situations. First, we consider the situation where the sensors are able to broadcast distance information
throughout the entire network, called full information available, see Section VI-A. Second, we consider a
case where we only obtain position information from thek-order neighbours, see Section VI-B. Although
the van Trees lower bound derived in Example 1 strictly speaking only applies to the full observations
case, we also expect it to hold for estimators in the partial observations case, since estimation in the full
observations case is expected to perform better than the partial observations case. Hence we compare the
estimators in the partial observation case with van Trees’ inequality for the full observations case, see
Section VII.

A. Full information available

In this case the a posteriori distribution is given by

p(zU |d) ∝zU
p(d|zU)p(zU)

=
∏

i∈U,1≤j<i

[(

1√
2πσ

exp

(

−(dij − ‖ zi − zj ‖)2

2σ2

)

Po(zi, zj)

)oij

× (1− Po(zi, zj))
1−oij

]

× p(zU). (14)

Define a random setE ⊂ V × V in the following way:

eij ∈ E if and only if oij = 1.

The tupleG = (V, E) induces an undirected random graph with verticesV and edgesE. For a graph
G = (V, E), we define for eachi ∈ V the set ofk-order neighbours ofi as

∂k
i = {j ∈ V \ {i} : i1, . . . , il ∈ V, eii1 , . . . , eilj ∈ E, 1 ≤ l < k}.
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Note that∂k
i is a random variable with values in2V \{i}, the set of all subsets ofV \ {i}. It is now

convenient to formulate the marginal a posteriori density,to be plugged into the ICM Algorithm IV.1, in
the following way

p(zi|zV \{i}, d) = p
(

zi|z∂1
i
, (dij)j∈∂1

i
, zV \(∂1

i ∪{i})
, ∂1

i

)

∝zi

∏

j∈∂k
i

(

1√
2πσ

exp

(

−(dij − ‖ zi − zj ‖)2

2σ2

)

Po(zi, zj)

)

×
∏

j∈V \(∂1
i ∪{i})

(1− Po(zi, zj))× p(zi|zV \{i}).

B. Information available fromk-order neighbours, including non-local information

Inspired by the approach in Sections V and VI-A, we now suggest iteratively to maximize the following
marginal a posteriori pdf, based on available local information only (i.e. information passed on fromk-
order neighbours)

p
(

zi|z∂k
i
, (dij)j∈∂k

i
, ∂k

i

)

∝zi
p
(

(dij)j∈∂1
i
|zi, z∂k

i
, ∂k

i

)

p
(

zi, z∂k
i
, ∂k

i

)

=
∏

j∈∂k
i

1

σ
√

2π
exp

(

−(dij − ‖ zi − zj ‖)2

2σ2

)

×
∫

R
2|V \(∂k

i
∪{i})|

p(zi, z∂k
i
, z, ∂k

i )dz

=
∏

j∈∂k
i

1

σ
√

2π
exp

(

−(dij − ‖ zi − zj ‖)2

2σ2

)

×
∫

R
2|V \(∂k

i
∪{i})|

p(∂k
i |zi, z∂k

i
, z)p(zi, z∂k

i
, z)dz.

By using the Bernoulli structure of the included edges in therandom graph specified byPo, we arrive at

p
(

zi|z∂k
i
, (dij)j∈∂k

i
, ∂k

i

)

∝zi

∏

j∈∂k
i

(

1

σ
√

2π
exp

(

−(dij − ‖ zi − zj ‖)2

2σ2

)

Po(zi, zj)

)

×
∫

R
2|V \({i}∪∂k

i
)|

∏

j∈V \(∂k
i ∪{i})

(1− Po(zi, zj))p(zi, z∂k
i
, z)dz. (15)

If we assume an inhomogeneous binomial point process as a priori distribution, we get the following
simplification

p
(

zi|z∂k
i
, (dij)j∈∂k

i
, ∂k

i

)

∝zi

∏

j∈∂k
i

(

1

σ
√

2π
exp

(

−(dij − ‖ zi − zj ‖)2

2σ2

)

Po(zi, zj)

)

×
(
∫

R2

(1− Po(zi, z))p(z)dz

)|V \(∂k
i ∪{i})|

× p(zi). (16)
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We should here note that the integral in (16) in most cases hasto be calculated by numerical integration
for each and every step in the ICM algorithm. Hence, it seems worthwhile to iteratively use the following
approximation in the ICM algorithm:

p
(

zi|z∂k
i
, (dij)j∈∂k

i
, ∂k

i

)

∝zi

∏

j∈∂k
i

(

1

σ
√

2π
exp

(

−(dij − ‖ zi − zj ‖)2

2σ2

)

Po(zi, zj)

)

p(zi). (17)

This is indeed the approximation we use in our simulation studies in Section VII.

VII. SIMULATION RESULTS

In this section we test the ICM algorithm on simulated examples of sensor networks onS = [0, 1]×[0, 1].
We let M = 3 and place the three sensors with known positions at(0.2, 0.2), (0.8, 0.2), and (0.5, 0.8).
TheN −M sensors with unknown position follow the bivariate beta a priori distribution from Example 1
with α = 5. The pdf of this a priori distribution is shown in Figure 1. The rest of the parameters in the
model are varied in each of the examples.

0.0

0.5

1.0

0.0

0.5

1.0
0

2

4

6

Fig. 1. Density of the bivariate beta a priori distribution with α = 5.

For estimation the first problem we need to solve is how to obtain the initial positionsz(0)
M+1, . . . , z

(0)
N

used as a starting point by the ICM Algorithm IV.1. These are obtained by the sum-dist algorithm [20].
In this algorithm a rough estimate of the position of sensori is obtained by finding the shortest path from
sensori to each sensor with known position in the graph of observed distances, where “shortest” refers
to the path having the minimal sum of observed distances. In practice this is done by letting each sensor
with known position send out its identity, position and a path length set to zero. Each sensori receiving
such a message from sensorj adds the observed distance between sensori and j to the path length and
sends a message with this path length to its neighbours, unless it has previously received a shorter path
length in which case it does nothing. Once all sensors with unknown position have received the shortest
path length to each sensor with known position, we estimate the position of sensori by maximizing (6)
using the sensors with known position rather than all the other sensors and the lengths of the minimal
paths instead of the observed distances. Naturally this algorithm yields only very rough estimates, but it
provides a good starting point for the ICM algorithm. Furthermore, we adopt the following convergence
criterion for the ICM algorithm: we say thatz(n)

i has converged and do not update the estimated position
of sensori anymore if the distance‖z(n)

j − z
(n−1)
j ‖ < ε for some prespecifiedε > 0 and forj ∈ {i} ∪ ∂i.

Once all estimated positions have converged, the ICM algorithm terminates. For our examples we use
ε = 0.001.
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The left plot in Figure 2 shows a simulation of a sensor network, where known and unknown positions
and the graph of observed distances are shown. The parameters used here areN = 20, σ2 = 0.004
andR = 0.3 in addition to the parameters mentioned above. In the right plot in Figure 2, the estimates
obtained by the ICM algorithm are shown in addition to the true positions. This illustrates that the ICM
algorithm has provided a reasonable estimate of the positions for this particular example.

Fig. 2. Left: a simulation of a sensor network where small circles indicate known positions, dots indicate unknown positions, and lines
indicate an observed distance. Right: the same simulation,where lines segments indicate the difference between the true positions and the
positions estimated by the ICM algorithm.

To test how well the ICM algorithm performs in general, we compare the AMSE estimated from
a number of simulations with the lower bound given by (13) while varying parameters in the model.
In the first example, we fixN = 20, σ2 = 0.004, and the parameters mentioned at the beginning
of this section, and letR take the values0.05, 0.10, . . . , 0.50. Furthermore, we consider both the case
with first order neighbourhood and the case with second orderneighbourhood. For each value ofR and
both neighbourhoods we estimate the AMSE as the average of the average square error calculated for
500 simulations. This is shown in Figure 3, together with confidence bands estimated as the average
plus/minus two times the standard deviation. The lower bound for the AMSE is also included in the plot,
and since the lower bound is only available in the case of fullobservations (i.e. correspondingR = ∞),
it is constant in this plot. In the plot we can see that for low values ofR the error is much larger than
the lower bound for both cases of neighbourhood orders. Thisis to be expected since for lowR there
are a lot fewer observations than in the case of full observations. On the other hand, for high values ofR
the AMSE for both cases gets very close to the bound, so this indicates that the ICM algorithm performs
well in such cases.

If we compare the two orders of neighbourhoods, the only significant difference occurs atR = 0.01,
and surprisingly the second order neighborhood yields the worst result. One possible explanation for
this is that forR = 0.01 we often get chains of pairs of sensors observing each other;for example,
consider the three sensorsi1, i2, i3 where i2 observes bothi1 and i3, but i1 and i3 do not observe each
other. In this example the estimated positions of sensorsi1 and i3 will tend to be located far away from
each other when we employ second order information, since the sensors have not observed each other.
However, since the probability of observing sensors is low for the values ofR considered here, it is more
likely that the sensors do not observe each other simply by chance. Thus estimation using the second
order neighbourhood often yields a worse estimate than the first order neighbourhood, which treats the
positions ofi1 and i3 as independent given the position ofi2. For R = 0.015, . . . , 0.050, there seems to
be a tendency that the second order information slightly improves the estimate compared to the first order
information, but this tendency is not significant. In short,there is nothing to be gained from including the
second order neighbours into the ICM algorithm for the casesconsidered here.
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Fig. 3. Plot of the AMSE for different values ofR using first order neighbourhood (solid line) and second order neighbourhood (dashed
line) with confidence bands (bars) and theoretical lower bound (dotted line).

In the left plot in Figure 4, we consider the case of full observations, since the lower bound yields a
more useful comparison in this case. Here, we fixσ2 = 0.004 and letN take the values5, 10, . . . , 50.
In the plot both the estimated AMSE and the lower bound decrease asN increases. This illustrates that
the position estimates are substantially improved by adding more sensors, even though the positions of
the new sensors are unknown, since the number of observations are increased. Furthermore, the AMSE
is close to the lower bound for all the values ofN included in the plot, so this indicates that the ICM
algorithm performs well here.

In the right plot in Figure 4, we consider the case of full observations, fix N = 20 and let σ2 =
0.001, 0.002, . . . , 0.010. Both the estimated AMSE and the lower bound increase asσ2 increases. The
estimated AMSE grows a bit faster than the lower bound, but nevertheless it stays fairly close to the
lower bound for the values considered.

10 20 30 40 50

0.
00

0
0.

00
2

0.
00

4
0.

00
6

N

A
M

S
E

0.002 0.006 0.010

0.
00

0
0.

00
2

0.
00

4

σ2

A
M

S
E

Fig. 4. Left: plot of the AMSE for different values ofN (solid line) with confidence bands (bars) and theoretical lower bound (dotted
line). Right: as left, but for different values ofσ2.
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