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Performance analysis of sensor
self-localization algorithms

Martin B. Hansen and Jakob G. Rasmussen

Abstract

In this paper the self-localization problem for sensor roeks is discussed. We suggest to use the configuration
of sensors that has overall maximum probability, given theeovations. In a Bayesian framework this corresponds
to maximum a posteriori (MAP) estimation. However, theraisain reservation concerning this approach: The
computational problem of solving the complex nonlineaiimafation problem seems at first glance to be enormous.
We suggest in the present paper to reduce the computatiordgn by a simple coordinatewise greedy algorithm,
which is nothing else than the successful iterative coodéi modes (ICM) algorithm from spatial statistics and
image analysis. The advantages are that it is 1) distrib@esimple and 3) easy to implement. A theoretical lower
bound on the average mean square error (AMSE) for all locaidim estimators in multihop sensor networks is
presented under suitable regularity conditions on theaepssitions. A simulation study is conducted and it is
shown that the AMSE of the proposed estimator for a varietparimeters is close to the lower bound on the
AMSE.

Index Terms

Mean square error methods, MAP estimation, distance mewmsnts, position measurements, networks.

I. INTRODUCTION

ELF-LOCALIZATION of wireless devices is interesting for aimber of military and civil applica-

ions. The basic problem is to deploy a large number of send@t acquire and process data. In the
situation where the location of the sensors is not availti#ee is an interest in developing methods where
the sensors are localizing themselves based on observdtan their neighbourhood. Furthermore, it is
desirable to distribute the computational burden acrossnétwork and minimize the amount of inter-
sensor communication to avoid congestion problems.

Generally we assume in the present paper a localizatioriggroin which each sensor has available noisy
distance measurements to neighbouring sensors. Thesernemmants can be e.g. time of arrival (TOA) or
received signal strength (RRS) suitably inverted to distameasurements. A straightforward approach to
solving such a localization problem is to minimize the sunthef squares of the differences between inter-
sensor distances and measured distances, leading to aewrikast-squares (NLS) optimization problem
[1], [2]. A more formal and model-based approach is to useimam likelihood (ML) estimators [3],
[4]. We suggest to use the configuration of sensors that hasalbvmaximum probability, given the
observations. In a Bayesian framework this correspondsaximum a posteriori (MAP) estimation.

In general, finding the NLS, ML and MAP estimates of the sereoations all results in complex
nonlinear optimization problems. This motivates a systarstudy of the whole battery of nonlinear-
optimization techniques invented in e.g. image analysitintal control and spatial statistics. Various
methods have been suggested e.g. simulated annealingrfila®ed annealing is tempting as convergence
results can be proved. However, annealing with a theoftiogtimal cooling schedule may work very
slowly, which is in contrast with the desire for fast comgiaiaal schemes. Therefore, in practice faster
cooling schedules like 'zero temperature sampling’ arepgeth These algorithms usually terminate in a
local minimum close to the initial configuration after a feterations. The results depend on the initial
configuration and on the visiting scheme. Despite its olwidtawbacks, it is popular since it is fast and
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easy to implement. Performance of the estimators is oftegsiigated and compared by the average mean
square error [6], [7].

In Section II, we formalize the problem and discuss the signapagation model used in this paper.
Section 1l introduces Bayesian estimation theory as erféal tool and we suggest to use the average
mean square error to evaluate the performance of the estinBgt means of van Trees’ inequality [8], [9]
we are able to derive a lower bound on the AMSE for all estimsatmder suitable regularity conditions
on the sensor positions. To our knowledge results alongethess have been restricted to Cramér-Rao
lower bounds [3]. The Cramér-Rao bound is limited to unddasstimates whereas the estimators are
typically biased in sensor localization problems. Althbutyis can be remedied by analyzing the bias
sensitivity of the position estimates [10, Section 3.5] ecusing on the one-dimensional case [11], our
approach works in general. We suggest in Section IV to usertiinatewise’ maximal descent, which is
common in combinatorial optimization. In the statisticahumunity, it is usually called ICM and credited
to Besag in [12] and the further development in [13] (it waggasted independently by [14]). It was
Green who in the discussion of [13] pointed out the closetimeiato 'zero temperature sampling’ in
simulated annealing. In Section V we treat the case wherngaalvise distances have been measured. An
estimator is suggested and the van Trees lower bound islagddifor a bivariate beta a priori distribution
on the sensor positions. The situation where every sendgrdatects a distance from a subset of the
remaining sensors is treated in Section VI. Simulationltesare reported in Section VIl and it is shown
how the AMSE of the estimator, for realistic parameter sgj comes close to the theoretical lower
bound.

II. MODEL FORMULATION

A. Notation

Assume we have a set @f sensors, labeletl = {1,..., N}, scattered around C R?, each with an
associated location, . .., zy. The positions of the firsd/ sensorsi = {1,..., M}, zx = (21,...,2m)
are known, whereas the positions of the rest of the sensots{M +1,..., N}, zv = (2pm41,- -5 2N)

are unknown.

B. Signal propagation model

For the distance measurements in the model we adopt theaqtpod [15] and [16] in the following
way. Sensori € U obtains a noisy measuremedy} of its distance from sensor € V. We assume in
the present paper a Gaussian measurement model, thgtisN(]|| z; — z; ||, o%)-distributed. We use a
binary random variable;; to indicate whether the distance between sensmd j is observed or not. The
indicatoro;; is assumed to be Bernoulli distributed with a probabilitpeieding on the distance between
sensor; and j, in the following way

Iz — 2 |I?
Py(z1,2)) = exp (—T; . 1)
This model assumes that the probability of detecting neadmsors falls off exponentially with squared
distances. Throughout the paper we will assume the measutenand indicators to be independently
distributed.

C. A Bayesian hierarchical model

In reality the measured distancés andd;; may be different, and it is even possible to haye# o;;.
It will later be a convenient assumption to assuie= d;;, but the set-up is easily generalized to the
non-symmetric case at the cost of additional computatidtmseover, we assume the vector of unknown



nodes is anV — M-dimensional random vector with a priori probability degpdunction p. Hence, the
model is naturally formulated as a Bayesian hierarchicatlehl7],

U ~ P
Oij’ziazj ~iid bin(LPo(Zi,Zj)), 1€ U,l S] <1
dij’ZiaZj ~iid N(HZZ'—ZJ‘ H,O’2), ZGU,].S]<Z
Now the set ofobserved/availablelistancesd = {d;;|o;; = 1} is a random variable taking values in

UL_ R", whereR® = ) and L = (N — M)(N + M — 1)/2. The latter number is easily obtained by
induction.

[1l. STATISTICAL INFERENCE

We will in this section approach the inferential problem bgyBsian estimation theory. This is a huge
area and a total review is out of scope of the present paperefee to e.g. [18] for a comprehensive
treatment.

A. Position estimates

There are many ways to pick & which represents the true configuration of positions, i.kictv is
in proper balance between the a priori expectation and theditfido the data. By Bayes theorem the a
posteriori distribution of the sensor localization givér tmeasurements can be expressed by

p(zu|d) o<z, p(dlzu)p(2v),

where f(z,y) x, g(z,y) means there exists a consta(y) such thatf(z,y) = c(y)g(z,y).
One possible rule is to choosezg which is most favourable fop(zy|d), i.e. to maximize the a
posteriori distribution. Henceforth, we defidg to be the maximum a posteriori estimatezpf givend.

B. Performance of the estimator

In Bayesian estimation theory estimators are studied mgef loss functions. The “loss” of estimating a
true zy by Zy or the “distance” betwees, andz; is measured by a loss functidn(zy, 2;). The choice
of L is problem specific. In accordance with previous literatifif} [7] on the subject we choose the
average square error loss function

. 1 .
L(zy, 3y) = " Z | 2 — 2us ||%
ieU

The Bayes risk of the estimatdy; is the mean loss or in our context the AMSE

1 A
AMSE = ——— Z E.Eq.|| 2v(d) — 20, ||?
€U
1 -, A
= N Z; E.Ey. ((2ui(d) — 20.4)® + Gui(d) — yus)?) -

HereE,. denotes expectation with respect to possible realizabbuisita given positions of the sensors
and E. denotes expectation with respect to the a priori distrdsutdf the sensor positions. A natural
estimator to choose is the one which minimizes this risk.al be proved that the Bayes estimator for
the average square error loss function is the expected nfetlre @ posteriori distribution. It turns out,
however, that it is possible to make a distributed algoritoncalculate this estimator, but the method is
quite computer intensive, see [19]. We therefore studyousriapproximations of the MAP in more detail
and show by simulation that they work quite well accordinghe lower bound on the AMSE.



The Cramér-Rao lower bound has turned out be a popular ntearsracterize uncertainty of position
estimates. As noted by [3], this approach is questionablth@sCramér-Rao bound only holds if the
estimator is unbiased, whereas most estimators in genedaltree maximum likelihood estimator for
localization in particular are biased.

Here we show that a Bayesian version of the Cramér-Rao bduado van Trees [8] remedies some
of the problems and directly provides a lower bound on the AM& any estimatog,,. First we should
note that van Trees’ inequality is derived under suitabjgila@ity conditions on the functiongd|z;;) and
p(zv), see [9, Section 4] and references therein for details. & hather technical conditions can easily
be verified for the situations we are considering in the prepaper and are left for the interested reader.
Then define the expected Fisher information matrix for thsitmm parameter and a priori distribution

9?log p(d|zv) >
Ty, yU)Ta(xU» yU)

0” log p(zv) )
I(p)=—-E, .
) (8($U, yu)TO(zu, yu)
Finally, van Trees’ inequality [8, page 84] yields

I(z) = —Eq. ( 7

and

AMSE > — ! 77 (B (z) +1I(p))~". 2)

This is similar to the Cramér-Rao lower bound but does ngtire that the estimator is unbiased, as long
as we put a suitable a priori distribution on the sensor st

IV. THEICM ALGORITHM

As indicated in Section | there exists a wealth of methods @gpr@imate the MAP estimate, but
we choose in this paper to focus on the ICM algorithm, whichs waroduced in Section | as the
'coordinatewise’ steepest descent algorithm. Specifickdl eachi € U choose the localization of sensor
1 to be the maximizer of the marginal a posteriori distribatio

p(zil 2@y, d) o<z, p(d]zi, 2@y, A)p(2i| 20\ gay) - (3)

This method has a computational advantage if both termsefitht-hand side have local dependence
properties. This will indeed be the case for the models thtced below. The ICM scheme is iterated
until sufficiently converged. The sensors will be visited@tling to some visiting scheme, i.e. a sequence
(Un)n>1 Of nonempty subsets df. The visiting scheme has to covér again and again and therefore
we require
(k)
v= |J U, foreveryk>1 (4)
j=7(k—1)+1

for some increasing sequencék), k& > 1, of times. Finally, we set(0) = 0. Such a visiting scheme
could be either deterministic or stochastic. In the prepaper we simply for convenience use sequential
visiting, but in reality the network should use some sort séydo-random visiting scheme to avoid
complicated clock-synchronisation problems.

In the literature several suggestions have been proposechtsing the initial configuration of the
ICM scheme. In the present paper we choose the sum-distitalgof20], which is a simple solution for
determining the distance to the sensors with known postlmnadding the ranges encountered at each
hop during a initial network broadcast. For more detailg Section VII. The ICM algorithm for sensor
self-localization is schematically given in Algorithm I\.

Finally we note that

p(zu|d) = p(zi| 2\ gy d)p(2\ iy | d),



Algorithm V.1 ICM for sensor self-localization

INITIALIZE z((jo) by the sum-dist algorithm (see Section VII)

n:=0
REPEAT
FORi € U,{
2" = argmax., p <d\2’z‘, Z\(/n\){i}) p (Zl|z\(/n\){l}>
2D = ()
n=n+1

UNTIL sufficiently converged (see Section VII)

SO by (3)p(2§,”)|d) never decreases. It is our experience that convergencehdb must therefore at least
be a local minimum op(zy|d), seems extremely rapid, with few changes after the 10tlrecgele Section
VII.

V. FULL OBSERVATIONS

First we consider the situation where = 1, i.e. each sensor detects a distance measurement from
every other sensor, called the full observations case. tth@se circumstances, by Bayes theorem, the a
posteriori distribution is given by

p(zuld) o<y pldlzv)p(zv)

o ( 1 exp(_(dw—n;;zjn)))xpm )

ieu1<j<i \? 2

whereby the marginal a posteriori pdf, to be plugged intol@®& Algorithm V.1, is given by
p<zi|2V\{i}u d)

1 (i =z =z 1) o
X, H exp 5 X p (Zz’ZV\{z}) ) (6)
. L \oV2r 20
JjeV\{i}
Although locally specified point processes can be a powerfodlelling tool, we shall only consider a
simple example here.

Example 1 (Binomial point processlet p be a probability density function (pdf) afi ¢ R?. A point
process ofn iid points with pdfp is called a binomial point process ofpoints in .S with pdf p. If we
assumezy is a binomial point process oV — M points with pdfp, we get the following simultaneous

pdf for z;
p(av) = Hp(zz')~
icU
In this case we get the following plug-in for the ICM AlgonithlV.1
P (zilzv\y) = p(2:)-

This expression in turn obviously only involves a local cartgtion. Hence, running the ICM algorithm
is straightforward.



To derive a van Trees lower bound on the AMSE, form thi&e— M) x (N — M) matrices! (zy ).,
I(zy)sy and I(zy),, (see also [3, (7)]) with elements

(zi—axp)? (@—zi)? -
I(z0)ea)y; = {ZfEK 155" + 2 ke\() oo L=
TT]ij 0-2 T;—T; Z# )
||ZT Zj ”2 J
e TR Dy SR =
[I(ZU>xy]ij - ﬁ (@i (yi—y;) i 7& ;
[ ZJ H2
) .
[[( ) ] - ZkeK H zk ||2 + Zk:eU\{z} ”21 Zk Tzi—zr 2 1=
Uyl 2 (yi—y;)? T
7 TP oy

Next, we form the2(N — M) x 2(N — M) expected Fisher information matrix for the position partene

_ H(20)ae 1(20)ay
I(z0) = L—(ZU):E@/ [(ZU)yJ ' %

In accordance with previous simulation studies we now asdim@ sensors to be distributed within a square

areaS = [0,1] x [0,1], (e.g. [4], [6] and [7]). A natural and quite flexible class afpriori distributions

on S is bivariate beta distributions, see [21, Chapter 49] foroadyreview. Although we could develop

our methods for these general classes of distributionspwedse of exposition assume that the positions

of the N — M sensors with unknown positions follow a bivariate betardiation with density

_ F(a)4 a—1 a—1
£(5) = Frgap @) (=) (1= )
for z; € S anda > 0, i.e. all coordinates are mutually independent and idefyidistributed as well as
symmetrically distributed arountl/2. By varying « we can get a uniform distribution of positions with
a =1, a “bell-shaped” pdf byx > 1 and a “well-shaped” pdf byx < 1. It is now easy to show that the
following expectations exist and by symmetry we have

(2 — 1)
E -t % 1/2
R
E (zi — o) (yi — yr) - 0
N b
for all i,k € U. If we let X andY denote two independent and Bgtax)-distributed random variables,
we also have
-1
(z; — $k>2 Y —yy ?
= E,—" _=E 1 8
Mk 1z =2 | xy | L+ X — 1, (8)
(wi — o) (yi — i) X—a, Y=y \
= E, =E 9
Ck 12— 2 |2 XY Y—ykJrX—xk 9)

forall : € U andk € K. The mean values in (8) and (9) are easily calculated by nigaientegration.
Now, letn = >, m and( = >, x G, then we obtain

N-—-M 1
EzI<ZU):cy = CI, (11)
where I denotes thg N — M) x (N — M) identity matrix andH is the (N — M) x M) matrix

of all ones. AsSE.I(zy),, = E.I1(20)z andE.I(zy)ye = E.1(20)4y, the matrixEZI(zU) can easily be



constructed by use of (7). The expected Fisher informatiatrimifor the a priori distribution is now
derived fora > 2 in the following way

2 1 T 2
—Eza— logp(zy) = 2(a— 1)/ (c) (1 —2)* tda
0

022 T(2a)
B (a—1)(a—2)
N 200 — 1
0? ) )
-E, D0, logp(zy) = 0,i#
82
— ] - 0.
E, o og p(zv) 0
Hence,
I O
=¢|f 9| 12)

where¢ = w and O is the(N — M) x (N — M) zero matrix. Inserting (10), (11) and (12) into

2c
(2), we obtain

-1

N-M 1
AMSE > —+ |0+ 555+ T —3H I

" N-M ¢I (n+254 4 &)1 —L1H (13)

V1. PARTIAL OBSERVATIONS

Now consider the situation where every sensor only detedistance from a subset of the remaining
sensors, modelled by the probabiliy discussed in Section II-B. We call this the partial obseoret case
as opposed to the previous full observations case. We bplipartial observations case into two separate
situations. First, we consider the situation where the @msnare able to broadcast distance information
throughout the entire network, called full information éa&hle, see Section VI-A. Second, we consider a
case where we only obtain position information from therder neighbours, see Section VI-B. Although
the van Trees lower bound derived in Example 1 strictly spepknly applies to the full observations
case, we also expect it to hold for estimators in the partigleovations case, since estimation in the full
observations case is expected to perform better than thielpaivservations case. Hence we compare the
estimators in the partial observation case with van Treasquality for the full observations case, see
Section VII.

A. Full information available
In this case the a posteriori distribution is given by

p(avld) oy pldlzu)p(zu)

— 1T K exp (—( g H; 5 Z1ll ) Po(zz',zj))
i€U1<j<i 2mo g

x (1= Po(2i,2))) "] % plzv). (14)
Define a random set C V' x V' in the following way:

e;; € E if and only if o;; = 1.

The tupleG = (V, E) induces an undirected random graph with vertitesind edges?. For a graph
G = (V, E), we define for eacli € V' the set ofk-order neighbours of as

8f:{j€V\{i}:il,...,ilEV,eiil,...,eiljGE,1§Z<I<:}.



Note thatd” is a random variable with values " \{?}, the set of all subsets df \ {i}. It is now
convenient to formulate the marginal a posteriori dens@tyhe plugged into the ICM Algorithm V.1, in
the following way

p(zilav\py, d) = p(Zilzailv(dij>j68i1>ZV\(agu{i})aail)

<~ I ( L e (_(dz‘j - H;Q— Zj H)2> Po(zi,zj)>

- 2o
JEO;

X H (1 = Po(zi,2)) x p(zil 2\ 3p)-
FeV\(9ru{i})

B. Information available fronk-order neighbours, including non-local information

Inspired by the approach in Sections V and VI-A, we now suggesatively to maximize the following
marginal a posteriori pdf, based on available local infdraraonly (i.e. information passed on frofk

order neighbours)

p <Zi|zafa (dij)jeaéﬁazk) Xz P ((dij)jeaﬂzivzafaaf) b <Zl728faazk)

1 dl— Zi — 25 2
B g ey @O EE T

S oV2T
JEO;

K
) /Rw\(afumn Pz 2op, 2, 07)dz

= H 5 exp (_( J HQZ . z ) >
o\V2m o
JEOF

X ak 19 ) (2l ) dz.

/RZV\(Bfu{i}ﬂp< AF: <ok z)p(z 2ok z)dz

By using the Bernoulli structure of the included edges inrdr@om graph specified b¥,, we arrive at
p (Zifza;c, (dij)jcor, Qk)

< I < L (_(dz‘j - H;Q— % H)2> Po(zi,zj)>

S \ov2m
JEO;

X /sz\m}uagv) H (1 = Po(2, 2))p(2i, 298, 2)d. (15)
JEVA©@FULi})
If we assume an inhomogeneous binomial point process asoa grstribution, we get the following
simplification

p (Zi|zafa (dij) jeor, 5’5)

< 1] ( L (_ (dij — H;;Q— % H)Q) Po(zi,zj)>

oV 2w
jeor

IVA\@FU{})
) X p(z;). (16)

x ( JRCETACEIETE



We should here note that the integral in (16) in most casesdbe calculated by numerical integration
for each and every step in the ICM algorithm. Hence, it seemshwhile to iteratively use the following
approximation in the ICM algorithm:

p (Zi"zafa (dij)jeafv @k)
1 (dig — |1z — 2 ||)?
o T (e (-2 20 pesy ) st a7)

jeor

This is indeed the approximation we use in our simulatiomlistiin Section VII.

VII. SIMULATION RESULTS

In this section we test the ICM algorithm on simulated exasplf sensor networks dgh= [0, 1] x [0, 1].
We let M = 3 and place the three sensors with known positionfa, 0.2), (0.8,0.2), and (0.5,0.8).
The N — M sensors with unknown position follow the bivariate beta iarpdistribution from Example 1
with o = 5. The pdf of this a priori distribution is shown in Figure 1.&hest of the parameters in the
model are varied in each of the examples.

Fig. 1. Density of the bivariate beta a priori distributionittwa = 5.

For estimation the first problem we need to solve is how toinktse initial posmonSZZ(w)H, . (0)
used as a starting point by the ICM Algorithm IV.1. These apéamed by the sum-dist algorlthm [20]
In this algorithm a rough estimate of the position of sensgrobtained by finding the shortest path from
sensor; to each sensor with known position in the graph of observethdces, where “shortest” refers
to the path having the minimal sum of observed distancesrdatige this is done by letting each sensor
with known position send out its identity, position and alpkength set to zero. Each sensaieceiving
such a message from sengoadds the observed distance between senhsmd ; to the path length and
sends a message with this path length to its neighboursssrtldas previously received a shorter path
length in which case it does nothing. Once all sensors witnawn position have received the shortest
path length to each sensor with known position, we estinmtegepbsition of sensor by maximizing (6)
using the sensors with known position rather than all theerotfensors and the lengths of the minimal
paths instead of the observed distances. Naturally thisritthgn yields only very rough estimates, but it
provides a good starting point for the ICM algorithm. Furthere, we adopt the following convergence
criterion for the ICM algorithm: we say thaﬁ”) has converged and do not update the estimated position
of sensori anymore if the dlstancﬁz(”) for some prespecified > 0 and forj € {i} U 0i.
Once all estimated positions have converged, the ICM algoriterminates. For our examples we use
e = 0.001.
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The left plot in Figure 2 shows a simulation of a sensor neltwathere known and unknown positions
and the graph of observed distances are shown. The parameted here ar&V = 20, 0> = 0.004
and R = 0.3 in addition to the parameters mentioned above. In the rigfttip Figure 2, the estimates
obtained by the ICM algorithm are shown in addition to theetpositions. This illustrates that the ICM
algorithm has provided a reasonable estimate of the paosifior this particular example.

o D
J Y
/\. N
« \'\ ~
- e
/.
J
o (e}

Fig. 2. Left: a simulation of a sensor network where smaltles indicate known positions, dots indicate unknown pas#, and lines
indicate an observed distance. Right: the same simulatibere lines segments indicate the difference between tigepositions and the
positions estimated by the ICM algorithm.

To test how well the ICM algorithm performs in general, we game the AMSE estimated from
a number of simulations with the lower bound given by (13) leshiarying parameters in the model.
In the first example, we fixN = 20, 02 = 0.004, and the parameters mentioned at the beginning
of this section, and leR? take the value$.05,0.10,...,0.50. Furthermore, we consider both the case
with first order neighbourhood and the case with second andegghbourhood. For each value ffand
both neighbourhoods we estimate the AMSE as the averageechwbrage square error calculated for
500 simulations. This is shown in Figure 3, together with foence bands estimated as the average
plus/minus two times the standard deviation. The lower kddian the AMSE is also included in the plot,
and since the lower bound is only available in the case ofdb#iervations (i.e. correspondirdg)= c0),
it is constant in this plot. In the plot we can see that for loalues of R the error is much larger than
the lower bound for both cases of neighbourhood orders. iBhie be expected since for lo there
are a lot fewer observations than in the case of full obsemat On the other hand, for high values ®f
the AMSE for both cases gets very close to the bound, so tHisates that the ICM algorithm performs
well in such cases.

If we compare the two orders of neighbourhoods, the onlyiogmt difference occurs ak = 0.01,
and surprisingly the second order neighborhood yields tbestwesult. One possible explanation for
this is that forR = 0.01 we often get chains of pairs of sensors observing each oftberexample,
consider the three sensarsi,, i3 wherei, observes both; andis, buti; andi; do not observe each
other. In this example the estimated positions of sensoandi; will tend to be located far away from
each other when we employ second order information, sineesémsors have not observed each other.
However, since the probability of observing sensors is lontlie values of? considered here, it is more
likely that the sensors do not observe each other simply layah Thus estimation using the second
order neighbourhood often yields a worse estimate than teedider neighbourhood, which treats the
positions ofi; andiz as independent given the position#gf For R = 0.015,...,0.050, there seems to
be a tendency that the second order information slightlyrawgs the estimate compared to the first order
information, but this tendency is not significant. In shtnere is nothing to be gained from including the
second order neighbours into the ICM algorithm for the casesidered here.
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Fig. 3. Plot of the AMSE for different values @t using first order neighbourhood (solid line) and second onggghbourhood (dashed
line) with confidence bands (bars) and theoretical lowemblofdotted line).

In the left plot in Figure 4, we consider the case of full obaépns, since the lower bound yields a
more useful comparison in this case. Here, wedfix= 0.004 and let N take the value$, 10, ..., 50.

In the plot both the estimated AMSE and the lower bound deseres/N increases. This illustrates that
the position estimates are substantially improved by ayldiore sensors, even though the positions of
the new sensors are unknown, since the number of obsersai@nincreased. Furthermore, the AMSE
is close to the lower bound for all the values &fincluded in the plot, so this indicates that the ICM
algorithm performs well here.

In the right plot in Figure 4, we consider the case of full abaéons, fix N = 20 and leto? =
0.001,0.002, ...,0.010. Both the estimated AMSE and the lower bound increase?aBicreases. The
estimated AMSE grows a bit faster than the lower bound, buenmleeless it stays fairly close to the
lower bound for the values considered.
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Fig. 4. Left: plot of the AMSE for different values aV (solid line) with confidence bands (bars) and theoreticalelobound (dotted
line). Right: as left, but for different values of>.
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