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Abstract

Typically, control systems are designed with little or no consideration for possible changes
in the structure of the system process to be controlled. In classic control design, a mono-
lithic approach is taken where structural changes in the system process require the de-
velopment of a new mathematical model of the system and a subsequent redesign of the
control system. This process can be expensive and time consuming. Therefore, an at-
tractive alternative is to design the control system such that it automatically recon�gures
whenever structural changes occur. This is the aim of thePlug & Play Process Control
research program, which the work presented here is a part of.

An industrial case study involving a large-scale hydraulicnetwork with non-linear
dynamics is studied. The hydraulic network underlies a district heating system, which
provides heating water to a number of end-users in a city district. The case study considers
a novel approach to the design of district heating systems inwhich the diameter of the
pipes used in the system is reduced in order to reduce the heatlosses in the system, thereby
making it pro�table to provide district heating to areas with low energy demands. The
new structure has the additional bene�t that structural changes such as the addition or
removal of end-users are easily implementable. In this work, the problem of controlling
the pressure drop at the end-users to a constant reference value is considered. This is
done by the use of pumps located both at the end-users and at designated places across
the network.

The control architecture which is used consists of a set of decentralized linear control
actions. The control actions use only the measurements obtained locally at each end-user.
Both proportional and proportional-integral control actions are considered. Some of the
work considers control actions which are constrained to non-negative values only. This
is due to the fact that the actuators in this type of system typically consist of centrifugal
pumps which are only able to deliver non-negative actuation. Other parts of the work con-
sider control actions which have been quantized. That is, they are restricted to piecewise
constant signals taking value in a bounded set. This is done in order to facilitate sending
the control signals across a �nite bandwidth communicationnetwork. This is necessary
since the actuators in the system are geographically separated from the logic circuitry
implementing the control actions.

The results presented here consist of a series of global stability results of the closed-
loop system using the control actions described above. The stability analysis is compli-
cated by the non-linearities present in the system process.Speci�cally, global practical
output regulation can be shown when using proportional control actions, while global
asymptotical output regulation can be shown when using proportional-integral control
actions. Since the results are global in the state space, it is concluded that the closed-loop
system maintains its stability properties when structuralchanges are implemented.
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Synopsis

Kontrol systemer bliver typisk designet med f	a eller ingenhensyn til mulige strukturelle
ændringer i system processen der skal reguleres. I klassiskkontrol design anvendes en
monolitisk tilgang, hvor strukturelle ændringer i system processen kræver udvikling af
en ny matematisk model af systemet med efterfølgende re-design af kontrol systemet.
Denne proces kan være bekostelig og tidskrævende. Et attraktivt alternativ er derfor at
designe kontrol systemet s	aledes at det automatisk re-kon�gurerer n	ar strukturelle æn-
dringer forekommer. Dette er m	alsætningen forPlug & Play Process Controlforskn-
ingsprojektet, som dette værk er en del af.

Arbejdet omhandler et case study fra industrien, som involverer et stor-skala hy-
draulisk netværk med ulineær dynamik. Det hydrauliske netværk udgør et fjernvarmesys-
tem, som forsyner et antal slutbrugere i et bydistrikt med varmt vand. Der tages udgangs-
punkt i en ny tilgang til design af fjernvarmesystemer, hvordiameteren af de rør der
anvendes i systemet reduceres for at reducere varmetabene isystemet, og derved gøre
det rentabelt at tilbyde fjernvarme i omr	ader med lavt energibehov. Det nye design har
ydermere den fordel at strukturelle ændringer i systemet, s	asom tilføjelse eller fjernelse
af slutbrugere, er nemme at implementere. Dette værk omhandler kontrol opgaven i sys-
temet, som er at regulere trykfaldet hos slutbrugerne til enkonstant reference. Til dette
anvendes pumper placeret b	ade hos slutbrugerne og udvalgte steder i netværket.

Den anvendte kontrol arkitektur best	ar af et sæt af decentraliserede lineære kontrol
virkninger. Kontrol virkningerne gør kun brug af signaler,som er m	alt lokalt hos den
enkelte slutbruger. B	ade proportionale og proportional-integrale kontrol virkninger bliv-
er undersøgt. Dele af værket omhandler kontrol virkninger som er begrænset til ikke-
negative værdier. Dette skyldes at aktuatorerne i denne type systemer typisk best	ar af
centrifugal pumper, som kun er i stand til at levere ikke-negativ aktivering. Andre dele af
værket omhandler kvantiserede kontrol virkninger, hvilket vil sige kontrol virkninger som
er begrænset til at antage stykvis konstante værdier fra en begrænset mængde. Dette er for
at muliggøre afsendelsen af kontrol signalerne over et kommunikationsnetværk med be-
grænset b	andbredde. Dette er nødvendigt da aktuatorerne isystemet er geogra�sk adskilt
fra elektronikken, som beregner kontrol signalerne.

Værkets resultater best	ar af en række globale stabilitetsresultater fra lukket-sløjfe
systemet med de føromtalte kontrol virkninger. Stabilitets analysen kompliceres af de
ulineariteter som er til stede i system processen. Mere speci�kt kan global praktisk output
regulering bevises n	ar der anvendes proportional kontrol, mens global asymptotisk output
regulering kan bevises n	ar der anvendes proportional-integral kontrol. Da resultaterne er
globale i tilstandsrummet, kan det konkluderes at lukket-sløjfe systemet beholder sine
stabilitetsegenskaber n	ar strukturelle ændringer bliver implementeret.
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Nomenclature

R The set of real numbers
R+ The set of positive real numbers
Z The set of integers
Z+ The set of positive integers
Rn Then-dimensional Euclidean space
x i Thei th component of the vectorx
hx; yi The scalar product between vectorsx andy
jaj The absolute value of the scalara
jjxjj The Euclidean norm of the vectorx

B r (x)
The open ball of radiusr centred inx, that is
B r (x) = f y 2 Rn j jj y � xjj < r g

M (n; m; R)
The set ofn-by-m matrices with real entries,
alsoM (n; R) = M (n; n; R)

AT The transpose of the matrixA
A ij The entry in thei th row andj th column of the matrixA
A > 0 The matrixA is positive de�nite, that isxT Ax > 0 for everyx 6= 0
X c The complement of the setX
X � Y The setX is a proper subset of the setY
X � Y The Cartesian product between the setsX andY
d(X; Y ) The Hausdorff metric between the setsX andY
d
dt

x = _x The time derivative of variablex

! Mapping from a domain into a range, but also ”tends to”

C1 The set of continuously differentiable functions, also a map f (�)
will be said to beC1 if f (�) 2 C1

r f (�) The gradient of the functionf (�)
Df (�) The Jacobian matrix of the mapf (�)

A continuous functionf : R ! R is said to be monotonically increasing if it is natural
order preserving,i.e., for all a andbsuch thata < b thenf (a) < f (b).
A continuous mapf : X ! Y is said to be:
aninjectionif it is into, i.e., for everyx; y 2 X , if f (x) = f (y) thenx = y
a surjectionif it is onto, i.e., if for everyy 2 Y there exists at least onex 2 X such that
f (x) = y
a bijectionif it is both aninjectionand asurjection
a homeomorphismif it is a bijectionwith a continuous inversef � 1

properif the inverse image of a compact set is compact
monotonically increasingif X � Rn , Y � Rn andhx � y; f (x) � f (y)i > 0.
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1 Introduction

The work presented here regards stability analysis of a feedback control system, in which
a set of linear decentralized event-based controllers are used for output regulation of a
large-scale non-linear system process.

The system process represents an industrial case study which involves a novel paradigm
for the design of district heating systems (see [Kallesøe, 2007, Bruus et al., 2004]). The
new paradigm is motivated by the assessment that a reductionin the diameter of the pipes
used in the system can lead to a reduction in the heat loss in the system of up to 50 %,
thereby making it pro�table to offer district heating to areas with low demand.

Furthermore, by introducing a multi-pump architecture, the structure of the district
heating system becomes more �exible as end-users can be added to or removed from the
system online. The system will be described in detail later.

The case study has been proposed by one of the industrial partners in the research
programPlug & Play Process Control[Stoustrup, 2009, Stoustrup, 2006]. The research
program focus on a novel concept for process control where the control system automati-
cally recon�gures when an intelligent sensor or actuator isadded to or removed from the
system.

1.1 Motivation

Powerful tools exist to design feedback control for a systemwith known structure, espe-
cially for linear systems where [Franklin et al., 2002] and [Franklin et al., 1998] comes
to mind. However, they come in short if the structure of the system to be controlled for
some reason is required to change over time. Depending on thecomplexity and nature of
the system this might require the mathematical model describing the system behaviour to
be changed and a new feedback controller to be designed.

Typically, control systems are designed without much care for possible future changes
in the structure of the system being controlled. Changes in system structure alter the way
that the closed-loop system performs regarding its controltask and can result in subopti-
mal or unwanted behaviour. An off-the-shelf solution to thecontrol problem would be to
construct a new model of the system, which can be time consuming. Another way is to let
the structure of the controller change automatically whenever changes in the system are
detected. The latter is the aim of thePlug and Play Process Controlresearch program.
ThePlug and Play Process Controlresearch program aims at providing general theories
for designing and analysing the stability of feedback controllers for systems with varying
structure. For instance, take the following example of sucha system, taken from the web
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page of the research program [Stoustrup, 2006]:

“Imagine a farmer observing some region in his stable, wherethe pigs are
not comfortable. He plugs a new intelli-sensor in a vacant socket in that
part of the stable. The stable ventilation system automatically registers the
new component and in response recon�gures itself in order tostabilize the
indoor climate in the proximity of this sensor, leading to animal comfort and
increased productivity.”

Five companies participate in thePlug and Play Process Controlresearch program; Dan-
foss, Grundfos, Skov, DONG Energy and FLSmidth Automation,each providing one or
more case studies. The work is divided into a number of work packages, the contents of
which will be described brie�y in the following.

WP1: Integration of hardware, networks, and protocols for � exible control systems.
This work package deals with the communication network needed for a plug and
play control system. This includes recon�guration of the communication topology
whenever new devices such as sensors or actuators are introduced to the system.
Literature on the work from the work package includes [Meybodi et al., 2011b],
[Meybodi et al., 2011a] and [Meybodi et al., 2012].

WP2: Correlation based sensor/actuator awareness.This work package deals with
identifying the nature of a newly attached component, whether it be a sensor or
an actuator. That is, given a new component identify the system state/variables it
affects/measures and update the system model accordingly.Both black and white
box models are considered depending on the situation. Literature from the work
package includes [Knudsen, 2009a], [Knudsen, 2009b], [Knudsen and Trangbæk,
2008], [Bendtsen et al., 2008] and [Knudsen et al., 2012].

WP3: Structurally based recon�guration. The work package deals with automatically
recon�guring an existing controller whenever structural changes, such as the addi-
tion/removal of sensors or actuators, are introduced in thesystem being controlled.
Literature on the work from this work package includes [Stoustrup et al., 2009],
[Trangbæk, 2009], [Trangbæk et al., 2009], [Trangbæk et al., 2008], [Trangbæk
and Bendtsen, 2009], [Trangbæk and Bendtsen, 2010], [Bendtsen et al., 2011],
[Trangbæk, 2010b] and [Trangbæk, 2010a].

WP4: Model-based control performance optimization through �exible sensor/actu-
ator con�guration. This work package deals with model based control and per-
formance of the control when introducing structural changes. When new compo-
nents are introduced, the control algorithms are changed toachieve optimal per-
formance. Literature from the work package includes [Michelsen et al., 2008],
[Michelsen et al., 2009], [Michelsen and Trangbæk, 2009] and [Michelsen and
Stoustrup, 2010].

WP5: Survivability and performance measures. This work package deals with the
evaluation of the available sensors/actuators with the aimof achieving the opti-
mal performance of the system. Literature from the work package includes [Kra-
gelund, 2010], [Kragelund et al., 2008], [Kragelund et al.,2010b], [Kragelund
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1 Motivation

et al., 2009a], [Kragelund et al., 2011], [Kragelund et al.,2009b], [Kragelund et al.,
2010d], [Kragelund et al., 2010a] and [Kragelund et al., 2010c].

WP6: Decentralized event-based networked non-linear control for Plug-and-Play Pro-
cess Control.This work package deals with decentralized and event-basedcontrol
of large-scale systems subject to structural changes such as the addition/removal
of sensors or actuators. Literature from the work package includes [DePersis and
Kallesøe, 2008], [DePersis and Kallesøe, 2009a], [DePersis and Kallesøe, 2009b]
and [DePersis and Kallesøe, 2011]. Furthermore, the work presented here is a part
of the work package.

Since this work is focused on one of the case studies in thePlug and Play Process Control
research program, the motivation for the case study will be introduced in the following.

As previously mentioned the case study involves a new paradigm for the design of
district heating systems. Traditionally, district heating systems are designed to have few
pump stations, with the hydraulic dynamics between pump stations decoupled using heat
exchangers. This has the advantage that it is easy to maintain and supervise pumps in the
system, and control is easy since the dynamics are decoupled. However, since there are
few pumps in the system, pipes with large diameter, and thus small pressure gradients,
are needed. Furthermore, the structure of the overall system is in�exible and designing a
system which can handle expansions can be expensive [Kallesøe, 2007]. An example of
the network structure for a traditional district heating system is illustrated in Fig. 1.1. As
it is evident from the �gure, pumps are separated by heat exchangers.
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Figure 1.1: Example of the structure of a traditional district heating system [Kallesøe,
2007].

On the other hand, by reducing the diameter of the pipes used in the system, the heat
losses, due to heat dispersion from the pipes, can be reduced. However, the pressure
gradients of the pipes are increased with the risk of violating pressure constraints of the
pipes. This issue can be overcome by placing so-called pressure boosting pumps along the
pipeline. This has the additional bene�t that the structureof the system becomes more
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�exible in the sense that end-users can easily be added to or removed from the system
[Kallesøe, 2007]. The added �exibility calls for a control architecture which is able to
handle structural changes in the system while the system is kept online. An example of
the network structure for the novel district heating systemparadigm is illustrated in Fig.
1.2. As can be seen in the �gure multiple pumps can be found on the same pipeline.
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Figure 1.2: Example of the structure of a district heating system in the novel design
paradigm [Kallesøe, 2007].

1.2 State of the Art and Background

Work on control problems involving �uid �ow networks can roughly be separated into
two categories; works involving open networks with no cycles and works involving closed
networks with cycles.

Examples of open networks include irrigation networks as considered in [Cantoni
et al., 2007]. Here the problem of minimizing distribution losses due to oversupply is
considered. Another example is considered in [Polycarpou et al., 2002] and [Wang et al.,
2006], where the problem of controlling the water quality indrinking water distribution
networks using disinfectants is considered. A �nal exampleis [Marinaki, 1999] and [Wan
and Lemmon, 2007] where �ow control in sewer networks is considered. Common for
these networks is the presence of capacitive elements whichis not present in the district
heating system. Furthermore, the district heating system constitutes a closed network.

Examples of closed networks include mine ventilation networks which are considered
in [Hu et al., 2003]. Here non-linear model based feedback control of the air quality in
mines is considered. This work is extended in [Koroleva et al., 2006], where decentralized
feedback control of more general �uid �ow networks is considered. The dynamics of
these networks are closely related to the dynamics of the district heating system.

However, in the case of the district heating system, it is desired to use a set of simple
decentralized linear control actions for the purpose of output regulation. Results on the
problem of feedback control of the district heating system considered here have appeared
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in [DePersis and Kallesøe, 2008], [DePersis and Kallesøe, 2009a] and [DePersis and
Kallesøe, 2009b]. These results have been collected in the recent paper [DePersis and
Kallesøe, 2011], in which also the mathematical model, which describes the behaviour of
the system, can be found. Before outlining the results obtained in these works, the model
along with the control problem will be stated.

The system under consideration is a hydraulic network comprising a district heating
system. Figure 1.3 illustrates a small district heating system with two apartment build-
ings which constitutes the end-users. Figure 1.4 shows the underlying hydraulic network
diagram.
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Figure 1.3: A sketch of a small district heating system.
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Figure 1.4: The hydraulic network diagram.

In the following the mathematical model of the hydraulic network will be described
along with the presentation of the output regulation problem and the proposed strategy

5



Introduction

for control and dealing with the structural changes which may occur in the system.

System Model

The hydraulic network consists of a number of connections between two-terminal com-
ponents, which are: valves, pipes and pumps. Thekth system component is characterized
by dual variables, the �rst of which is the pressure drop� hk across it

� hk = hi � hj ; (1.1)

wherei; j are nodes in the network;hi ; hj are the relative pressures at the nodes.
The second variable characterizing the component is the �uid �ow qk through it. The

components have algebraic or dynamic expressions governing the relationships between
the two variables. The stability analysis presented in thisthesis relies on the system
model derived in [DePersis and Kallesøe, 2011], which reposes on the assumption that
the �uid in the system is incompressible and that pipe diameter is constant along a pipe.
For additional details on the modelling of the system, the interested reader is referred to
[DePersis and Kallesøe, 2011].

Valves

The behaviour of valves in the network is governed by the following algebraic expression

hi � hj = � k (qk ) � � k (vk ; qk ); (1.2)

wherevk is the hydraulic resistance of the valve;� k (�) is aC1 and proper function, which
for any �xed value ofvk is zero atqk = 0 , monotonically increasing and� k (vk ; �) = 0
for vk = 0 .

Pipes

The behaviour of pipes in the network is governed by the dynamic equation

J k _qk = ( hi � hj ) � � k (qk ) (1.3)

where� k (qk ) � � (pk ; qk ); J k andpk are parameters representing mass inertia of the
�uid in the pipe and friction in the pipe respectively;� k (�) is a function with the same
properties as� k (�).

Pumps

A (typically centrifugal) pump is a component which delivers a desired pressure differ-
ence� hk regardless of the value of the �uid �ow through it. Thus, the behaviour of
pumps in the network is governed by the following expression

hi � hj = � � hp;k ; (1.4)

where� hp;k is a non-negative control input.
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2 State of the Art and Background

Component Model

A generalized component model can be derived using the following expression

� hk = J k _qk + � k (qk ) + � k (qk ) � � hp;k ; (1.5)

whereJ k ; pk are non-zero for pipe components and zero for other components;vk is non-
zero for valve components and zero for other components;� hp;k is non-zero for pump
components and zero for other components.

The values of the parameterspk andvk are typically unknown, but they will be as-
sumed to take values in a compact set of non-negative values.Likewise, the functions
� k (qk ) and� k (qk ) are not precisely known, only their properties of beingC1, monotone,
zero inqk = 0 and proper are guaranteed. The varying heating demand of theend-users,
which is the main source of disturbances in the system, is modelled by a (end-user) valve
with variable hydraulic resistance. In the network model, adistinction is to be made be-
tween end-user valves and the rest of the valves in the network. Two types of pumps are
present in the network; the end-user pumps, which are mainlyused to meet the demand
at the end-users, and booster pumps which are used to meet constraints on the relative
pressures in the network [DePersis and Kallesøe, 2009b].

Network Model

The network model has been derived using standard circuit theory, see e.g. [Desoer and
Khu, 1969] or [Brayton and Moser, 1964a, Brayton and Moser, 1964b]. The hydraulic
network consists ofm components andn end-users (m > n ). The network is associated
with a graphG which has nodes coinciding with the terminals of the networkcompo-
nents. The edges of the network are the components themselves. The graph satis�es the
following:

Assumption 1. [DePersis and Kallesøe, 2011] The graphGis connected.

By the use of graph theory, a set ofn independent �ow variablesqi have been iden-
ti�ed. These �ow variables have the property that their values can be set independently
from other �ows in the network. The independent �ow variables coincide with the �ows
through the chords1 of the graph [DePersis and Kallesøe, 2009a]. To each chord inthe
graph, a fundamental (�ow) loop is associated, and along this loop Kirchhoffs voltage
law holds. This means that the following equality applies

B � h = 0 ; (1.6)

whereB 2 M (n; m; R) is called the fundamental loop matrix;� h is a vector consisting
of the pressure drops across the components in the network.

The entries of the fundamental loop matrixB are� 1; 1 or 0, depending on the net-
work topology. HereB ij = 1 if the j th component belongs to thei th fundamental �ow
loop and �ow directions agree,B ij = � 1 if the j th component belongs to thei th funda-
mental �ow loop and �ow directions disagree andB ij = 0 if the j th component does not

1Let T denote the spanning tree ofG, i.e. a connected subgraph which contains all nodes ofG but no
cycles. Then the edges ofG which are not included inT are the chords ofG (see [Desoer and Khu, 1969]).
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belong to thei th fundamental �ow loop. For the case study in question, the hydraulic net-
work underlies a district heating system. Because of the latter, the following statements
can be made regarding the network.

Assumption 2. [DePersis and Kallesøe, 2011] Each end-user valve is in series with a
pipe and a pump, as seen in Fig. 1.5. Furthermore, each chord in Gcorresponds to a pipe
in series with a user valve.

Assumption 3. [DePersis and Kallesøe, 2011] There exists one and only one component
called the heat source. It corresponds to a valve2 of the network, and it lies in all the
fundamental loops.

Remaining network

Pump

Valve

Pipe

q
i

Figure 1.5: The series connection associated with each end-user [DePersis and Kallesøe,
2009a].

Proposition 1. [DePersis and Kallesøe, 2011] Any hydraulic network satisfying Assump-
tions 1 and 2 admits the representation

J _q = f (B T q) + u (1.7)

yi = � i (qi ) ; i = 1 ; : : : ; n; (1.8)

whereq 2 Rn is the vector of independent �ows;u 2 Rn is a vector of independent inputs
consisting of a linear combination of the delivered pump pressures;yi is the measured
pressure drop across thei th end-user valve;J 2 M (n; R), J > 0; f (�) is aC1 map;� i (�)
is the fundamental law of thei th end-user valve. In (1.8), it is assumed that the �rstn
components coincide with the end-user valves.

Under Assumptions 1-3, it is possible to select the orientation of the components in
the network such that the entries of the fundamental loop matrix B are equal to1 or 0,
whereB ij is 1 if componentj belongs to fundamental �ow loopi and0 otherwise.

De�ning the vector of �ows through the components in the system asx = B T q 2
Rm , the mapf (�) can be written as [DePersis and Kallesøe, 2009a]

f (x) = � B (� (x) + � (x)) ; 8x 2 Rm ; (1.9)

2The valve models the pressure losses in the secondary side ofthe heat exchanger of the heat source.
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where� (x) = [ � 1(x1); : : : ; � m (xm )]T ; � (x) = [ � 1(x1); : : : ; � m (xm )]T and � i (�) is
non-zero for pipe components and� i (�) is non-zero for valve components.

The matrixJ in (1.7) is given by

J = B J B T (1.10)

whereJ = diag(J 1; : : : ; J m ).
Let � he 2 Rn and� hb 2 Ro denote the vectors of pressures delivered by the end-

user pumps and boosting pumps respectively. Then the inputu in (1.7) can be written
as

u = � he + F � hb (1.11)

=
�

I n F
�

�
� he

� hb

�
(1.12)

= �B
�

� he

� hb

�
(1.13)

whereF 2 M (n; o; R) consisting of 1,0 is the sub-matrix ofB mapping boosting pumps
to the fundamental �ow loops. That is,Fij 6= 0 if and only if � hbj is present in thei th
fundamental �ow loop. Sinceo 6= 0 , it is evident from (1.11) and (1.7) that the system is
over actuated.

Now, the purpose of the control can be de�ned as follows.

De�nition 1. Output regulation problem:Given a vectorr of reference values, where
r 2 R = f x 2 Rn j 0 < r m � x i � rM g, and" > 0 design control signalsui (t) such
that lim

t !1
jyi � r i j < " .

The district heating system is subject to changes in the structure of the network. Ex-
amples of actions which will result in changes in the networkstructure is the addition or
removal of an end-user in the system or pumps being decommissioned due to failures.
The type of changes which are considered in the work presented here are the former. To
ease the handling of structural changes in the hydraulic network a control architecture
which consists of a set of decentralized proportional control actions have been proposed
in [DePersis and Kallesøe, 2011]. These control actions aregiven as

ui = � N i (yi � r i ); (1.14)

whereN i > 0 andi = 1 ; 2; : : : ; n.
The control actions have also been extended to provide integral action as follows

[DePersis et al., 2011]

_� i = � K i (yi � r i )

ui = � i � N i (yi � r i )
(1.15)

whereK i > 0.
This architecture has the bene�t that the control signal forthe individual fundamental

�ow loop uses information from only said �ow loop. Since individual end-users can be
associated with individual fundamental �ow loops, this means that whenever an end-user
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is taken into or out of commission the corresponding controlsignal can immediately be
taken into or out of commission.

In [DePersis and Kallesøe, 2008] a simple system limited to two end-users are con-
sidered. The main result in [DePersis and Kallesøe, 2008] shows that when using the
proportional control actions semi-global practical output regulation is achievable under
time varying demand from the end-users. In [DePersis and Kallesøe, 2009a] the gen-
eral network model which has been repeated in this section isderived. The paper also
provides a proof of semi-global practical output regulation when using the proportional
control actions and constraining the control actions to non-negative values only. The
paper [DePersis and Kallesøe, 2009b] extends the result from [DePersis and Kallesøe,
2009a] to showing semi-global output regulation when usingnon-negative constrained
binary control actions. Lastly, the result in [DePersis andKallesøe, 2009b] is extended in
[DePersis et al., 2010] to show semi-global practical output regulation when using non-
negative constrained and quantized proportional control actions. An elaboration of the
result in [DePersis et al., 2010] is given in Chapter 2 to provide a comparison between
the approach used to show the semi-global results and the approach used here to provide
global results. All of the results mentioned here have been collected in the resent paper
[DePersis and Kallesøe, 2011].

Since the results described above are semi-global no guarantees about the stability
of the closed-loop system can be given when end-users are added to or removed from
the system. This is because the initial conditions of the newly obtained system are not
guaranteed to belong to the compact attractor set.

Dealing with Structural Changes

Since the new paradigm for the design of district heating networks provide the possibility
of having systems with varying network structure, it is necessary to examine the stability
properties of the closed-loop system, when it undergoes changes in the network structure.

To assure that problems with instability of the closed-loopsystem, whenever struc-
tural changes are implemented does not arise, the strategy in the work presented here is
to show that the closed-loop system is inherently robust towards this type of changes.
Speci�cally, if global stability of the closed-loop systemcan be shown to hold for an ar-
bitrary number of end-users in the system, then the system will be robustly stable with
respect to the structural changes mentioned above. The contribution of the papers writ-
ten in the duration of the PhD project is a number of results which show global stability
properties of the closed-loop system using the proposed feedback control actions. In
some cases the control actions have been extended to being quantized or non-negatively
constrained or both. This will be emphasized in Chapter 2.

By (1.11) it is evident that multiple pump pressure inputs contribute to the 'virtual'
input ui . This means that 1) a strategy for distributing the control signal ui to the pumps
should be developed and 2) information regarding the control signalui needs to be com-
municated across the network. Regarding 1), the papers A andG described in Chapter
2 provide suggestions to such a strategy. Regarding 2), the information on the structure
of the network needed for knowing which pumps to communicatethe signalui to can be
assumed to be known before taking end-useri into commission. The papers A, C and E
described in Chapter 2 consider event-based control signals which are considered eligible
for being communicated across a �nite bandwidth communication network.
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The introduced control actions constitutes a passive system. Furthermore, the be-
haviour of the pipe and valve components in the hydraulic network is governed by passive
functions, thus the hydraulic network is a passive system. Stability theorems for the neg-
ative feedback interconnection of passive systems can be found in [Khalil, 2002, van der
Schaft, 1999, Isidori, 1999] among others. However, as it isderived in the following, the
passive output of the hydraulic network is given by the system stateq and not the actual
outputy. That is, to apply a traditional global stability result relying on said theorems,
one has to assume that the state (fundamental �ows) are measured and the reference is
given as a vector of desired fundamental �ows. In the following, the passivity properties
of the hydraulic network will be derived along with a study ofthe closed loop stability
properties based on these properties. This study is not documented in the papers, but
has been used as a starting point for some of the analysis subsequently carried out and
documented in the papers.

Passivity of Hydraulic Networks

A block diagram of the closed-loop system is shown in Fig. 1.6. In the block diagram,
the block representing the hydraulic network has been splitinto two subsystems. The
�rst subsystemH1 represents the model from the input vectoru to the �ow vector q.
The second subsystemh(�) represents the output map, which maps the �ow vectorq
to the vector of measured outputsy = h(q). Furthermore, a blockN representing the
proportional control actions is present, whereN is a diagonal matrix with positive entries.

r

-
+

u q y
h( �)

�
H 1N

Figure 1.6: Feedback connection of system with proportional control actions with gain
matrixN .

If r = 0 , the system in Fig. 1.6 is equivalent to the system illustrated in Fig. 1.7. In
the following it will be shown that it is equivalent to the feedback interconnection of a
strictly passive system with a passive memoryless system. Thereby rendering the origin
globally asymptotically stable. Later, analysis for non-zeror will be done.

h( �)

u q

y

-
+

+
+

w1 = 0

w2 = 0

H 1

H 2

N

Figure 1.7: This system is equivalent to the one illustratedin Fig. 1.6 withr = 0 .
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First, the passivity properties of the subsystemH1 is considered, whereH1 is given
by

H1 :

(
J _q = f (B T q) + u

yH 1 = q
(1.16)

The powerPin which is supplied externally to the system can be calculatedas in
[Khalil, 2002]

Pin = uT y (1.17)

Integrating the power supplied to the system over time, an expression of the energy
supplied to the systemE in can be obtained

E in (t) =
Z t

0
uT (s)y(s)ds (1.18)

In order for the system to be passive, the energy absorbed in the network over any period
of time is required to be greater than or equal to the energy stored in the network over the
same period of time, which corresponds to

Z t

0
uT (s)y(s)ds � V (q(t)) � V (q(0)) (1.19)

whereV (q) is an energy storage function for the system.
The inequality in (1.19) must hold for everyt � 0, which corresponds to the instan-

taneous power inequality must hold for allt

uT (t)y(t) � _V (q) (1.20)

The energy storage function for the system is chosen as the following

V (q) =
1
2

qT Jq ) (1.21)

_V (q) = qT J _q (1.22)

Multiplying the system state equation in (1.16) from the left by qT gives the following

qT J _q = qT f (B T q) + qT u , (1.23)

qT u = qT J _q � qT f (B T q) (1.24)

Using (1.9) gives the following

uT q = _V (q) + qT B
�
� (B T q) + � (B T q)

�
(1.25)

Both the maps� (�) and � (�) consist of smooth, monotonic increasing functions� i (�)
and� i (�) which are zero inx i = 0 [DePersis and Kallesøe, 2009a], because of this the
following applies

uT q � _V (q) (1.26)

which shows that the systemH1 is passive.

12



2 State of the Art and Background

Speci�cally, since the following inequality holds

uT q � _V (q) +  (q) (1.27)

and (q) > 0 for everyq 6= 0 , the systemH1 is strictly passive [Khalil, 2002].
Next, take the systemH2 in Fig. 1.7. Since the matrixN is diagonal with positive

entries and the output functionshi (qi ) = � i (qi ) are monotonically increasing and zero in
qi = 0 it follows

N i qi hi (qi ) > 0 ; 8qi 6= 0 ) (1.28)
nX

i =1

N i qi hi (qi ) > 0 ; 8q 6= 0 ) (1.29)

qT Nh(q) > 0 ; 8q 6= 0 : (1.30)

From this it is concluded that the systemH2 is passive memoryless. This shows that
q = 0 is the globally asymptotically stable equilibrium point ofthe closed-loop system,
since the energy storage functionV (q) is radially unbounded, seeTheorem 6.4in [Khalil,
2002].

Passivity of Incremental Model

The result derived in the previous section states that the system can be asymptotically
stabilized towards the origin. Since this case is not of interest, it is examined if the system
can be stabilized towards an arbitrary point in the state space.

Take a general non-linear passive system of the form

_x = F (x) + Gu (1.31)

y = H (x) (1.32)

Comparing to the system equations in (1.16) it is seen that

F (q) = J � 1f (B T q) (1.33)

G = J � 1 (1.34)

H (q) = Iq (1.35)

The incremental model which describes the system around a desired equilibrium point
x � is given by the following set of equations

_x = F (x) + Gu� + G~u (1.36)

~y = H (x) � H (x � ) (1.37)

where ~(�) = ( �) � (�)� are the incremental variables [Jayawardhana et al., 2007].
The constant input and output vectors (u� resp.y� ) associated with the desired equi-

librium statex � are in general de�ned as

u� := � GyF (x � ) (1.38)

y� := H (x � ) (1.39)

13
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whereGy = ( GT G)� 1GT is the pseudo inverse of the matrixG given thatG has full
column rank [Jayawardhana et al., 2007].

A block diagram of the incremental feedback interconnectedsystem is given in Fig.
1.8. Here~H i denotes the incremental version of the systemH i for i = 1 ; 2.

y

+
++

-

q�

q

y �

~y
h( �)

u q
+

-

q�

~q

~q

++
w2 = 0

-
+

w1 = 0
+

+

u �

~u

~H 2

~H 1

N

H 1

Figure 1.8: Block diagram of the incremental feedback system.

As in the previous subsection, the stability analysis of theclosed loop system will be
done by deriving the passivity properties of the incremental systems~H1 and ~H2.

First, the passivity properties of the incremental system~H1 are examined. In the
systemH1 the matrixG = J � 1 has the inverse, which isJ , thereforeu� is given as

u� = � JJ � 1f (B T q� ) , (1.40)

u� = � f (B T q� ) (1.41)

If the system satis�es the property

[F (x) � F (x � )]T [r V (x) � r V (x � )] � 0 (1.42)

wherer V (x) is the gradient of the storage function as a column vector, then the incre-
mental model of the system is passive with the energy storagefunctionV0(x) [Jayaward-
hana et al., 2007]

V0(x) = V (x) � xT r V (x � ) �
�
V (x � ) � (x � )T r V (x � )

�
(1.43)

Now, setx = B T q 2 Rm and consider the functions� i (x i ), which has the properties
that they are monotonic increasing and zero inx i = 0 .

Because of these properties, the following applies

� [� i (x i ) � � i (x �
i )] (x i � x �

i ) < 0 ; 8x i 6= x �
i ) (1.44)

�
mX

i =1

[� i (x i ) � � (x �
i )] (x i � x �

i ) < 0 ; 8x 6= x � ) (1.45)

� [� (x) � � (x � )]T (x � x � ) < 0 ; 8x 6= x � (1.46)

14



2 State of the Art and Background

The map� (�) has the same properties as� (�), i.e. it consists component-wise of mono-
tonic increasing functions which are zero forx i = 0 . Furthermore, using the identity in
(1.9) one can see that the following applies

�
f (B T q) � f (B T q� )

� T
(q � q� ) < 0 ; 8q 6= q� (1.47)

Multiplying this expression withI n in between the terms gives
�
f (B T q) � f (B T q� )

� T
I n (q � q� ) < 0 ; 8q 6= q� (1.48)

which in turn can be rewritten to
�
J � 1f (B T q) � J � 1f (B T q� )

� T
(J T q � J T q� ) < 0 ; 8q 6= q� (1.49)

The expressionJ � 1f (B T q) corresponds toF (x) in the general system model given in
(1.31), and the expressionJ T q corresponds tor V (x) in (1.42). Thus it is shown that the
incremental system model of the subsystemH1 is passive. Let~q = q � q� , then it can be
veri�ed that the expression in (1.43) corresponds to

V0(q) =
1
2

~qT J ~q (1.50)

for the systemH1.
It can furthermore be veri�ed that the incremental model ofH1 is strictly passive with

respect to the storage functionV0(q). To this end, take the time derivative ofV0(q), which
is given as

_V0(q) = ~qT J _q (1.51)

= ~qT f (B T q) + ~qT u� + ~qT ~u (1.52)

= ~qT �
f (B T q) � f (B T q� )

�
+ ~qT ~u (1.53)

= � ~qT B
�
� (B T q) + � (B T q) � � (B T q� ) � � (B T q� )

�
+ ~qT ~u (1.54)

Again, the maps� (�) and� (�) consist of monotonic increasing functions which are zero
for x = 0 , thus the following inequality is ful�lled

(q � q� )T B
�
� (B T q) + � (B T q) � � (B T q� ) � � (B T q� )

�
> 0 ; 8q 6= q� (1.55)

and strict passivity of the incremental system~H1 follows.
Now, the passivity properties of the incremental system~H2 are examined. Again, it

is recalled that the functionshi (qi ) = � i (qi ) are monotonically increasing and zero in
qi = 0 . Since,N is diagonal with positive entries it follows that

N i (qi � q�
i )(hi (qi ) � hi (q�

i )) > 0 ; 8qi 6= q�
i ) (1.56)

nX

i =1

N i (qi � q�
i )(hi (qi ) � hi (q�

i )) > 0 ; 8q 6= q� ) (1.57)

(q � q� )T N (h(q) � h(q� )) > 0 ; 8q 6= q� (1.58)

which shows that~H2 is passive memoryless. Again, sinceV0(q) is radially unbounded,
~H1 is strictly passive and~H2 is passive memoryless, the closed-loop system is globally
asymptotically stable withq = q� as the equilibrium point. Although the result derived in
the above shows that the closed-loop system in Fig. 1.8 is globally asymptotically stable
some issues still remain, which will be illustrated in the following.
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Practical output regulation

Since the functions� i (�) are monotonically increasing and proper they admit global in-
verses� � 1

i (�). Now, letr be the vector of reference values and letq̂ be the vector de�ned
by

q̂i = � � 1
i (r i ) ; i = 1 ; 2; : : : ; n: (1.59)

Referring to Fig. 1.8, setq� = q̂ andy� = � (q̂) = r , now what shouldu� be in order
to render̂q the global asymptotically stable equilibrium point? The answer comes from
the steady state expression of (1.7)

0 = f (B T q̂) + u� , (1.60)

u� = � f (B T q̂): (1.61)

However, since an exact expression for the steady state input � f (B T q̂) is generally
unknown, it is in general impossible to achieve asymptotic output regulation using only
proportional control actions, as would be expected.

Instead, consider the mapF : Rn ! Rn

F (z) = � (z) � N � 1f (B T z): (1.62)

If F (�) is surjective onto the setR of possible reference values, then for every vector
r 2 R , there exists a vectorq0 such that

r = � (q0) � N � 1f (B T q0): (1.63)

This in turn means that the block diagram in Fig. 1.8 withq� = q0, y� = r andu� = 0 is
equivalent to the same block diagram just withq� = q0, y� = � (q0) andu� = � f (B T q0),
which shows thatq = q0 is the global asymptotically stable equilibrium point of the
closed-loop system, and furthermore

r i � y0
i = �

1
N i

f i (B T q0) (1.64)

wherey0 = � (q0).
What now remains to be shown is thatF (�) in fact is surjective ontoR, which is the

starting point for the analysis carried out in Paper B (see Chapter 2). The result of Paper
B is that for functions� k (�) and� k (�) with certain properties, the mapF (�) is a global
homeomorphism, and thus surjective ontoR.

Asymptotic Output Regulation

Additional analysis based on passive systems theory can also be used to show stability
of the desired equilibrium point of the closed-loop system when using the proportional-
integral controllers in (1.15). To that end, consider the feedback interconnection system
in Fig. 1.7, but now let the blockH1 denote the system_u ! _q, that is

H1 :

(
J •q = Df (B T q) _q + _u

yH 1 = _q
(1.65)
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2 State of the Art and Background

whereDf (B T q) denotes the Jacobian off (B T q) with respect toq.
De�ne the storage functionV1( _q) as

V1( _q) =
1
2

_qT J _q (1.66)

then the time derivative ofV1( _q) is

_V1( _q) = _qT J •q: (1.67)

From (1.65) the following is true

_V1( _q) = _qT Df (B T q) _q + _qT _u: (1.68)

If it is assumed that the derivatives of the functions� k (�) are bounded away from zero3,
it can be shown that the matrix� Df (B T q) is positive de�nite for anyq (see [DePersis
et al., 2011]), and thus it follows that

_qT _u � _V1( _q) +  ( _q) (1.69)

where (�) is some positive de�nite function. SinceV1(�) is radially unbounded it follows
that the systemH1 is strictly passive.

Likewise, let the systemH2 in the system denote the system_q ! _u where (by (1.15))

� _u = � _� + ND� (q) _q (1.70)

= K (� (q) � r ) + ND� (q) _q (1.71)

whereD� (q) denote the Jacobian of� (q) with respect toq.
Again, letq̂ = � � 1(r ), de�ne the change of coordinates~q = q � q̂, and let the map

~� : Rn ! Rn be given by

~� (~q) = � (~q + q̂) � � (q̂) (1.72)

= � (q) � � (q̂) (1.73)

= y � r: (1.74)

By the properties of� (�) it follows that ~� (~q) is monotonically increasing and zero in
~q = 0 .

De�ne the storage functionV2(~q) as

V2(~q) =
nX

i =1

K i

Z ~qi

0
~� i (s)ds (1.75)

which is positive de�nite and radially unbounded by the properties of~� (�).
Then the time derivative ofV2(~q) is

_V2(~q) = _qT K ~� (~q): (1.76)

3This assumption is motivated by the fact that for small values, the �ow through the pipes can be considered
laminar [Roberson and Crowe, 1993]
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Furthermore,

� _qT _u = _qT K ~� (~q) + _qT ND� (q) _q (1.77)

= _V2(~q) + _qT ND� (q) _q: (1.78)

Since the functions� i (qi ) are monotonically increasing andN is a diagonal matrix
with positive entries it follows that the matrixND� (q) is positive semi-de�nite from
which it follows that the systemH2 is input feed-forward passive, see [Khalil, 2002].

Since, _q = 0 is a strict minimum ofV1( _q) and ~q = 0 is a strict minimum ofV2(~q)
it follows by Proposition A.10 in [Ortega et al., 1998] that( _q;~q) = (0 ; 0) is a stable
equilibrium of the feedback interconnection system.

The analysis above is the starting point of Paper F, where global asymptotic output
regulation is shown using similar arguments. However, the proof is done by showing
that the second order dynamics of the closed-loop system is similar to an Euler-Lagrange
mechanical system with Rayleigh dissipation.

Euler-Lagrange Systems

The motion of a mechanical system can be described by the Euler-Lagrange equation

d
dt

�
@
@_q

L(q; _q)
�

�
@
@q

L(q; _q) = Q (1.79)

whereq 2 Rn is a vector of generalized coordinates;_q 2 Rn is the corresponding vector
of generalized velocities;Q 2 Rn is a vector of external forces acting on the system;
L : R2n ! R is the Lagrangian function given by

L(q; _q) = T (q; _q) � V (q) (1.80)

whereT : R2n ! R is the kinetic energy function andV : Rn ! R is the potential
energy function. In the speci�c case considered here, the only forces acting on the system
are the dissipative forces, and as a consequence

Q = �
@
@_q

F ( _q) (1.81)

whereF ( _q) is the Rayleigh dissipation, which satis�es

_qT @
@_q

F ( _q) � 0: (1.82)

Furthermore, the system is said to be fully-damped if the Rayleigh dissipation function
further satis�es

_qT @
@_q

F ( _q) �
nX

i =1

� i _q2
i : (1.83)

with � i > 0 for i = 1 ; 2; : : : ; n.
The Hamiltonian functionH : R2n ! R is de�ned as

H(q; _q) =
�

@
@_q

L(q; _q)
� T

_q � L (q; _q): (1.84)
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In a standard mechanical system, the kinetic energyT (�) is of the form

T (q; _q) =
1
2

_qT D(q) _q; (1.85)

and as a consequence, the Hamiltonian function is the sum of the kinetic and potential
energy functions

H(q; _q) = T (q; _q) + V(q): (1.86)

The time derivative of the Hamiltonian function is given as

d
dt

H(q; _q) =
d
dt

 �
@
@_q

L(q; _q)
� T

_q � L (q; _q)

!

(1.87)

=
d
dt

�
@
@_q

L(q; _q)
� T

_q +
�

@
@_q

L(q; _q)
� T

•q+

�

 �
@
@_q

L(q; _q)
� T

•q +
�

@
@q

L(q; _q)
� T

_q

! (1.88)

=
�

d
dt

�
@
@_q

L(q; _q)
�

�
@
@q

L(q; _q)
� T

_q (1.89)

= QT _q (1.90)

= �
�

@
@_q

F ( _q)
� T

_q � �
nX

i =1

� i _q2
i : (1.91)

If additionallyV(�) has a strict minimum at some point, sayq0 2 Rn , thenH(�) will
attain a strict minimum at(q0; 0). Then, by (1.91) and the LaSalle invariance principle,
(q0; 0) is the global asymptotically stable equilibrium point of the system.

How this applies to the hydraulic network will be elaboratedin the following chapter.

1.3 Outline of the Thesis

This thesis is written as a collection of the papers, which have been produced during the
course of the PhD project. With the state-of-the-art and background now covered, the
remainder of the thesis will proceed as follows. The next chapter contains an overview
of the content of the papers. Following this, Chapter 3 will provide a conclusion on the
project and give some suggestions to issues which are interesting to address in the future.
Lastly, the remainder of the thesis consists of the papers themselves. As such, some
repetition of introductory sections should be expected.
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2 Summary of contributions

This chapter presents a summary of the contributions made during the course of the
project. The contributions can be divided into two categories. The �rst category are
results describing the stability properties of the closed-loop system when using only pro-
portional control actions in the system, this category is presented in Section 2.1. The
second category are results describing the stability properties of the closed-loop system
when both proportional and integral control actions are used, this category is presented in
Section 2.2.

Generally, the control structure is the one illustrated in Fig. 2.1. Here the block
C represents the controller which provides either proportional or proportional-integral
control actions. For both the proportional and the proportional-integral control actions
the control architecture is completely decentralized in the sense that the control action for
each fundamental �ow loop is using information from said �owloop only.

q y
h( �)�B

� hb

� he-

r
+

u� �B y
u

C H 1

Figure 2.1: General structure of the closed-loop system considered in the papers.

Most of the results only consider the part of the control which involves the generation
of the 'virtual' control signal (u in Fig. 2.1). A simple way of mapping the virtual input
u to the actual input pressure vectors� hb and� he, which are the vectors of pressures
delivered by the booster pumps and end-user pumps respectively, would be to simply use
the Moore-Penrose pseudo-inverse of�B . However, papers A and G consider mappings
with different prudent properties.

Furthermore, papers A, C, and E also considers the closed-loop system with a quanti-
zation of the control signals. This is illustrated in Figure2.2. Here the blockQ constitutes
the quantizer. The quantized version of the control signalsare piecewise constant signals
taking value in a �nite set. This allows them to be transmitted across a communication
network of �nite bandwidth. This is necessary since the actuators in the system are geo-
graphically separated from the logic circuitry implementing the control actions.

For the closed-loop system with the quantized control signals, the dynamics will be
described by discontinuous equations. For these systems, the solutions will be considered
in the form of Krasovskii solutions to discontinuous differential equations.
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q y
h( �)�B

� hb

� he

�B y

-

r
+

u� u
C Q H 1

Figure 2.2: Structure of the system with quantized control signals.

De�nition 2. [Hájek, 1979] A map' : I ! Rn is a Krasovskii solution of an au-
tonomous system of ordinary differential equations_x = G(x), whereG : Rn ! Rn , if
it is absolutely continuous and for almost everyt 2 I it satis�es the differential inclusion
_' (t) 2 KG (' (t)) , whereKG (x) =

T
�> 0 coG(B � (x)) andcoG is the convex closure

of the setG.

HereI is an interval of real numbers, possibly unbounded. By de�nition, the operators
K associates toG(x) a set valued map which is compact for everyx 2 Rn . Furthermore,
if G(x) is locally bounded this set valued map is upper semi-continuous with convex
values. Then, for each initial statex0, there exists at least one Krasovskii solution of
_x = G(x) [Aubin and Cellina, 1984].

In the following, proofs or proof strategies for some of the results documented in the
papers will be given. These are provided to make the chapter self contained. For the
interested reader, the full versions of the proofs are foundin the contributions part of the
thesis, which contains the full papers.

2.1 Practical output regulation in hydraulic networks

This section presents the main results of the papers on the stability properties of the
closed-loop system when proportional output feedback control is used in the system.

Paper A: [DePersis et al., 2010]

The result presented in Paper A shows that the closed-loop system with proportional con-
trol actions constrained to non-negative values and with logarithmic quantization, can
provide semi-global practical output regulation. That is,for any compact set of initial
conditions of the system, there exist gains of the proportional controller and parameters
of the quantizer such that the basin of attraction contain the initial conditions and the at-
tractor set can be designed as an arbitrarily small neighborhood of the desired steady state.
It should be mentioned that the author of the thesis have not contributed to the stability
result, and that it is merely included here to illustrate thedifference in the approaches
used in this result and the subsequent results on global stability. The contribution from
the author of the thesis to the paper will be stated immediately after the result on stability.

The control signals considered in the paper are the following

ui =  (~ui ); (2.1)
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where the map : R+ ! R+ is given by

 (x) =

(
 i ;  i

1+ � < x �  i
1� � ; 0 � i � j

0 ; 0 � x �  j

1+ �

(2.2)

and

~ui =
�

� N i (yi � r i ) ; yi � r i � 0
0 ; yi � r i � 0

(2.3)

wherej 2 Z+ , � 2 (0; 1),  i =  i � 1
1� �
1+ � for everyi = 1 ; 2; : : : ; j and 0 > 0 are

parameters of the (logarithmic) quantizer, withj , � and 0 to be designed. The parameter
N i > 0 is the proportional controller gain.

This gives the following expression for the closed-loop system

J _q = f (B T q) + 	(~ u) (2.4)

where	(~u) = (  (~u1); : : : ;  (~un )) . The right hand side of (2.4) is discontinuous.
The Krasovskii solutions to (2.4) are absolutely continuous functions satisfying the

differential inclusion
J _q 2 f (B T q) + K 	(~u) (2.5)

whereK 	(~u) � � n
i =1 K (~ui ) with

K (~ui ) �

(
f (1 + �� )~ui ; � 2 [� 1; 1]g ;  j

1+ � < ~ui �  0
1� �

f � (1 + � )~ui ; � 2 [0; 1]g ; 0 � ~ui �  j

1+ �

: (2.6)

Then the main result of Paper A is

Proposition 2. [DePersis et al., 2010] For any choice of the parameterqM > 0, any
compact setR � R+ , any compact setQ of initial conditions described by

Q = f q 2 Rn j jqi j � qM ; i = 1 ; � � � ; ng ; (2.7)

for any arbitrarily small positive number
 , and for any value of the quantization parame-
ter � 2 (0; 1) there exist gainsN �

i > 0 and parameters 0; j of the quantizer such that for
all N i > N �

i , for anyr 2 R , any Krasovskii solutionq(t) of the closed-loop system (2.4),
with initial condition inQ is attracted by the setf � 2 Rn j j � i j � 
 ; i = 1 ; 2; : : : ; ng,
where� i = yi � r i .

Proof of Proposition 2.The proof is somewhat technical, so only the strategy of the proof
will be given here. For the full version of the proof see [DePersis and Kallesøe, 2011].

Since the functions� i (�) are monotonically increasing and proper they admit global
inverses� � 1

i (�). Then, the desired equilibrium point is

q̂ = � � 1(r ) (2.8)

where� � 1(r ) = ( � � 1
1 (r1); : : : ; � � 1

n (rn )) .
De�ne the error coordinatesease = q� q̂and the positive de�nite Lyapunov function

candidateV : Rn ! R as
V (e) =

1
2

eT Je (2.9)
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with the time derivative

_V (e) = eT J _e (2.10)

= eT J _q (2.11)

= eT f (B T q) + eT � ; 8� 2 K 	(~u): (2.12)

Then a compact setS is constructed whereS = f e 2 Rn j %� V (e) � � g, 0 < % < �
andQ � f q 2 Rn j V (e) j e= q� q̂ � � g. The remainder of the proof consists of showing
that there exists parameters 0 andj of the quantizer andN �

i of the proportional controller
such that for allN i � N �

i , _V (e) < 0 for everye 2 S and� 2 K 	(~u).

Additional to the main result in Proposition 2, the paper also provides a suggestion to
a graph based approach to solve the problem of distributing the control signalui to the
multiple pumps contributing to it, which is the problem of designing the map�B y in Fig.
2.2. The designed map has the property that if the componentsof u are non-negative, then
the components of the vectors� hb and� he are non-negative as well. Furthermore, the
mapping de�nes a graph which in turn can be used to de�ne the communication topology
which should be used to communicate control signals across the network. The derivation
of this mapping constitutes the contribution to Paper A fromthe author of the thesis.

Paper B: [Jensen and Wisniewski, 2011b]

It is found that the closed-loop system with proportional control and no actuator con-
straints is globally practically stable. While the focus ofthe paper is on the application of
the hydraulic network, the result presented in Paper B, can be extended to a general class
of systems.

Consider the following system

A _x = f (x) + u (2.13)

yi = hi (x i ) (2.14)

wherex 2 Rn , A 2 M (n; R) with A > 0, the map� f (�) is continuous, monotonically
increasing and proper, the functionhi (�) is continuous, monotonically increasing and
proper and given a positive de�nite diagonal matrixN , the mapF : Rn ! Rn given by

F (z) = h(z) � N � 1f (z) (2.15)

is proper.
Let r 2 Rn be a vector of reference values, and let

u = � N (y � r ); (2.16)

then the following result is true.

Proposition 3. There exists a unique pointx � 2 Rn which is the globally asymptotically
stable equilibrium point of the closed-loop system (2.13),(2.14) and (2.16). Furthermore,

h(x � ) � r = N � 1f (x � ): (2.17)

24



1 Practical output regulation in hydraulic networks

Proof of Proposition 3.The proof is done in two steps, which follows along the lines of
the proofs of Proposition 11 and Proposition 12 in Paper B on page 61. The �rst step is
to prove that the mapF (�) is a global homeomorphism. This can be done following the
technique used to prove Proposition 11 in Paper B. SinceF (�) is a global homeomorphism
it follows that for every vectorr 2 Rn of reference values, there exists a unique vector
x � 2 Rn such that

r = h(x � ) � N � 1f (x � ) (2.18)

which in turn means that the closed-loop system can be written as

A _x = f (x) � f (x � ) � N (y � y� ) (2.19)

wherey� = h(x � ).
Secondly, it can be proved thatx � is a globally asymptotically stable equilibrium point

of the closed-loop system using the technique in the proof ofProposition 12. Speci�cally,
using the Lyapunov function candidateV : Rn ! R

V (x) =
1
2

(x � x � )T A(x � x � ); (2.20)

along with the monotonicity properties off (�) andh(�) the thesis follows.

Since the result is global and independent on the numbern of end-users it is concluded
that it is possible to add or remove end-users from the systemand still have a global
asymptotically stable equilibrium pointx � of the newly obtained system. However, to
keep the same level of performance it may be necessary to tunethe gainsN i .

Paper C: [Jensen and Wisniewski, 2011c]

The result in Paper C is an extension of the result in Paper B and partly of the result
in Paper A. The proportional control actions are used and a quantization of the control
signals is introduced. The result shows that the trajectories of closed-loop system are
bounded and globally asymptotically stable towards a compact set of the state space.

As in Paper A, the control signals considered in the paper arethe following

ui =  (~ui ); (2.21)

with the slight modi�cations
~ui = � N i (yi � r i ) (2.22)

and
 (� x) = �  (x); (2.23)

which means that the control signals are not constrained to non-negative values.
Again, the closed-loop system is given as

J _q = f (B T q) + 	(~ u): (2.24)

The solutions are again considered in the sense of Krasovskii solutions to the differ-
ential inclusion

J _q 2 f (B T q) + K 	(~u); (2.25)
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whereK 	(~u) � � n
i =1 K (~ui ) with the set valued mapK modi�ed to

K (~ui ) �

8
>>>>><

>>>>>:

 0 ; ~ui >  0
1� �

 k ;  k
1+ � < ~ui <  k

1� � ; k = 0 ; : : : ; j
f 1� ��

1+ ��  k ; � 2 [0; 1]g ; ~ui =  k
1� � ; k = 0 ; : : : ; j

0 ; 0 � ~ui <  j

1+ �
� K (� ~ui ) ; ~ui � 0

; (2.26)

that is,K (�) is only set-valued at points of discontinuity of (�).
The main result of Paper C can then be summarized in the following proposition

Proposition 4. For any gainN i > 0 and for any valuej 2 Z+ of the quantizer, there exist
parameter 0 of the quantizer and a compact setQ, with the property that the Krasovskii
solutionsq(t) of the closed-loop system (2.24) are attracted toQ.

Proof of Proposition 4.The proof is somewhat technical, so only the strategy of the proof
will be given here. For the full proof, the interested readeris referred to [Jensen and
Wisniewski, 2011c].

Using the facts thatN i andr i in (2.22) are constants, (2.24) can be rewritten to

J _q = f (B T q) � N (Y(y) � r ) (2.27)

where the following identities has been used

Y (y) = (� 1(y1); : : : ; � n (yn )) (2.28)

and

� i (yi ) = �
 (~ui )

N i
+ r i : (2.29)

Then (2.25) can be rewritten as

J _q 2 f (B T q) � N (KY (y) � r ) (2.30)

whereKY (�) can be de�ned in a manner similar to the de�nition ofK (�).
Recalling the mapF : Rn ! Rn

F (z) = � (z) � N � 1f (B T z); (2.31)

which is a global homeomorphism, the differential inclusion (2.30) can be rewritten as

J _q 2 f (B T q) � f (B T q� ) � N (KY (y) � y� ) (2.32)

whereq� = F � 1(r ) andy� = � (q� ).
Now, the quantizer is designed such that�  0 < u �

i <  0 where

u�
i = � N i (y�

i � r i ) (2.33)

which means that when the outputyi = y�
i the input to the quantizer does not go beyond

the maximum or below the minimum output of the quantizer.
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1 Practical output regulation in hydraulic networks

Consider the Lyapunov function candidateV : Rn ! R

V (q) =
1
2

(q � q� )T J (q � q� ) (2.34)

with the time derivative

_V (q) = ( q � q� )T J _q (2.35)

= ( q � q� )( f (B T q) � f (B T q� ) � N (� � y� )) ; 8� 2 KY (y): (2.36)

Then by using the monotonicity properties off (�) and� (�) it can be shown that there
exists a compact setQ with the property that_V (q) < 0, for everyq 2 Q c.

By applying a result similar to Proposition 2 from Paper A it is concluded that global
practical output regulation is possible. Furthermore, since the result is global and inde-
pendent on the numbern of end-users, these can be added to or removed from the system
and the trajectories of the newly obtained system will be bounded. However, to keep the
same level of performance it might be necessary to tune the gainsN i .

Paper D: [Jensen and Wisniewski, 2011a]

The result in Paper D is an extension of the result in Paper B. Here the control signals are
constrained to non-negative values to take into account thefact that the actuators in the
system are typically able to deliver non-negative actuation only.

Just as the result in Paper B the result in Paper D can be generalized to a larger class
of systems than the hydraulic network considered in the casestudy. Again, these systems
are described by (2.13) and (2.14). The following control will be used

ui = s(~ui ) (2.37)

where
~ui = � N i (yi � r i ) (2.38)

s(z)
�

z ; z � 0
0 ; z � 0

: (2.39)

Again it is assumed thatF (�) in (2.15) is proper.
The main result of Paper D can then be stated as

Proposition 5. If the equilibrium pointx � 2 Rn which is the globally asymptotically sta-
ble equilibrium point of the closed-loop system (2.13), (2.14) and (2.16) ful�lshi (x �

i ) <
r i , then it is the globally asymptotically stable equilibriumpoint of the closed-loop system
(2.13), (2.14) and (2.37). Furthermore,

h(x � ) � r = N � 1f (x � ): (2.40)

Proof. SinceN i andr i are constants, the closed-loop system can be written as

A _x = f (x) � N ( �S(y) � r ) (2.41)
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where �S(y) = (�s1(y1); : : : ; �sn (yn )) and

�si (z)
�

z ; z � r i

r i ; z � r i
: (2.42)

SinceF (�) is proper it is a global homeomorphism as shown in [Jensen andWisniewski,
2011b], and there existsx � = F � 1(r ) such that

A _x = f (x) � f (x � ) � N ( �S(y) � y� ) (2.43)

wherey� = h(x � ).
The rest of the proof follows along the lines of the proof of Proposition 3 and exploit-

ing that�si (y�
i ) = y�

i because of the additional assumptionhi (x �
i ) < r i .

Again, since the result is global and independent on the numbern of end-users in the
system, end-users can be added to or removed from the system and the newly obtained
system will have a global asymptotically stable equilibrium pointx � . Again, to keep the
same level of performance it may be necessary to adjust the gainsN i .

In the speci�c case of the hydraulic network underlying the district heating system it
has yet to be proved that indeedy�

i < r i in the general case (arbitraryn). However, a
proof for the casen = 2 can be found in [Jensen and Wisniewski, 2011a]. Furthermore,
thaty�

i < r i has been supported by simulations and proved for systems with up to four
end-users (n = 4 ).

Paper E: [Jensen and Wisniewski, 2011d]

This paper collects the results from papers B-D and can be seen as an extension of the
results in [DePersis and Kallesøe, 2011]. The main result ofPaper E state that the tra-
jectories of the closed-loop system with quantized proportional control constrained to
non-negative values are bounded and globally asymptotically attracted to a compact set
of the state space. The quantization map used in the paper describes a general set of
monotonically increasing quantization maps with hysteresis. Thus, the logarithmic quan-
tizer (if hysteresis is included) used in paper A and C is included in this set, but also other
types such as the uniform quantizer for instance.

The control used in the paper is the following

ui =  m (~ui ) (2.44)

where

~ui =
�

� N i (yi � r i ) ; yi � r i � 0
0 ; yi � r i � 0

(2.45)

and the quantization map m (�) will be described in the following.
First, for l 2 Z+ let A = f A0; A1; : : : ; A l g andB = f B0; B1; : : : ; B l +1 g be the

following family of intervals

A = f (�1 ; � 0]; (� 0; � 1]; : : : ; (� l � 2; � l � 1]; (� l � 1; 1 )g (2.46)

B = f (�1 ; � 0]; (� 0; � 1]; : : : ; (� l � 2; � l � 1]; (� l � 1; � l ]; (� l ; 1 )g (2.47)
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1 Practical output regulation in hydraulic networks

wherel , � i and � j for i = 0 ; 1; : : : ; l � 1 and j = 0 ; 1; : : : ; l are design parameters
of the quantizer and such that� i < � i < � i +1 for i = 0 ; 1; : : : ; l � 1. Note that

R =
l[

i =0

A i =
l +1[

j =0

B j .

Let  m : R ! R be the map

 m (x(t)) =

8
>>>>>>>><

>>>>>>>>:

 A
k ; if t = t0 ^ x(t0) 2 Ak

 A
k ;

if x(t) = � k ^  m (x(t � )) =  B
k+1 or

x(t) = � k ^  m (x(t � )) =  B
k ; 1 � k � l

 B
k ;

if x(t) = � k � 1 ^  m (x(t � )) =  A
k or

x(t) = � k � 1 ^  m (x(t � )) =  A
k� 1; 1 � k � l

 A
0 ; if x(t) = � 0 ^  m (x(t � )) =  B

1
 m (x(t � )) ; otherwise

(2.48)

where A
k and B

k are design parameters of the quantizer, with A
0 = 0 and A

k� 1 <
 B

k <  A
k for all k = 1 ; 2; : : : ; l .

Remark1: The map m (�) is de�ned for piecewise monotone signalsx : [t0 ; t ] ! R. There is a
family of k partitions of[t0 ; t ] denotedI 1 ; I 2 ; : : : ; I k whereI 1 = [ t0 ; t1); I 2 = [ t1 ; t2); : : : ; I k =
[tk � 1 ; t ] and t i < t i +1 < t for i = 0 ; 1; : : : ; k � 2, such thatx(� ) is monotone for� 2 I j for
j = 1 ; 2; : : : ; k . Thent � is de�ned ast � = � if � 2 int(I k � 1).

This gives the closed-loop system

J _q = f (B T q) + 	 m (~u) (2.49)

where	 m (~u) = (  m (~u1); : : : ;  m (~un )) .
The Krasovskii solutions to (2.49) are absolutely continuous functionsq(t) which

solves the Cauchy problem

J _q 2 f (B T q) + K 	 m (~u) ; q(0) = q0 (2.50)

whereK (	(~u)) � � n
i =1 K ( m (~ui )) andK ( m (x)) is given by

K ( m (x)) =

8
<

:

 A
l ; x > � l

f � A
l ; � 2 [0; 1]g ; x 2 [� 0; � l ]

0 ; x < � 0

(2.51)

Again, let
F (z) = � (z) � N � 1f (B T z) (2.52)

and
q� = F � 1(r ); (2.53)

with the following conjecture, which has been supported by numerical simulations and
proved to hold for systems with up to four end-users (n = 4 )

Conjecture 1. The pointq� de�ned by (2.53) ful�ls� i (q�
i ) < r i .
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Given these preliminaries, the following result can be proved

Proposition 6. For any gainN i > 0 and for any valuel 2 Z+ and � j , � j , where
j = 0 ; 1; : : : ; l , of the quantizer, such that� j < � j < � j +1 , if the parameter A

l of the
quantizer ful�ls  A

l > � f i (B T q� ), whereq� is de�ned by (2.53), then a compact setQ
exists, with the property that the Krasovskii solutionsq(t) to the Cauchy problem (2.50)
are attracted toQ.

Remark2: Conjecture 1 and the fact that A
l > � f i (B T q� ) assures that the input to the quantizer

whenyi = y�
i does not go beyond the maximum or below the minimum output of the quantizer.

That is,0 < u �
i <  A

l whereu�
i = � N i (y�

i � r i ) (by (2.52)).

Proof of Proposition 6.Again, the proof is quite technical, so only the strategy of the
proof will be given. For the full version of the proof, the interested reader is referred to
[Jensen and Wisniewski, 2011d].

SinceN i andr i are constants a map� i : R ! R with the following property exists

� i (yi ) = �
 m (~ui )

N i
+ r i : (2.54)

Using this and the identity in (2.53), the closed-loop system (2.49) can be written as

J _q = f (B T q) � f (B T q� ) � N (Y (y) � y� ) (2.55)

whereY (y) = (� 1(y1); : : : ; � n (yn )) .
The Krasovskii solutionsq(t) to the Cauchy problem (2.50) are then the solutions to

the problem
J _q 2 f (B T q) � f (B T q� ) � N (KY (y) � y� ) (2.56)

whereKY (y) can be de�ned in a manner similar toK 	 m (~u).
Then the Lyapunov function candidateV : Rn ! R

V(q) = ( q � q� )T J (q � q� ) (2.57)

will be used. The functionV(�) has the time derivative

_V (q) = ( q � q� )T J _q (2.58)

= ( q � q� )T (f (B T q) � f (B T q� ) � N (� � y� )) ; 8� 2 KY (y): (2.59)

Then by using the monotonicity properties of the mapsf (�) and� (�) it can be shown that
there exists a compact setQ such that_V (q) < 0 for everyq 2 Q c.

By applying Proposition 2 from Paper A it can furthermore be shown that practical
output regulation is possible if logarithmic quantizers are used.

2.2 Asymptotic output regulation in hydraulic networks

This section presents the main results of the papers on the stability properties of the
closed-loop system when proportional-integral feedback control is used in the system.
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Paper F: [DePersis et al., 2011]

The result in Paper F shows that the closed-loop system with the proportional-integral
control actions is global asymptotically stable towards the desired reference point if no ac-
tuator constraints are assumed. The result is proved by showing that the closed-loop sys-
tem can be described as an Euler-Lagrange mechanical system. Speci�cally, it is shown
that the second order dynamics of the closed-loop system describes a fully-damped Euler-
Lagrange mechanical system with Rayleigh dissipation and no inputs. For literature in
these types of systems see for instance [Ortega et al., 1998,van der Schaft, 1999].

The control used in the paper is

_� i = � K i (yi � r i ) (2.60)

ui = � i � N i (yi � r i ) (2.61)

which gives the closed-loop system

J _q = f (B T q) + � � N (y � r ) (2.62)
_� = � K (y � r ): (2.63)

Let q�
i = � � 1

i (r i ) and de�ne the transformation of coordinates~qi = qi � q�
i . Assum-

ing that the derivatives of the functions� k (�) describing the behaviour of the pipes are
bounded away from zero1, the following result can be proved

Proposition 7. The point(~q; _q) = 0 is a globally asymptotically stable equilibrium point
of the closed-loop system given by (2.62) and (2.63).

Proof of Proposition 7.The strategy of the proof is to show that the second order dynam-
ics of (2.62) describes an Euler-Lagrange mechanical system with Rayleigh dissipation
and then use the analysis carried out in the end of Section 1.2.

The second order dynamics of (2.62) is

J •q =
�
Df (B T q) � ND� (q)

�
_q + _� (2.64)

= � G(q) _q � K (� (q) � r ) (2.65)

whereDg(x) denotes the Jacobian of the mapg(x) andG(q) = � Df (B T q)+ ND� (q).
Using that the derivatives of the functions� k (�) are bounded away from zero it can

be shown thatG(q) is a positive de�nite matrix, see [DePersis et al., 2011].
De�ne the function~� i : R ! R as

~� i (~qi ) = � i (~qi + q�
i ) � � i (q�

i ) (2.66)

= � i (qi ) � r (2.67)

then by using the properties of� i (�) it can be shown that~� i (x) is monotonically increas-
ing and zero inx = 0 .

Now, let the kinetic energy functionT : Rn ! R be given as

T ( _q) =
1
2

_qT J _q (2.68)

1This assumption is motivated by the fact that for low values the �ow can be considered laminar [Roberson
and Crowe, 1993].
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and the potential energy functionV : Rn ! R be

V(~q) =
nX

i =1

K i

Z ~qi

0
~� i (s)ds (2.69)

then the thesis follows.

As an additional result in Paper F it is also shown that the desired equilibrium point
of the closed-loop system is semi-global exponentially stable.

Paper G: [Jensen et al., 2011]

This paper represents an extension of the result presented in Paper F, in which the extra
degree of freedom coming from the fact that the district heating system is over actuated
(see (1.11)), is exploited to expand the controllers introduced in Paper F such that the
steady state electrical power consumption of the pumps in the system is minimal.

First, let(q� ; � � ) denote the steady state of the closed-loop system (2.62)-(2.63) and
consider the change of coordinates

~q = q � q�

~� = � � � � :
(2.70)

The control used in the paper is

� _hbj = � L j

�
@

@� hbj
P(� hb; q̂; � )

�
(2.71)

_� i = � K (yi � r i ) (2.72)

� hei = � i � N i (yi � r i ) � F T
i � hb (2.73)

whereL j > 0 with j = 1 ; 2; : : : ; o; P(� hb; q̂; � ) is a simpli�ed version of the electrical
power function of the pumps in the system;q̂ is an estimate ofq ful�lling q̂ = �q with
� > 0; F T

i is thei th row ofF .
The functionP(�; q̂; � ) is a sum of an bi-linear function and quadratic penalty terms

(see [Fletcher, 1975]) designed to make the minimum ofP(�; q̂� ; � � ) belong to some
desired set. The functionP(�; q̂; � ) is convex and radially unbounded. Furthermore,
P(�; q̂� ; � � ) has a closed and convex set of minimizers. That is, the set

M = f x 2 Ro j P(x; q̂� ; � � ) � P(y; q̂� ; � � )g ; 8y 2 Ro (2.74)

is compact and convex. The penalty functions has a design parameter� > 0 and it can
be shown that there exists �nite� � > 0 such that for all� > � � , P(�; q̂� ; � � ) is positive
de�nite.

The closed-loop system is

J _q = f (B T q) + � � N (y � r ) (2.75)
_� = � K (y � r ) (2.76)

� _hbj = � L j

�
@

@� hbj
P(� hb; q̂; � )

�
(2.77)
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The closed-loop system can be seen as an interconnection of two separate systems,
where the state of the �rst system is an external input to the second system. This is
illustrated in Fig. 2.3. Comparing with Fig. 2.3,z = (~q; ~� ) andx = � hb.

z
_z = g(z) _x = f (x; z )

Figure 2.3: Block diagram of the cascaded system.

As shown in Paper F ([DePersis et al., 2011]) the point~q = 0 , ~� = 0 is a global
asymptotically stable equilibrium of the closed-loop system (2.75)-(2.76), which in turn
means that the external input to the second system in Fig. 2.3decays to zero.

The setM can be shown to be global asymptotically stable for the system

_x = � L (r P(x; q̂� ; � � )) : (2.78)

The main result of the paper relies on the following theorem

Theorem 1. Consider the system in Fig. 2.3

_x = f (x; z)

_z = g(z);
(2.79)

wherex 2 Rn , z 2 Rm , f (y; 0) = 0 ; 8y 2 Y , g(0) = 0 and Y � Rn is non-empty,
compact and connected andf (x; z), g(z) are locally Lipschitz onRn � Rm .

SupposeY � Rn is a globally asymptotically stable set of_x = f (x; 0) and the
equilibrium z = 0 of _z = g(z) is globally asymptotically stable. Suppose the integral
curves of the composite system are de�ned for allt � 0 and bounded. Then, the state set
(x; z) 2 (Y;0) of (2.79) is globally asymptotically stable.

Proof of Theorem 1.The proof follow along the lines of the proof of Theorem 10.3.1,
Corollary 10.3.3 in [Isidori, 1999]. Speci�cally,jjx(t)jj should be replaced byd(x(t); Y ).

If o � 2 it can be shown that the trajectories of the closed-loop system are bounded,
and by applying Theorem 1 the main result of the paper can be proved

Theorem 2. Let o � 2, � > � � , ~q = q � q� and ~� = � � � � . The state set

M = f (� hb; q; � ) 2 Ro � Rn � Rn j � hb 2 M ^ ~q = ~� = 0 g: (2.80)

is globally asymptotically stable for the closed loop system (2.75)-(2.77). In particular

lim
t !1

d(� (t); M ) = 0 ; (2.81)

and
_� = 0 ; 8� 2 M; (2.82)

where� = (� hb; q; � ).

The theorem above concludes the summary of contributions. In the following chapter,
conclusions on the project will be drawn and suggestions to future work will be given.
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3 Conclusion

In this chapter, the main conclusions from the work presented in the previous chapters
will be drawn. Following these, some suggestions to possible future research directions
will be given.

3.1 Conclusion

The work presented in this thesis considered an industrial case study consisting of a large-
scale hydraulic network underlying a district heating system subject to structural changes.
The problem of regulating the pressure drop at the end-usersusing a set of pumps in the
system was described, along with a set of decentralized control actions used in solving
the problem. The results from this work regards stability properties of the closed-loop
system, and can be divided into two main categories; practical output regulation using
proportional control actions and asymptotic output regulation using proportional-integral
control actions. Since the actuators in the system are constrained to non-negative actua-
tion, parts of the work considered control constrained to non-negative values. Other parts
considered quantized control actions because of the need tosend these across a �nite
bandwidth network. Lastly, some of the results considered suggestions to mappings from
the control actions to the actuator inputs since the system is over actuated.

The results regarding the proportional control actions were collected in [Jensen and
Wisniewski, 2011d], where it was shown that the trajectories of the closed-loop system
remains bounded when using constrained and quantized proportional control actions. Fur-
thermore, with high gain control, the output regulation error can be made arbitrarily small.
These results are global in the state space and valid for an arbitrary number of end-users.
Therefore, it is concluded that end-users can be added to or removed from the system
while maintaining the stability properties. Lastly, a suggestion to a mapping from the
control actions to the actuator inputs was given in [DePersis et al., 2010]. This mapping
has the property that it guarantees that non-negative control actions are mapped to non-
negative actuator inputs. Thus, it guarantees that the constraints on the actuators are not
violated.

The result in [DePersis et al., 2011] regarding proportional-integral control actions
showed that when no positivity constraints on the actuatorsare assumed, then the desired
steady state is global asymptotically stable for the closed-loop system with arbitrary pos-
itive control gains. This result was extended in [Jensen et al., 2011], where a dynamic
mapping from the control actions in [DePersis et al., 2011] to the actuator inputs was in-
troduced. The purpose of this mapping was to minimize the steady state electrical power
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consumption of the actuators in the system. The results showed that for systems with two
or less of the so-called boosting pumps, global asymptotic output regulation with minimal
power consumption can be proved. Again, since these resultsare global in the state space
and valid for an arbitrary number of end-users, it is concluded that end-users can be added
to or removed from the system, while maintaining the closed-loop stability properties.

3.2 Future Work

This section provides some suggestions to future research directions on the system con-
sidered in the paper. These suggestions are based both on limitations on some of the
presented results and on more general issues which have yet to be addressed.

� Since the control signals needs to be sent over a communication network, stability
analysis of the closed-loop system with delays in the communication network will
be relevant.

� The results in [Jensen and Wisniewski, 2011d] and [Jensen and Wisniewski, 2011a]
rely on the conjecture thaty�

i < r i for i = 1 ; 2; : : : ; n, which has yet to be proved
for an arbitrary numbern of end-users.

� The results regarding the proportional-integral control actions will need to be ex-
tended to the case of control constrained to non-negative values and quantized con-
trol, similar to the way it has been done for the case of proportional control actions,
since the actuators in this type of system will typically be restricted to provide
non-negative actuation only.

� The result regarding the proportional-integral control actions with the steady state
energy minimization scheme holds for networks with two or less boosting pumps.
A generalization to an arbitrary number of boosting pumps will be preferable. Fur-
thermore, the result relies on a simpli�ed version of the system power function.
Future work could consider a similar result but with a more realistic power func-
tion of the system.

� The results presented have been focused on the district heating system, which is a
closed network without capacitive elements. An extension to open networks and
networks with capacitive elements could be included in future work. Examples
of these types of networks include irrigation networks and water supply systems,
where reduction of the water losses in these systems could beof interest.
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1 Introduction

Abstract

It was shown previously that semi-global practical pressure regulation at desig-
nated points of a large-scale nonlinear hydraulic network is guaranteed by distributed
proportional controllers. For a correct implementation ofthe control laws, each con-
troller, which is located at these designated points and which computes the control
law based on local information only (measured pressure drop), is required to transmit
the control values to neighbor pumps, i.e. auxiliary pumps which are found along
the same fundamental circuit. In this paper we show that quantized controllers can
serve well to this purpose. Besides a theoretical analysis of the closed-loop system,
we provide experimental results obtained in a laboratory district heating system. This
approach is fully compatible with plug-and-play control strategies.

1 Introduction

This work is part of an on-going research on the design of control laws for large-scale
non-linear hydraulic networks required to be implementable in aplug-and-playfashion,
namely to be easily recon�gurable when new sensors, actuators or components are added
to the existing control system.

The large-scale hydraulic network underlies a district heating system with an arbitrary
number of end-users. The problem consists of regulating thepressure at the end-users to
a constant value despite the unknown demands of the users themselves. The regulation
problem is addressed for a new generation of district heating systems, where multiple
pumps are distributed across the network at the end-users. In these new large-scale heat-
ing systems, the diameter of the pipes is decreased in order to reduce heat dispersion. The
reduced diameter of the pipes increases the pressure losseswhich must be compensated
by a larger pump effort. The latter can be achieved only with the multi-pump architec-
ture ([1]). Besides the reduced heat losses, having multiple pumps distributed across the
network makes it robust to the failure of one or more pumps. However, this issue is not
considered in the paper. Moreover, we do not take into account the problem of damping
fast pressure transients due to water hammering, as this problem is not to be handled by
our controller, but by well-placed passive dampers in the network.

There is a large number of works devoted to large-scale hydraulic networks, and more
in particular to water supply systems. A recent paper with anextended bibliography on
the modeling and control of hydraulic networks is [2], in which the emphasis is on “open”
hydraulic networks, as found in irrigation channels, sewernetworks and water distribution
systems. Papers which deal with various control problems for open hydraulic networks
include [3], [4] and references therein.

In our application, however, the network is ”closed”. Similar networks and models
arise for instance in mine ventilation networks and cardiovascular systems. These classes
of systems are the motivation for the works [5], [6], [7], where nonlinear adaptive con-
trollers are proposed to deal with the presence of uncertainparameters. Other systems
close to the one considered here are nonlinear RLC circuits (see e.g. [8] and references
therein).

Preliminary results on the case study of interest in this paper have appeared in [9],
[10] and [11] (the contribution of the latter compared with the present paper is discusses
later below). In [9], the control law was designed for a reduced-scale laboratory set-up
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of a district heating system. A general model for a large class of hydraulic networks was
derived in [10], and distributed proportional controllerswere designed. Since centrifugal
pumps are used in these hydraulic networks and those are pumps which can only provide
a positive control action, the positivity constraint on thecontrol law was explicitly taken
into account.

In this paper, we face the following control problem. For a correct implementation
of the control laws of [10], each controller, which is located at the end-user and which
computes the control law based only on local information (measured pressure drop), is
required to transmit the control values to “neighbor” pumps, i.e. auxiliary pumps which
are found along the same circuit where the end-user lies. Dueto physical constraints
and the large-scale nature of the system, it is convenient totransmit information “spo-
radically”. This motivates us to investigate the possibility to achieve the previous control
objective (pressure regulation) by quantized controllers([13], [14], [15], [16]). These
controllers take value in a �nite set (and therefore controlvalues can be transmitted over
a �nite-bandwidth communication channel) and change theirvalues only when certain
boundaries in the state space are crossed. Since the feedback control action delivered
by each pump makes use of local information only (pressure drop measured at the pump
itself), it lends itself to be fully compatible with the plug-and-play-control strategy.

Controllers motivated by a similar need of being implemented in an industrial net-
worked environment have been investigated in [4], as a result of an optimal control prob-
lem, and in [11], where binary controllers were employed. Quantized controllers were
introduced as well, but no explicit proof was given.
Quantized controllers change their values less abruptly than binary controllers, thus re-
ducing the fatigue of the actuators. Moreover, the prescribed control goal by quantized
controllers is achieved with less control effort at steady state. Finally, while in [11] only
simulations were presented, here we discuss experimental results obtained in a laboratory
district heating system.

In Section 2, the class of hydraulic networks of interest in this paper is recalled. In
Section 3, the quantized control strategy is analyzed. Experimental results are discussed
in Section 4. Conclusions are drawn in Section 5.

2 Large-scale hydraulic networks

We introduce the model of a large-scale hydraulic network underlying a district heating
system. The model is taken from [10], [11] to which we refer the reader for further details.

Hydraulic networks

An hydraulic network is a connection of two-terminal components such as valves, pipes
and pumps (see Fig. 4.3, for a diagram of an hydraulic network), whose constitutive laws
put in relation the pressure drop� h = hi � hj across the element and the �owq through
the element. We brie�y recall the constitutive laws of thesecomponents.
A valveis characterized by the algebraic relation

hi � hj = � (K v ; q)

whereK v is the hydraulic resistance of the valve, and� is a smooth function of its ar-
guments which, for each �xed value ofK v is zero at zero and strictly increasing. The
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constitutive law of apipeis a dynamic relation of the type

J
dq
dt

= ( hi � hj ) � � (K p; q)

with J; K p parameters and� a function which enjoys the same properties of the function
� . Finally, a (centrifugal)pumpis a device which delivers the desired pressure difference
hi � hj no matter what is the �ow through it. The constitutive law of the pump is

hi � hj = � � hp

where� hp is a nonnegative function of time which is viewed as a controlinput.
The value of the parametersK v ; K p are typically unknown and we shall assume they
range over a compact sets of strictly positive values, denoted byP. Similarly, the func-
tions �; � are not precisely known, and in fact knowing them is not necessary for the
analysis, at least as far as the two properties of smoothnessand monotonicity are guar-
anteed. We will distinguish between end-user valves and theother valves, allowing the
former to change the value of the hydraulic resistance in a piece-wise constant fashion,
and between the end-user pumps – located in the vicinity of the end-user valves – and the
boosting pumps, that is pumps used to ful�ll constraints on the relative pressures across
the network which the end-user pumps alone – mainly used to meet the demands of the
end-users – could not ful�ll.

Model

To derive a model for these systems, it is convenient and natural to resort to tools in cir-
cuit theory ([17]). We will not review all the details here, referring the interested reader
to [17], [10]. Rather, we will only recall the few notions which are needed to follow
the developments below. In particular, we associate to the hydraulic network a graph
G whose nodes are the terminals of the network's components and whose edges are the
components themselves. Then a set ofn � 1 independent�ow variables (i.e. a set of �ow
variables whose value can be set independently from all the other �ows in the network)
are singled out. These independent �ows coincide with the �ows through the so-called
chordsof the graph ([17], [10]). A fundamental loop is associated to each chord, and
along each fundamental loop Kirchhoff's voltage law holds,that isB � h = 0n � 1, where
B is called thefundamental loop matrix, i.e. a matrix of� 1; 1; 0 whose value depends
on the topology of the circuit, and� h is the vector of all the pressure drops across the
components of the network.
The class of hydraulic networks which are important for our case study satis�es the fol-
lowing two assumptions:

Assumption 4. Each user valve is in series with a pipe and a pump, see Fig. 4.1. More-
over, each chord inGcorresponds to a pipe in series with a user valve.

Assumption 5. There exists one and only one component called theheat source. It cor-
responds to a valve1 of the network, and it lies in all the fundamental loops.

1The valve models the pressure losses in the secondary side ofthe heat exchanger of the heat source.
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Figure 4.1: The series connection associated with each end-user.

The following result holds ([10]):

Proposition 8. Any hydraulic network satisfying Assumption 4 obeys the equations

J _q = f (K p; K v ; B T q) + ~u
yi = � i (kvi ; qi ) ; i = 1 ; 2; : : : ; n

(4.1)

with q 2 Rn the vector of independent �ows,~u 2 Rn a vector ofn independent inputs,
yi the measured pressure drop across thei th end-user valve,J = J T > 0 an n � n
matrix,K p; K v vectors of parameters,f (K p; K v ; B T q) a smooth vector �eld,� i (kvi ; qi )
the constitutive law of thei th end-user valve.

The model has some nice features among which we recall the following, which states
that if all the �ows in the network have positive sign and there is no input action, then all
the entries of the �ow velocity vectorJ _q are strictly negative. Namely we have ([10]):

Lemma 1. Under Assumptions 4 and 5,q 2 Rn
+

2 implies� f (K p; K v ; q) 2 Rn
+ .

The input vector~u deserves a few comments too. As a matter of fact, it can be shown
([10]) that ~u = B � hp, with B , the fundamental matrix recalled above, and� hp, the
vector of pump pressures, taking respectively the form

B =
�

I I F 0
�

; � hp =

0

@
0

� he
p

� hb
p

1

A ;

with � he
p, � hb

p the vectors of pressures delivered by the end-user pumps and, respec-
tively, the boosting pumps. The sub-matrixF 0 turns out to have allnon-negativeentries
as a consequence of Assumption 2.

Communication Topology

We have just established that the control law~u is a linear combination of vectors� hb
p

and� he
p. Since the pumps in the network are centrifugal pumps which cannot deliver

2Rn
+ denotes the positive orthant ofRn , i.e. the setf q 2 Rn : qi > 0 ; i = 1 ; : : : ; n g.

50



2 Large-scale hydraulic networks

negative pressures, having a positive control law~u is essential. Suppose a control law
exists which produce non-negative control actions (see [10] and Section 3 below). How
should these control actions be mapped to pump pressures in order to keep the positivity
constraints? Below we build a graph which describes this mapping. It also results in a
way to distribute the control effort among the end-user pumps and the boosting pumps.

De�ne the followingk sets:

H b
j = f ~ui 2 f ~u1; : : : ; ~un g : F 0

ij 6= 0 g; j = 1 ; : : : ; k

wherek is the number of boosting pumps in the system. That is:H b
j is the subset of

the control actions to which� hb
pj contributes. The following assumptions are made

regarding the sets:

Assumption 6. There exists one boosting pump� hb
pi for whichH b

i = f ~u1; : : : ; ~un g.

This assumption corresponds to the statement that there exists one boosting pump
which is providing actuation to all the fundamental �ow loops. Since a boosting pump
will be located in connection with the heat source this assumption will generally be ful-
�lled.

A hierarchy (tree) among the boosting pumps is now constructed. The starting point
is the forward treeTf (see [10]). The tree is constructed by removing all edges from
Tf which does not correspond to a boosting pump. The boosting pump � hb

pi for which
H b

i = f ~u1; : : : ; ~un g will be the root of the tree.
Using this tree it is then possible to de�ne the pressures which each pump must de-

liver. Each boosting pump needs to calculate:

� hb
pi = � i

 

min
~u j 2H b

i

~uj � � hb
p+

!

(4.2)

where� hb
p+ is the actuation provided by the boosting pumps located above � hb

pi in the
tree (� hb

p+ = 0 if the boosting pump� hb
pi is the root of the tree), and0 < � i < 1 is the

scaling factor which leaves some fraction of the actuation to the end-user pumps.

Remark3: The signal� hb
p+ can be calculated at the boosting pump located immediately above

� hb
pi in the tree and thus communicated from here.

Each end-user pump then only need to subtract the boosting pump actions from their
respective control actions:

� he
pj = ~uj �

kX

i =1

F 0
ji � hb

pi ; j = 1 ; : : : ; n : (4.3)

To implement (4.2), the boosting pumps must communicate each other their control effort
according to the topology described by the tree. Moreover, let i 2 f 1; 2; : : : ; kg and
j 2 f 1; 2; : : : ; ng be such that~uj 2 H b

i . Then the controllerj , which is located at the
end-user pumpj and which computes the control law~uj , must communicate~uj to the
boosting pumpi . Finally, each boosting pumpi must also communicate� hb

pi to the end-
user pumpsj for whichF 0

ji 6= 0 (see (4.3)). In the next section, we propose control laws
which the pumps can communicate each other.
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3 Pressure regulation by quantized control

Motivation

We are interested in the problem of designing a set ofdistributed controllers which
regulates each output (the pressure drop at the end-user valve) yi to the positive set-
point reference valuer i , with r = ( r1; : : : ; rn ) 2 R ranging in a known compact set,
namelyR = f r 2 Rn : 0 < r m � r i � rM ; i = 1 ; : : : ; ng (although typically
r1 = : : : = rn = 0 :5 [bar]). We start from a set of proportional controllers of the
following form

~ui =
�

� N i (yi � r i ) ; yi � r i � 0
0 ; yi � r i � 0 ;

(4.4)

whereN i > 0 is the controller gain. These controllers were studied in [10].
Since controllers and pumps are distributed across the network and hence geograph-

ically separated, it is important to investigate a way in which the control laws (4.4) can
actually be communicated to the pumps (see Subsection 2). Inthis section, we propose to
usequantizedcontrol laws and prove that a quantized version of (4.4) achieves the control
objectives.
By quantized control is meant a piece-wise constant controllaw which takes values in
a �nite set. The state place is partitioned into a �nite number of regions, and a control
value is assigned to each one of the regions. The transitionsfrom one control value to
another take place when the state crosses the boundaries of the regions. Since quantized
control laws take value in a �nite set, in principle these values can be transmitted over
a �nite bandwidth communication channel. Quantized control for nonlinear systems has
been investigated in a number of papers, among which we recall [18], [13], [14], [15],
[16]. Here, we extend the results of [16], where a quantized version of the so-called semi-
global backstepping lemma was proven, to the case in whichmultiple positiveinputs are
present. To the best of our knowledge, this is the �rst time a class of quantized controllers
for a nonlinear multi-input industrial process is investigated.

Quantized controllers

Let  : R+ ! R+ be the map (remember that~ui 2 R+ , see (4.4))

 (u) =

8
><

>:

 i ;
 i

1 + �
< u �

 i

1 � �
; 0 � i � j

0 ; 0 � u �
 j

1 + �

(4.5)

In the de�nition above,j is a positive integer,u0 is a positive real number,� 2 (0; 1), and
 i = � i  0 for i = 1 ; 2; : : : ; j with � = 1� �

1+ � . The parametersj;  0; � are to be designed.
The map is known aslogarithmicquantizer ([18]).
Consider now the quantized version of the control law (4.4) and the resulting closed-loop
system, namely

J _qf = f (K p; K v ; B T qf ) + 	(~ u) ; (4.6)

with ~u as in (4.4) and	(~u) = (  (~u1) : : :  (~un ))T . Since	(~u) is a discontinuous func-
tion of the state variables, the closed-loop system (4.6) isa system with discontinuous
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3 Pressure regulation by quantized control

right-hand side. For this system the solutions are intendedin the Krasowskii sense, a
notion which is here brie�y recalled:

De�nition 3. A curve' : [0; + 1 ) ! Rn is aKrasowskii solutionof a system of ordinary
differential equations_x = G(t; x ), whereG : [0; + 1 )� Rn ! Rn , if it is absolutely con-
tinuous and for almost everyt � 0 it satis�es the differential inclusion_x 2 K (G(t; x )) ,
whereK (G(t; x )) = \ �> 0co G(t; B � (x)) andcoG is the convex closure of the setG.

Recalling [19], Theorem 1, Properties 2), 3) and 7), we can state that the Krasowskii
solutions of (4.6) are absolutely continuous functions which satisfy the differential inclu-
sion

J _qf 2 f (K p; K v ; B T qf ) + v ; (4.7)

wherev 2 K (	(~u)) , K (	(~u)) � � n
i =1 K ( (~ui )) and ([16])

K ( (~ui )) �

8
>>>><

>>>>:

f (1 + �� )~ui ; � 2 [� 1; 1]g
u j

1+ � < ~ui � u0
1� �

f � (1 + � )~ui ; � 2 [0; 1]g
0 � ~ui � u j

1+ �

(4.8)

The result below proves that quantized controllers can steer any initial state included
in an arbitrarily large set to an arbitrarily small neighborhood of the desired reference
value. In what follows, the following terminology will be inuse: a trajectory isattracted
by a setS if it is de�ned for all t � 0, and it belongs toS for all t � T , with T > 0 a
�nite time. Our control goal is the following:

Proposition 9. For any choice of the parameterqM > 0, any compact setR � R+ , any
compact setQ of initial conditions described by

Q = f q 2 Rn : jqi j � qM ; i = 1 ; � � � ; ng ; (4.9)

for any arbitrarily small positive number
 , and for any value of the quantization param-
eter � 2 (0; 1) there exist gainsN �

i > 0 and parameters 0; j of the quantizer such that
for all N i > N �

i , for anyr 2 R , any Krasowskii solutionqf (t) of the closed-loop system
(4.6), (4.4) with initial condition inQ is attracted by the setf � 2 Rn : j� i j � 
 ; i =
1; 2; : : : ; ng, where� i = yi � r i .

The proof is omitted due to space limitation and it can be found in [12].
We cannot exclude that sliding modes may arise along those (switching) surfaces

where� N i (� i (K vi ; qf i ) � r i ) =  j (1 + � )� 1 for somei; j . This would give raise to
chattering and it would jeopardize the possibility of transmitting the control values over
a communication network, since a large bandwidth would be required. To this regard, we
observe that it is always possible to replace the quantizers(4.5) with quantizers for which
sliding modes are guaranteed to never occur. We follow the arguments of [16] and [14].
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Let us introduce a new quantizer described by the following multi-valued map:

 m (u) =

8
>>>>>>>>>><

>>>>>>>>>>:

 i ;
 i

1 + �
< u �

 i

1 � �
;

0 � i � j
 i

1 + �
;

 i

(1 + � )2 < u �
 i

1 � � 2 ;

0 � i � j

0 ; 0 � u �
 j

1 + �

(4.10)

Fig. 4.2 gives a pictorial representation of the map in the casej = 1 . Compared with the
previous quantizer, in the quantizer (4.10) there are additional quantization levels equal
to �  i

1+ � , i = 0 ; 1; : : : ; j . The �gure helps to understand how the switching occurs with
these quantizers. Suppose for instance that m (u) =  1, u is decreasing and hits the
point  1(1 + � )� 1 (in the Figure this situation corresponds to point o). Then aswitching
occurs and m (u) =  1(1 + � )� 1 (i.e. there is a jump from o to a in the Figure). If
u decreases and becomes equal to 1(1 + � )� 2 (point b), then a new transition occurs
(b! c). If, on the other hand,u increases until it reaches the value 0(1 + � )� 2 (pointe)
then a transition takes place frome to p.
From the above description it should be clear that the new quantization levels and the new
switching mechanism prevent the system to experience sliding modes and chattering. For
the sake of simplicity we shall refer to these quantizers as quantizers with hysteresis. One
may then wonder whether Proposition 9 still holds. The answer is positive since the new
quantization levels belong to the sets on the right-hand side of (4.8), and Proposition 9
was proven letting each componentvi of v range over these sets. Hence Proposition 9 is
still valid if we replace the quantizers (4.5) with the quantizers (4.10). The experimental
results we present below are obtained using the quantizers with hystersis just introduced.

4 Experiments

This section presents experimental results obtained usingthe proposed controllers on a
specially designed setup. The setup corresponds to a “small” district heating system
with four end-users with a network layout as the system shownin Fig. 4.3. Although
this number is by far less than the number of end-users expected in real district heating
systems, it makes it possible to build an operational setup in a laboratory, and it covers
the main features of a real system. A picture of the test setupis shown in Fig. 4.4.

The design of the piping of the test setup is aimed at emulating the dynamics of a real
district heating system. However, due to physical constraints, the dynamics of the setup
are approximately 5 to 10 times faster than the dynamics expected in a real system.

The natural disturbances in district heating systems are valve changes. However, the
valves on the test setup are slow motor valves that are unableto excite the dynamics of the
system. Therefore, to exemplify the performance of the controllers, the system response
to a step in the references is tested. The references are changed from 0.2 [bar] to 0.45
[bar] and then back to 0.2 [bar].
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-

6 m (u)

u

1 � �

1 + �
 0

 0

1 + �

 1

1 + �
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 0 (1 + � ) � 2

 1

 0 (1 + � ) � 1 1 (1 + � ) � 1

Figure 4.2: The multi-valued map m (u) for u > 0, and withj = 1 .

dp
4
 dp
3

Pump 1:


UPE 25-60


dp
2
 dp
1


p
 p
p
p


p
 p
 p
 p


Diff. pres.


Elec. control

valve


Relativ. pres.


Relativ. pres.
Relativ. pres.


Pump 3:

UPE 25-60


Pump 6:

UPE 25-60


Pump 2:

UPE 25-60


Pump 4:

UPE 25-60


Pump 5:

UPE 25-60


Relativ. pres.
Relativ. pres.
Relativ. pres.


Relativ. pres.
Relativ. pres.


Expansion tank

19 l


Diff. pres.
Diff. pres.
Diff. pres.


Elec. control

valve


Elec. control

valve


Elec. control

valve


Pipe, D: 20 mm,

Length: 25 m


Pipe, D: 20 mm,

Length: 25 m


Pipe, D: 20 mm,

Length: 15 m


Pipe, D: 20 mm,

Length: 15 m


Pipe, D: 20 mm,

Length: 20 m


Pipe, D: 20 mm,

Length: 20 m


Pipe, D: 20 mm,

Length: 15 m


Pipe, D: 20 mm,

Length: 15 m


Pipe, D: 10 mm,

Length: 6 m


Pipe, D: 10 mm,

Length: 6 m


Pipe, D: 10 mm,

Length: 6 m
Pipe, D: 10 mm,


Length: 6 m

Pipe, D: 10 mm,


Length: 6 m


Pipe, D: 10 mm,

Length: 6 m


Pipe, D: 10 mm,

Length: 9 m


Pipe, D: 10 mm,

Length: 9 m


Figure 4.3: A diagram of the hydraulic network of the test setup in Fig. 4.4. The system
contains four end-user pumps and two booster pumps.

Results obtained with the quantized controllers given by Proposition 9 are shown in
Fig. 4.5. The design parameters of the quantizers (4.5) are chosen as 0 = 1 , � = 0 :25,
andj = 3 . The gains of the controllers are set toN i = 1 :5, i = 1 ; : : : ; 4.

From the test results it is immediately seen that there is a steady state error between
the measured pressures and the reference pressures. This isdue to the use of quantized
proportionalcontrollers. Such steady state errors can be reduced by adjusting the gains
of the controllers. From the behavior of both the controlledpressures and the controller
inputs it is seen that the control system well-behaves and that the steady state is achieved
within a reasonably short period of time.

The experimental results con�rm the theoretical analysis,namely that semi-global
practical regulation of the plant is guaranteed by distributed quantized proportional con-
trollers. The experiments emphasize that relatively largedelays (as those introduced in
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Figure 4.4: A picture of the test setup. The marked valves model the primary side of the
heat exchanger of the end-users.
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Figure 4.5: The results obtained using the proposed quantized controllers. The top plot
shows the controlled pressures and the bottom plot shows thequantized control inputs.

these experiments by the hardware setup) can impose restrictions on the performance (os-
cillations) and on the accuracy of the controllers (large delays prevent from increasing the
gains of the controllers and in turn from reducing the regulation error).

5 Conclusions

The paper deals with the study of an industrial system distributed over a network. Pos-
itive quantized controllers have been proposed to practically regulate the pressure at the
end-users and experimental validation of the results has been provided. The actual imple-
mentation of the quantized controller over an actual communication network in a urban
environment is currently under investigation.
We plan to extend our �ndings to the case of proportional-integral controllers ([20], [21],
[22]), and to include constraints on the sign of the �ows as well ([9]). Other research di-
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5 Conclusions

rections will focus on controller redesign when new end-users are added to the network,
extension of the results to the case of open hydraulic networks ([2]), and robusti�cation
of the controllers to delays, the latter being a very important and challenging problem.

References

[1] F. Bruus, B. Bøhm, N.K. Vejen, J. Rasmussen, N. Bidstrup,K.P. Christensen, and
H. Kristjansson (2004). EFP-2001 Supply of district heating to areas with low heat
demand.Danish Energy Authority, JournalNo. 1373/01-0035 (In Danish).

[2] M. Cantoni, E. Weyer, Y. Li, S.K. Ooi, I. Mareels, and M. Ryan. Control of large-
scale irrigation networks.Proceedings of the IEEE, 95, 1, 75–91, 2007.

[3] Z. Wang, M.M. Polycarpou, J.G. Uber, F. Shang. Adaptive control of water quality
in water distribution networks.IEEE Transactions on Control Systems Technology,
14, 1, 149-156, 2006.

[4] P. Wan and M.D. Lemmon. Distributed �ow control using embedded sensor-actuator
networks for the reduction of combined sewer over�ow (CSO) events. Proc. 46th
IEEE Conference on Decision and Control, New Orleans, LA, 2007.
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1 Introduction

Abstract

Proportional feedback control of a large scale hydraulic network which is subject
to structural changes is considered. Results regarding global practical stabilization
of the non-linear hydraulic network using a set of decentralized proportional control
actions are presented. The results show that closed loop stability of the system is
maintained when structural changes are introduced to the system.

1 Introduction

An industrial case study involving a system distributed over a network is investigated. The
system is a large-scale hydraulic network which underlies adistrict heating system with an
arbitrary number of end-users. The case study considers a new paradigm for constructing
district heating systems [1]. The new paradigm is motivatedby the possibility of reducing
the overall energy consumption of the system while making the network structure more
�exible. However, the new system paradigm also calls for a new control architecture,
which is able to handle the �exible network structure [1].

The case study is a part of the research programPlug & Play Process Control[2] and
has been proposed by one of the industrial partners involvedin the research program. The
goal of the research program is automatic recon�guration ofthe control system whenever
components, such as sensors or actuators, are added to or removed from the system. In
the case of the district heating system, the addition (removal) of components could, for
instance, be due to the addition (removal) of one or more end-users to (from) the system.
Whenever such an addition or removal is made, the structure of the system is changed
and the control should accommodate the changes.

The control objective of the system in question is to regulate the pressure drops across
the so-called end-user valves in the hydraulic network to a given piecewise constant refer-
ence point. This goal shall be obtained in spite of the unknown demand of the end-users.
The controllers, which will be considered here, are a set of decentralized proportional
controllers, which use only locally available information. This control architecture has
been chosen, since it is expected that changes in the system structure can be easily han-
dled [3].

Previous work on a simple system with two end-users has shownthat high-gain pro-
portional controllers semi-globally stabilizes the closed loop system towards a set of
attractors [4]. The results show that whenever the controller gains are large enough,
the basin of attraction contains the set of all possible initial conditions of the system.
However, if changes to the structure of the system is introduced, such as the addition
or removal of end-users, the results cannot guarantee closed loop stability of the newly
obtained system without proper redesign of the controller gains.

The results presented here are threefold. First, the results are applicable for a large-
scale hydraulic network, since no assumptions are made regarding the number of end-
users in the system. Secondly, the proposed control architecture is decentralized in the
sense that the individual controllers use only locally available information. Thirdly, the
results show that the closed loop system is globally practically stable with a unique equi-
librium point using a set of arbitrary positive controller gains.

Compared to previous results in [4], which are semi-global,the global result here
shows that the closed loop system will be stable regardless of the initial conditions. Fur-
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thermore, since the result is independent of the number of end-users, the system will also
be stable whenever components are added to or removed from the system, since the initial
conditions of the newly obtained system are guaranteed to belong to the basin of attrac-
tion. This, along with the fact that the control scheme is decentralized, makes structural
changes in the system easy to implement.

In Section 2, the models of the individual system componentsas well as the model of
the hydraulic network are presented along with the proposedcontrollers. The closed loop
properties of the system is derived in Section 3. Section 4 provides a proof of an important
intermediate proposition, which is used to derive the closed loop stability properties of
the system.

Nomenclature

Let Rn denote then-dimensional Euclidean space, with the scalar productha; bi be-
tween two vectorsa; b 2 Rn . For a vectorx 2 Rn , x i denotes thei 'th element of
x. Let M (n; m; R) denote the set ofn � m matrices with real entries, andM (n; R) =
M (n; n; R). For a matrixA , the notationA ij will be used to denote the entry in thei 'th
row andj 'th column ofA . For a square matrixA , A > 0 means thatA is positive de�-
nite, i.e.,A = A T andxT Ax > 08x 6= 0 . For a square matrixA , A = diag(x i ) means
thatA hasx i as entries on the main diagonal and zero elsewhere. Throughout the follow-
ing, C1 denotes a continuously differentiable function (map), andall functions (maps)
introduced will be assumedC1. A continuous function (map)f : X ! Y is said to be:
an injectionif it is into, i.e., for everya; b 2 X , if f (a) = f (b) thena = b; a surjection
if it is onto, i.e., if for everyy 2 Y there exists at least onex 2 X such thatf (x) = y;
a bijectionif it is both aninjectionand asurjection; a homeomorphismif it is a bijection
with a continuous inversef � 1; adiffeomorphismif it is a bijectionwith aC1 inversef � 1.
A continuous function (map) is said to beproper if the inverse image of a compact set is
compact. A functionf : R ! R is called monotonically increasing if it is order preserv-
ing, i.e., for allx andy such thatx � y thenf (x) � f (y). The open ball with radiusr
and centred inx is denotedB r (x), i.e.,B r (x) = f y 2 Rn jj y � x j < r g. Likewise, the
corresponding closed ball is denoted�B r (x), i.e., �B r (x) = f y 2 Rn jj y � x j � r g.

2 System Model

The system under consideration is a hydraulic network underlying a district heating sys-
tem. The model has been derived in detail in [3] and will be recalled here but in fewer
details.

The hydraulic network consists of a number of connections between two-terminal
components, which can be valves, pipes and pumps. The systemcomponents are charac-
terized by dual variables, the �rst of which is the pressure drop � h across them

� h = hi � hj ; (5.1)

wherei; j are nodes in the network;hi ; hj are the relative pressures at the nodes.
The second variable characterizing the components is the �uid �ow q through them.

The components have algebraic or dynamic expressions governing the relationships be-
tween the two variables.
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Valves

Valves in the network are governed by the following algebraic expression

hi � hj = � (kv ; q); (5.2)

wherekv is the hydraulic resistance of the valve;� (kv ; q) is aC1 and proper function,
which for any �xed value ofkv is zero atq = 0 and monotonically increasing. Further-
more,� (0; �) = 0 .

Pipes

Pipes in the network are governed by the dynamic equation

J _q = ( hi � hj ) � � (kp; q); (5.3)

whereJ andkp are parameters of the pipe;� (kp; q) is a function with the same properties
as� (kv ; q).

Pumps

A (typically centrifugal) pump is a component which delivers a desired pressure differ-
ence� h regardless of the value of the �uid �ow through it. Thus, the pumps in the
network are governed by the following expression

hi � hj = � � hp; (5.4)

where� hp is a non-negative control input.

Component Model

A generalised component model can be made using the following expression

� h = J _q + � (kp ; q) + � (kv ; q) � � hp (5.5)

whereJ ; kp are non-zero for pipe components and zero for other components;kv is non-
zero for valve components and zero for other components;� hp is non-zero for pump
components and zero for other components.

The values of the parameterskp andkv are typically unknown, but they will be as-
sumed to be piecewise constant functions of time ranging over a compact set of non-
negative values. Likewise, the functions� (kv ; q) and� (kp ; q) are not precisely known,
only their properties of beingC1, monotone and proper are guaranteed. The varying heat-
ing demand of the end-users, which is the main source of disturbances in the system, is
modelled by a (end-user) valve with variable hydraulic resistance. In the network model,
a distinction is to be made between end-user valves and the rest of the valves in the net-
work. Two types of pumps are present in the network; the end-user pumps, which are
mainly used to meet the demand at the end-users, and booster pumps which are used to
meet constraints on the relative pressures in the network [5].
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Network Model

The network model has been derived using standard circuit theory [3]. The hydraulic
network consists ofm components andn end-users (m > n ). The network is associated
with a graphGwhich has nodes coinciding with the terminals of the networkcomponents.
The edges of the network are the components themselves. By the use of graph theory, a
set ofn independent �ow variablesqi have been identi�ed. These �ow variables have the
property that their values can be set independently from other �ows in the network. The
independent �ow variables coincide with the �ows through the chords of the graph [3].
To each chord in the graph, a fundamental (�ow) loop is associated, and along this loop
Kirchhoffs voltage law holds. This means that the followingequality holds

B�h = 0; (5.6)

whereB 2 M (n; m; R) is called the fundamental loop matrix;�h is a vector consisting
of the pressure drops across the components in the network.

The entries of the fundamental loop matrixB are� 1; 1or0, dependent on the network
topology. For the case study in question, the hydraulic network underlies a district heating
system. Because of this, the following statements can be made regarding the network.

Assumption2.1: [3] Each end-user valve is in series with a pipe and a pump, as seen in Fig. 5.1.
Furthermore, each chord inGcorresponds to a pipe in series with a user valve.

Assumption2.2: [3] There exists one and only one component called the heat source. It corresponds
to a valve1 of the network, and it lies in all the fundamental loops.

Remaining network

Pump

Valve

Pipe

q
i

Figure 5.1: The series connection associated with each end-user [3].

Proposition 10. [3] Any hydraulic network satisfying Assumption 2.1 admitsthe repre-
sentation

J _q = f (K p; K v ; B T q) + u (5.7)

yi = � i (kvi ; qi ) ; i = 1 ; : : : ; n; (5.8)

1The valve models the pressure losses in the secondary side ofthe heat exchanger of the heat source.
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whereq 2 Rn is the vector of independent �ows;u 2 Rn is a vector of independent
inputs consisting of a linear combination of the delivered pump pressures;yi is the mea-
sured pressure drop across thei th end-user valve;J > 0 2 M (n; R); K p; K v are vectors
of system parameters;f (K p; K v ; �) is aC1 vector �eld; � i (kvi ; �) is the fundamental law
of thei th end-user valve. In (5.8), it is assumed that the �rstn components coincide with
the end-user valves.

Under Assumption 2.1 and Assumption 2.2, it is possible to select the orientation of
the components in the network such that the entries of the fundamental loop matrixB are
equal to1 or 0, whereB ij is 1 if componentj belongs to fundamental �ow loopi and0
otherwise.

De�ning the vector of �ows through the components in the system asx = B T q 2
Rm , the vector �eldf (K p; K v ; �) can be written as [3]

f (K p; K v ; x) = � B (� (K p; x) + � (K v ; x)) ;

(5.9)

8x 2 Rm ;
where� (K p; �) = [ � 1(kp1; x1); : : : ; � m (kpm ; xm )]T ;
� (K v ; �) = [ � 1(kv1; x1); : : : ; � m (kvm ; xm )]T , andkpi is non-zero for pipe components
andkvi is non-zero for valve components.

The matrixJ in (5.7) is given by

J = B J B T (5.10)

whereJ = diag(J 1; : : : ; J m ) andJ i is non-zero for pipe components.
The inputu to the system deserves a few comments as well. De�ne the vectors�h pe

and�h pb as the vectors of pump pressures delivered by respectively the end-user pumps
and the booster pumps. Thenu is given as

u = �h pe + F�h pb (5.11)

whereF 2 M (n; k; R) is the sub-matrix ofB which maps the booster pumps to the
fundamental �ow loops;k is the number of booster pumps in the network.

A sketch of a simple district heating system with a heat source and two apartment
buildings is illustrated in Fig. 5.2. The corresponding hydraulic network is illustrated in
Fig. 5.3. The two end-users are represented by the series connectionsf c12; c13; c14g and
f c5; c6; c7g. The heat source is represented by the valvef c10g which models the pressure
losses in the secondary side of the heat exchanger of the heatsource.

It is desired to regulate the pressureyi across thei th end-user valve to a given ref-
erence valuer i with the use of a feedback controller using locally available information
only. The desired reference value of the pressure across theend-user valve is assumed to
be a piecewise constant function of time, and it ranges in a known set[rm ; rM ]. Thus, the
vectorr = ( r1; : : : ; rn ) of reference values takes values in a known compact setR

R = f r 2 Rn jrm � r i � rM g: (5.12)

For the purpose of practical output regulation, a set of decentralized proportional con-
trollers will be the focus of the work presented here. The controllers considered will be
of the form

ui = � 
 i (yi � r i ) ; i = 1 ; : : : ; n; (5.13)
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Figure 5.2: A sketch of a small district heating system.
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Figure 5.3: The hydraulic network diagram.

where
 i > 0 is the controller gain at end-useri .
The pressure control for thei th end-user valve use only the pressure measurement ob-

tained at said valve. Thus, the controllers are decentralized in the sense that the individual
controller use only locally available information.

3 Stability Properties of Closed Loop System

In this section, the main result regarding the closed loop stability properties of the feed-
back control system introduced in the previous section willbe presented.

To simplify the notation,f K (�) will be used to denotef (K p; K v ; �). Likewise,� K (�)
and� K (�) will be used to denote� (K p; �) and� (K v ; �). The closed loop system de�ned
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by (5.7), (5.8) and (5.13) is given by

J _q = f K (B T q) � � (y (q) � r ): (5.14)

where� = diag(
 i ).
Subsequently, a more speci�c class of functions will be usedin the expressions of

� (kv ; �) and� (kp; �). This more speci�c class is motivated by the presence of turbulent2

�ows in the system [3]. The class of functions, which will be considered, is the following

� i (kvi ; x i ) = kvi jx i jx i (5.15)

� i (kpi ; x i ) = kpi jx i jx i (5.16)

An important intermediate result, which will be used for establishing the stability
properties of the closed loop system, is presented below.

De�ne the mapF : Rn ! Rn as follows

F(z) = y(z) � � � 1f K (B T z): (5.17)

Proposition 11. For the class of functions de�ned in (5.15) and (5.16), the map F :
Rn ! Rn de�ned in (5.17) is a homeomorphism.

The proof of Proposition 11 has been left out of this section to maintain the �ow of
the exposition, but can be found in Section 4.

As a consequence of Proposition 11, for any vectorr 2 R of output reference values,
there exists a unique vector of �owsq� 2 Rn such that

q� = F � 1(r ); (5.18)

which means thatr can be expressed in terms ofq� as

r = y(q� ) � � � 1f K (B T q� ): (5.19)

Using the identity in (5.19), the expression of the closed loop system in (5.14) can be
replaced by

J _q = ~f K (q; q� ) � � (y (q) � y (q� )) ; (5.20)

where~f K (q; q� ) = f K (B T q) � f K (B T q� ). Recall that the vectorq� 2 Rn is some
unknown but unique vector of �ows, which is constant for every constant vectorr of
reference values.

Proposition 12. The pointq� de�ned by (5.18) is a globally asymptotically stable equi-
librium point of the closed loop system de�ned by (5.7), (5.8) and (5.13).

Proof of Proposition 12.De�ne the variable~q = q � q� , and the functionV (~q) as

V (~q) =
1
2

h~q; J~qi ; (5.21)

which has the properties

2Since the motivation for considering the new paradigm is reducing the diameters of the pipes used in the
network, the likelihood for turbulent �ows increases.
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� V (0) = 0

� V (~q) > 0 ; 8~q 6= 0

� lim jj ~q jj!1 V (~q) = 1 .

The time derivative ofV (~q) is given by

d
dt

V(~q) = h~q; J _qi , (5.22)

d
dt

V(~q) = hq � q� ; ~f K (q; q� ) � � [y (q) � y (q� )]i : (5.23)

The functions� i (kpi ; x i ) have the properties that they are monotonically increasing
and zero forx i = 0 , consequently it applies that

� (x i � x �
i ) [� i (kpi ; x i ) � � i (kpi ; x �

i )] < 0; 8x i 6= x �
i ) (5.24)

�
D

x � x � ; � K (x) � � K (x � )
E

< 0; 8x 6= x � : (5.25)

The map� K (x) has the same properties as� K (x), i.e., it consists of monotonically
increasing functions which are zero forx i = 0 . Due to these properties, the fact that
x = B T q and the identity in (5.9), the following inequality holds



q � q� ; f K (B T q) � f K (B T q� )

�
< 0; 8q 6= q� : (5.26)

Furthermore, sinceyi (qi ) is a monotonically increasing function which is zero at
qi = 0 , the inequality below is true

hq � q� ; y (q) � y (q� )i > 0; 8q 6= q� : (5.27)

Using (5.26) and (5.27) in (5.23) and observing that� > 0, the following inequality
is obtained

d
dt

V (~q) < 0; 8~q 6= 0 : (5.28)

As a consequence of the properties ofV (~q) and (5.28), the point~q = 0 is a globally
asymptotically stable equilibrium point of the closed loopsystem (see for instance [6],
Theorem 4.2). Considering the change of coordinates~q = q � q� it is concluded thatq =
q� is a globally asymptotically stable equilibrium point of the closed loop system.

Proposition 12 shows that for every constant vectorr and gain
 i > 0, there exists
a unique constant vectorq� such thatq� is a globally asymptotically stable equilibrium
point of the closed loop system. Note that only the properties of the functions� (kv ; q)
and� (kp ; q) being monotonically increasing and zero atq = 0 are used in the proof of
Proposition 12. This means that the control system is robusttowards uncertainties in the
system parameters.

With the �ows in the system converging toq� , the output of the system will converge
to the valuey � = y(q� ). Using (5.19), the following relation is given between the vector
r of reference values andq�

r � y (q� ) = � � � 1f K (B T q� ): (5.29)

68



4 Properties of F(q� )

Using the de�nition of� , thei 'th component is

r i � yi (q�
i ) = �

1

 i

f K
i (B T q� ): (5.30)

Letting 
 i ! 1 , the right hand side of (5.30) will converge to zero. From this it
can be seen that the use of large gains in the controller will let the output regulation error
become small.

Since the system is globally asymptotically stable atq� , the system state will converge
to q� regardless of the initial conditions. Furthermore, the stability property is indepen-
dent of the numbern of end-users. This has the consequence that �ow loops along with
their respective controllers can be added to or removed fromthe system without the need
for redesigning the controller gains in order for the systemto be stable. However, con-
troller gains may have to be redesigned for the purpose of ful�lling some speci�cations
on the regulation error. From 5.30, it can be seen that each individual controller can adjust
its own gain freely.

4 Properties ofF(q� )

This section provides a proof of Proposition 11, which has been used in deriving the
closed loop properties of the system.

For the speci�c class of� (kv ; �) and� (kp; �) de�ned in (5.15) and (5.16), the output
map (5.8) can be rewritten as

y = ( kv1 jq1jq1; : : : ; kvn jqn jqn )T ; (5.31)

which in turn can be rewritten as

y = H (q)q; (5.32)

whereH (q) 2 M (n; R) is given by

H (q) = diag(kvi jqi j); (5.33)

i = 1 ; : : : ; n.
Likewise, by substituting backx with B T q, the expression forf (K p; K v ; �) in (5.9)

can be rewritten as

f (K p; K v ; B T q) = � BN (B T q)B T q; (5.34)

whereN (B T q) 2 M (m; R) is given by

N (B T q) = diag((kvj + kpj )jB T
j qj); (5.35)

j = 1 ; : : : ; m; wherekvj is non-zero for valve components andkpj is non-zero for pipe
components;B j is thej th column ofB .

De�ne the function�F : Rn ! Rn as

�F(z) = �y (z) � f K (z): (5.36)
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For the speci�ed class of� (kv ; q) and� (kp; q), �F(z) can be written as

�F(z) = �H (z)z + BN (B T z)B T z; (5.37)

From the above, it can be established that�F(z) scales in the sense stated below

�F(� z) = � j� j �F (z); (5.38)

where� 2 R.
Furthermore, note thatg(� ) = � j� j is bijective, i.e. for every� 2 R there exists a

unique� 2 R such that
� = � j� j: (5.39)

The properties (5.38) and (5.39) are instrumental in the proof of Proposition 11.

Proof of Proposition 11.As a consequence of (5.27) and the fact that� > 0, the follow-
ing inequality is satis�ed

hz � z� ; � [y (z) � y (z� )]i > 0; 8z 6= z� : (5.40)

Likewise, from (5.26) the following inequality is obtained

�


z � z� ; f K (B T z) � f K (B T z� )

�
> 0; 8z 6= z� : (5.41)

A combination of these two inequalities gives


z � z� ; �F(z) � �F(z� )

�
> 0; 8z 6= z� : (5.42)

De�nition 4.1: [7]. Let f : X ! Y; X � Rn ; Y = Rn . Let the following inner product be
denoted by

hf (x 1) � f (x 2); x 1 � x 2 i � � (x 1 ; x 2):

Thenf is said to be increasing onX , or simply an increasing function if and only if

� (x 1 ; x 2) > 0; 8x 1 ; x 2 2 X andx 1 6= x 2 :

From (5.42) and De�nition 4.1, it can be seen that�F(z) is an increasing function for
every pointz 2 Rn .

Lemma4.1: [7]. Let f : U ! Rn , whereU is an open convex subset ofRn .

(a) If f is increasing onU, thenf is injective onU.

(b) If f is continuous and increasing onU, thenf is a homeomorphism onU3 and its inverse
function f � 1 : f (U) ! U is also increasing onf (U).

Since �F(z) is continuous and increasing for every pointz 2 Rn , it follows from
Lemma 4.1 that�F(z) is a local homeomorphism.

Proposition 13. For the speci�ed class of� (kv ; q) and � (kp ; q) de�ned in (5.15) and
(5.16), the map�F : Rn ! Rn de�ned in (5.17) is proper.

3f is a homeomorphism onU if and only if f : U ! V is a homeomorphism, whereV = f (U)
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Proof of Proposition 13.In the proof, the following lemma will be used.

Lemma4.2: [8]. Let f be a continuous map fromRn into Rn , thenf is a proper map if and only if:

lim
j x j!1

jf (x )j = 1

Thus, if �F(�) is proper it should ful�l

lim
j zj!1

j �F(z)j = 1 : (5.43)

Suppose by contradiction, that some sequencef zn gn 2 N exists, where

lim
n !1

jzn j = 1 (5.44)

and
�F(zn ) 2 B r (0); 8n 2 N; (5.45)

for somer 2 R.
Since�F(�) is a local homeomorphism, there exits some open setU � Rn containing

0 and an open setV � Rn , such that�F : U ! V is a homeomorphism. Furthermore, it is
known that0 2 V since�F(0) = 0 .

Because of the scaling property (5.38) of�F(�), there exists somêzn 2 Rn , � 2 R and
rV 2 R, such that

� ẑn = zn ; (5.46)

�F(zn ) = �F(� ẑn ) = � j� j �F (ẑn ) (5.47)

and
�F(ẑn ) 2 �B r V (0) � V ; (5.48)

whereẑn is unique for a speci�c choice of� .
However, this indicates that

ẑn 2 �K � U (5.49)

where �K = �F � 1( �B r V (0)) is some compact and thus bounded set.
This is a contradiction since

lim
n !1

jẑn j = j
1
�

j lim
n !1

jzn j = 1 (5.50)

Theorem 3. [8]. Let f be a map fromRn into Rn , thenf is a homeomorphism ofRn

ontoRn if and only iff is:

1) a local homeomorphism

2) a proper map
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From Theorem 3 it follows that�F(z) is a homeomorphism ofRn ontoRn .
Now, consider the linear transformationT : Rn ! Rn whereT (v) = � � 1v. Since

� � 1 is non-singular, the transformationT (�) is a diffeomorphism. Thus, the composition

(T � �F)(z) = y(z) � � � 1f K (B T z); (5.51)

is a homeomorphism.

SinceF : Rn ! Rn is a homeomorphism it is bijective and has a continuous inverse
F � 1

F(F � 1(r )) = r : (5.52)

5 Numerical Results

The proposed proportional controllers have been tested using numerical simulations. The
results of the simulations are shown in Fig. 5.4 and Fig. 5.5.The simulated system
consists of two end-users corresponding to the hydraulic network illustrated in Fig. 5.3.
The parameters used in the system are:J11 = 0 :3697; J12 = J21 = 0 :0559; J22 =
0:2738; kp2 = kp9 = 0 :0024; kp3 = kp8 = 0 :0012; kp4 = kp7 = 0 :0014; kp11 = kp14 =
0:0021; kv6 = kv13 = 0 :01; kv10 = 0 :0013. Furthermore, the functions� (kv ; �) and
� (kp ; �) used in the simulation are the ones introduced in Section 4.
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Figure 5.4: The �gure shows the result of a numerical simulation of the system in Fig.
5.3. The �gure shows control inputsu1 and u2, the controlled variabledp4 and dp5,
and the �ow through valvec6 andc13 obtained with the proportional feedback control.
At time 100 s, the end-user connection consisting off c12; c13; c14g is removed from the
system. At time 200 s the end-user connection is re-insertedinto the system.
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First, a scenario where the end-user connection consistingof f c12; c13; c14g is re-
moved from and later re-inserted into the system has been simulated. This is simulated
by increasing the hydraulic resistancekv13 of c13 to a large value and thereby reducingq2

to close to zero. The results are shown in Fig. 5.4. Explicitly, the end-user connection is
removed at time 100 s and re-inserted at time 200 s. All systemparameters are maintained
at the same values throughout the simulation, and the controller gain 
 1 = 
 2 = 2 has
been used. The reference value for the pressure across the end user valves is indicated by
the solid line at 0.5 Bar in the two plots in the middle.

In Fig. 5.4, it can be seen that a steady state, with an equilibrium point q� =
(q�

c6; q�
c13) � (4:1; 4:2) Bar, has been reached at time 100 s. Later, when the above

mentioned end-user connection is re-inserted, the same equilibrium point q� has been
reached again at time 300 s. Since the same system parametersare used throughout the
simulation, it is expected that the same equilibrium point will be reached since the rela-
tion between the reference value and the equilibrium point is the homeomorphism given
by the expression in (5.19). Furthermore, when only one end-user is present, it can be
seen that a steady state with an equilibrium pointq� = q�

c6 � 4:9 Bar is reached between
time 100 s and 200 s.

Secondly, a scenario has been simulated where steps in the hydraulic resistancekv6; kv13

of the end-user valvesc6; c13 are made. This corresponds to a varying demand for heating
at the end-users. The steps are between the values 0.01 and 0.11. The results of the sim-
ulation are seen in Fig. 5.5. Again,
 1 = 
 2 = 2 and the end-user connection consisting
of f c12; c13; c14g is removed from and later re-inserted into the system. Speci�cally, it is
removed between time 300 s and time 600 s.
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Figure 5.5: The �gure shows the result of a numerical simulation of the system in Fig.
5.3. Throughout the simulation, steps between values 0.01 and 0.11 are made in the
hydraulic resistance (kv6; kv13) of the end-user valvesc6; c13. At time 300 s, the end-user
connection consisting off c12; c13; c14g is removed from the system. At time 600 s the
end-user connection is re-inserted into the system.
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In Fig. 5.5, it can be seen that the system remains stable whena step is made in the
hydraulic resistance of the end-user valves.

6 Conclusion

An industrial case study involving a large-scale hydraulicnetwork underlying a district
heating system was investigated. The system under investigation is subject to structural
changes. A set of decentralized proportional controllers for practical output regulation
were proposed. The results show that the closed loop system is globally practically stable
with a unique equilibrium point. The decentralized architecture of the control design and
the fact that the closed loop system is globally stable make it easy to implement structural
changes in the system, while maintaining closed loop stability. The results were supported
by numerical simulations of a simple two end-user system.

Some natural future extensions of the work presented here will be restricting the con-
trol actions to only positive values and the incorporation of integral control actions. Since
the (centrifugal) pumps used in the network are able to deliver only positive pressures, it
should be examined if the stability properties of the systemare kept when this restriction
is taken into consideration. The incorporation of integralcontrol actions would be in-
teresting with respect to accommodating for the output regulation error which is present
with the proportional control actions.
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1 Introduction

Abstract

An industrial case study involving a hydraulic network underlying a district heat-
ing system is investigated. The �exible structure of the network calls for control
structure which is able to handle changes in the network structure. For this purpose
a set of decentralized proportional controllers have been proposed. These controllers
make use only of locally available information, and in orderto make implementa-
tion of the control laws possible, the control signals are required to be communicated
across the network. To accommodate this a quantized versionof the control laws are
considered, and the results show that the designed closed loop system maintains its
stability properties despite the structural changes introduced in the system.

1 Introduction

The work presented here considers the investigation of an industrial case study. The case
study involves a large-scale hydraulic network which underlies a district heating system.
Speci�cally, the case study regards a new paradigm for the design of district heating
systems. By reducing the diameters of the pipes in the network the heat dispersion can
be reduced, making it possible to reduce the heat losses in the system by 20 % to 50
% [Kallesøe(2007)]. Furthermore, the new paradigm allows for a more �exible network
structure, which calls for a new control structure which is able to handle structural changes
in the network, such as the addition or removal of end-users [Kallesøe(2007)]. The
case study is part of the ongoing research programPlug & Play Process Control[Stou-
strup(2009)], which considers automatic recon�guration of the control system whenever
components such as actuators or sensors are added to or removed from the system. The
case study has been proposed by one of the industrial partners involved in the program.

A set of decentralized proportional control actions are proposed to meet the control
objective in the system, which is to maintain the pressure across the so-called end-user
valves at a piecewise constant reference point. The controllers use only locally available
information, which is the pressure measurement at each end-user.

Reducing the pipe diameter in the district heating system, has the consequence that
the pressure losses across the pipes are increased. This is compensated by distributing
a number of (boosting) pumps across the network in order to meet pressure constraints
[Kallesøe(2007)]. This means that the actuators are geographically separated from the
controllers, making it necessary to communicate the control signals over a communication
network. In order to accomplish this, the control signals are quantized in the sense that
they are piecewise constant taking value in a �nite set. Thismakes it possible to send
them across a �nite bandwidth network.

The result presented here shows that, given a properly designed quantizer, the closed
loop system with the quantized control actions is globally attracted to a compact set,
which can be made arbitrarily small by a proper design of the controller gains and quan-
tization parameters. Furthermore, since the result is independent of the number of end-
users in the system, the closed loop system will maintain these stability properties when-
ever end-users are added to or removed from the system.

The model of the system is introduced in Section 2. In Section3, the control objective
is introduced along with the proposed controllers and the quantization map. In Section
4, the stability properties of the closed loop system are analysed. Section 5 presents the
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result of numerical simulations performed on the closed loop system. Finally, conclusions
are drawn in Section 6.

Preliminaries

� Throughout the following,C1 denotes the set of continuously differentiable func-
tions.

� A continuous function (map) is said to be proper if the inverse image of a compact
set is compact.

� A function f : R ! R is called monotonically increasing if it is natural order
preserving,i.e., for all x andy such thatx � y thenf (x) � f (y).

� M (n; m; R) denotes the set ofn � m matrices with real entries andM (n; R) =
M (n; n; R).

� A > 0 means thatA is a positive de�nite matrix,i.e., A = A> andx> Ax >
0; 8x 6= 0 .

� A = diag(x i ) means thatA has entriesx i on the main diagonal and zero elsewhere.

� For two vectorsa; b2 Rn , ha; bi denotes the Euclidean scalar product.

� B r (x) = f y 2 Rn j j y � xj < r g.

2 System Model

In this section, the model of the large-scale hydraulic network will be recalled. The model
is fully described in [DePersis and Kallesøe(2009)].

Component Models

The hydraulic network is comprised of three types of two-terminal components: valves,
pipes and pumps as well as a number of interconnections between these components.
These components are characterized by dual variables, the �rst of which is the pressure
drop� h across them

� h = hi � hj ; (6.1)

wherei; j are nodes of the network;hi ; hj are the relative pressures at the nodes.
The other variable characterizing the components is the �uid �ow qthrough them. The

components in the network are governed by dynamic or algebraic equations describing
the relation between the two dual variables.

Valves

A valve in the hydraulic network is described by the following algebraic relation

hi � hj = � (kv ; q); (6.2)

wherekv is the hydraulic resistance of the valve;� (kv ; �) 2 C1 is proper and for any
constant value ofkv is zero atq = 0 and monotonically increasing.
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Pipes

A pipe is described by the dynamic equation

J _q = ( hi � hj ) � � (kp ; q) (6.3)

whereJ andkp are parameters of the pipe;� (kp; �) 2 C1 have the same properties as
� (kv ; �).

Pumps

A (centrifugal) pump is a component which is able to maintaina desired pressure differ-
ence� h across it regardless of the value of the �uid �ow through it. This means that the
constitutive law of the pump is

hi � hj = � � hp (6.4)

where� hp is a signal, which for the purpose of the present exposition,is viewed as a
control input.

Typically, exact values of the parameterskv andkp are not known but will be assumed
to be positive and to take values in a known compact set. Furthermore, the functions
� (kv ; �) and� (kp ; �) are not precisely known. Only their properties of being inC1, proper,
monotonic increasing and zero forq = 0 will be guaranteed.

The varying demand for heating at the end-users in the hydraulic network is modelled
by a (end-user) valve for which the hydraulic resistance canbe changed in a piecewise
constant way. Thus, a distinction is to be made between the end-user valves and the
remaining valves in the network. Likewise, a distinction ismade between end-user pumps
and booster pumps in the network. The later are pumps placed in the network to meet
constraints on the relative pressures across the network. The former are pumps located
in the vicinity of the end-user valves and are mainly used to meet the demands of the
end-users.

Network Model

The model of the hydraulic network has been derived by using tools from circuit theory
[DePersis and Kallesøe(2009)]. The network is comprised ofm components andn end-
users, wherem > n . To the network is associated a graphG, where the nodes ofG
coincides with the terminals of the components and the edgesof G coincides with the
components themselves. A vector of independent �ow variables is identi�ed as the �ows
through the chords ofG. These �ow variables have the property that they can be set
independently of all other �ow variables in the network. To each chord inG (i.e. to
each independent �ow variable) a fundamental �ow loop is associated. Along each of the
fundamental �ow loops Kirchhoff's voltage law holds, whichcan be expressed as

B � h = 0 ; (6.5)

whereB 2 M (n; m; R) is called the fundamental loop matrix;� h is a vector consisting
of the pressure drops across the components in the network. The fundamental loop matrix
B consists of� 1; 0; 1, depending on the structure of the network.

The class of hydraulic networks which are considered here satisfy the following two
assumptions:

79



Paper C

Assumption 7. [DePersis and Kallesøe(2009)] Each end-user valve is in series with a
pipe and a pump, as seen in Fig. 6.1. Furthermore, each chord in Gcorresponds to a pipe
in series with a user valve.

Assumption 8. [DePersis and Kallesøe(2009)] There exists one and only onecomponent
called the heat source. It corresponds to a valve1 of the network, and it lies in all the
fundamental loops.

Remaining network

Pump

Valve

Pipe

q
i

Figure 6.1: The series connection associated with each end-user.

Proposition 14. [DePersis and Kallesøe(2009)] Any hydraulic network satisfying As-
sumption 7 admits the representation:

J _q = f (K p; K v ; B > q) + u (6.6)

yi (qi ) = � i (kvi ; qi ) ; i = 1 ; 2; : : : ; n (6.7)

whereq 2 Rn is the vector of independent �ows;u 2 Rn is a vector of independent
inputs, which is a linear combination of the delivered pump pressures;yi is the measured
pressure drop across thei th end-user valve (see (6.2));J 2 M (n; R) andJ > 0; K p; K v

are vectors of system parameters;f (K p; K v ; B > q) 2 C1; � i (kvi ; qi ) is the constitutive
law of thei th end-user valve. In (6.7), it is assumed that the �rstn components coincide
with the end-user valves.

Under Assumption 7 and Assumption 8, it is possible to selectthe orientation of the
components in the network such that the entries of the fundamental loop matrixB are
equal to1 or 0.

A sketch of a simple district heating system with a heat source and two apartment
buildings is illustrated in Fig. 6.2. The corresponding hydraulic network is illustrated in
Fig. 6.3. The two end-users are represented by the series connectionsf c12; c13; c14g and
f c5; c6; c7g. The heat source is represented by the valvef c10g which models the pressure
losses in the secondary side of the heat exchanger of the heatsource.

1The valve models the pressure losses in the secondary side ofthe heat exchanger of the heat source.
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Figure 6.2: A sketch of a small district heating system.
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Figure 6.3: The hydraulic network diagram.

3 Pressure Regulation by Quantized Control Actions

This section introduces the control objective for the system in question along with a set
of proposed control actions to accommodate this objective.Furthermore, a quantization
map is introduced, which lets the control signals be piecewise constant taking values in a
�nite set.

Pressure Regulation Problem

It is desired to regulate the pressure (yi ) across thei th end-user valve to a given reference
value (r i ) with the use of a feedback controller using locally available information only.
The vectorr = ( r1; : : : ; rn ) of reference values take values in a known compact setR:

R = f r 2 Rn j 0 < r m � r i � rM g (6.8)
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For the purpose of practical output regulation, a set of decentralized proportional con-
trollers will be the focus of the work presented here. The controllers considered will be
of the form:

ui = � 
 i (yi (qi ) � r i ) ; i = 1 ; 2; : : : ; n (6.9)

where
 i > 0 is the controller gain.
The controllers are decentralized in the sense that the individual controller use lo-

cally available information only. Thus, the control for thei th end-user uses information
obtained only at thei th end-user, which is the measurement of the pressure acrossthe
end-user valve.

Quantization Map

This section describes the quantizers which will be used. Tothat end, letl be a positive
integer, 0 a positive real number,� 2 (0; 1), and k = � k  0 for k = 1 ; 2; : : : ; l with
� = 1� �

1+ � (i.e.  k = 1� �
1+ �  k � 1). The following quantizer is then proposed [DePersis

et al.(2010)]:
Let  : R ! R be the map

 (ui ) =

8
>><

>>:

 0 ;  0
1� � < u i

 k ;  k
1+ � < u i �  k

1� � ; 0 � k � l
0 ; 0 � ui �  l

1+ �
�  (� ui ) ; ui < 0

(6.10)

The parametersl ,  0 and� of the map (quantizer) are to be designed.
De�ne 	 : Rn ! Rn as	( u) = (  (u1); : : : ;  (un ))> , then the closed loop system

with the quantized version of the proportional control actions is given as

J _q = f (K p; K v ; B > q) + 	( u) (6.11)

The piecewise constant map (�) changes value whenever the continuous control sig-
nal ui crosses some boundary, as de�ned in (6.10). The control signal ui is governed by
the expression (6.9), wherer i and
 i are constant parameters. Thus, the quantized version
( (ui )) of the control signal can be replaced with an expression depending on a quantized
version of the system output (�( yi )) such that

 (� 
 i (yi (qi ) � r i )) = � 
 i (�( yi ) � r i ): (6.12)

To this end, the following quantized version of the outputyi (qi ) is considered.
De�ne � i = yi � r i and let� : R ! R be the map

�( yi ) = r i +

8
>>>>><

>>>>>:

 0

 i

; � i >  0
(1 � � ) 
 i

 k

 i

;  k
(1 � � ) 
 i

� � i >  k
(1+ � ) 
 i

;
0 � k � l

0 ;  l
(1+ � ) 
 i

� � i � 0
r i � �( r i � � i ) ; � i � 0

(6.13)

De�ne Y : Rn ! Rn asY (y) = (�( y1); : : : ; �( yn ))> , and� = diag(
 i ), then the
closed loop system (6.11) can be rewritten to

J _q = f (K p; K v ; B > q) � �( Y (y) � r ) (6.14)
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since the identity in (6.12) is ful�lled.
The closed loop system in (6.14) has a discontinuous right hand side. Solutions to this

system will here be considered in the sense of Krasovskii solutions.

De�nition 3.1: [Bacciotti(2004), Bacciotti and Ceragioli(2006)] A map' : I ! Rn is a Krasovskii
solution of an autonomous system of ordinary differential equations_x = G(x), whereG : Rn !
Rn , if it is absolutely continuous and for almost everyt 2 I it satis�es the differential inclusion
_' (t) 2 KG (' (t )) , whereKG (x) =

T
�> 0 coG(B � (x)) andcoG is the convex closure of the set

G.

Here, I is an interval of real numbers, possibly unbounded. IfG(x) is Lebesgue
measurable and locally bounded, the operatorsK associates toG(x) a set valued map
which is upper semi-continuous, compact and convex valued.In particular, for each
initial statex0 there exists at least one Krasovskii solution of_x = G(x) [Bacciotti and
Ceragioli(2006)].

The Krasovskii solutions of (6.14) are absolutely continuous functions which satisfy
the differential inclusion [Paden and Sastry(1987)]

J _q 2 f (K p; K v ; B > q) � �( K (Y (y)) � r ); (6.15)

whereK (Y(y)) � � n
i =1 K (�( yi )) andK (�( yi )) is given by

K (�( yi )) = r i +

8
>>>>>>><

>>>>>>>:

 0

 i

; � i >  0
(1 � � ) 
 i

 k

 i

;  k
(1 � � ) 
 i

> � i >  k
(1+ � ) 
 i

;
0 � k � l

�  k

 i

; � i =  k
(1+ � ) 
 i

; 0 � k � l

0 ;  l
(1+ � ) 
 i

> � i � 0
r i � K (�( r i � � i )) ; � � 0

(6.16)

for all � 2 f 1� ��
1+ �� ; � 2 [0; 1]g.

4 Stability Properties of Closed Loop System

In this section, the stability properties of the closed loopsystem introduced above will
be examined. Subsequently,f K (�) will be used to denotef (K p; K v ; �). Furthermore, a
more speci�c class of functions will be used in the expressions of � (kv ; �) and� (kp ; �).
This more speci�c class is motivated by the presence of turbulent2 �ows in the system
[DePersis and Kallesøe(2009)]. The class of functions, which will be considered, is the
following

� i (kvi ; x i ) = kvi jx i jx i (6.17)

� i (kpi ; x i ) = kpi jx i jx i (6.18)

First, let the mapF : Rn ! Rn be given as

F (z) = y(z) � � � 1f K (B > z): (6.19)

2Since the motivation for considering the new paradigm is reducing the diameters of the pipes used in the
network, the likelihood for turbulent �ows increases.
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Proposition 15. [Jensen and Wisniewski(2010)] For the class of functions de�ned in
(6.17) and (6.18), the mapF : Rn ! Rn de�ned in (6.19) is a homeomorphism.

As a consequence of Proposition 15, there exists a unique vector q� 2 Rn for each
vector of reference valuesr 2 Rn , and the relation betweenr andq� is

r = y(q� ) � � � 1f K (B > q� ): (6.20)

This means that the expression for the closed loop system given in (6.14) can be
replaced by

J _q 2 ~f K (~q) � �( K (Y (y)) � y(q� )) (6.21)

where ~f K (~q) = f K (B > q) � f K (B > q� ).
The following change of coordinates is made

~q = q � q� ; (6.22)

and the (Lyapunov) functionV : Rn ! R is de�ned as

V (~q) =
1
2

h~q; J~qi : (6.23)

The time derivative ofV (~q) is then given as

d
dt

V (~q) = h~q; J _qi (6.24)

d
dt

V (~q) 2
D

~q; ~f K (~q) � �( K (Y (y)) � y(q� ))
E

(6.25)

d
dt

V (~q) 2
D

~q; ~f K (~q)
E

� h ~q;�( K (Y (y)) � y(q� )) i (6.26)

It can be shown that the following inequality holds [Jensen and Wisniewski(2010)]

w(~q) �
D

~q; ~f K (~q)
E

< 0 ; 8~q 6= 0 : (6.27)

Now, the properties of the second term on the right hand side of (6.26) are examined.
To that end, the parameter 0 of the quantizer is �rst designed such that

r i �
 0


 i
� yi (q�

i ) � r i +
 0


 i
; i = 1 ; 2; : : : ; n (6.28)

Remark4: Since the output functions are monotonic increasing and zero in qi = 0 , the following
inequality holds:

(qi � q�
i )( yi (qi ) � yi (q

�
i )) > 0; i = 1 ; 2; : : : ; n: (6.29)

Now, consider two different situations foryi (q�
i ) (the output of the system whenq =

q� ):

1) yi (q�
i ) is exactly equal to one of the quantization levels.

This is the case if the parameters
 i ;  0; � andl are designed such thatyi (q�
i ) = r i

or such that there exist somek 2 f 0; 1; : : : ; lg so eitheryi (q�
i ) = r i +  k


 i
if

yi (q�
i ) > r i or yi (q�

i ) = r i �  k

 i

if yi (q�
i ) < r i .
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2) yi (q�
i ) lies between two quantization levels.

This is the case if foryi (q�
i ) > r i , eitherr i < y i (q�

i ) < r i +  l

 i

or there exist some

k 2 f 1; : : : ; lg such thatr i +  k

 i

< y i (q�
i ) < r i +

 k � 1


 i
. Or if for yi (q�

i ) < r i , either

r i �  l

 i

< y i (q�
i ) < r i or there exist somek 2 f 1; : : : ; lg such thatr i �  k � 1


 i
<

yi (q�
i ) < r i �  k


 i
.

First, consider situation 1). In the range where�( yi ) = yi (q�
i ), the following is

ful�lled
(qi � q�

i )(�( yi ) � yi (q�
i )) = 0 (6.30)

and outside the above mentioned range

(qi � q�
i )(�( yi ) � yi (q�

i )) > 0: (6.31)

If situation 1) is ful�lled for everyi = 1 ; 2; : : : ; n, then

� h q � q� ; �( � � y(q� )) i � 0; 8� 2 K (Y (y)) ; (6.32)

since� > 0.
This showsq = q� is a globally asymptotically stable equilibrium point of the closed

loop system, since
d
dt

V (~q) � w(~q) < 0; 8q 6= q� (6.33)

where d
dt V(~q) is given in (6.26) andw(~q) is as de�ned in (6.27).

A more realistic situation is that there exist somep 2 f 1; 2; : : : ; ng (of course with a
proper rearrangement ofq) such that situation 2) is ful�lled forq�

1 ; q�
2 ; : : : ; q�

p .
Now, consider situation 2) forq�

i . Denote the bounds in 2)� i ; � i such that� i <
yi (q�

i ) < � i . Wheneveryi (qi ) is outside the range(� i ; � i )

(qi � q�
i )(�( yi ) � yi (q�

i )) > 0: (6.34)

For a subset of the range(� i ; � i ) the sign of the product above changes.
Thus for the setS = f q 2 Rn j yi (qi ) =2 (� i ; � i ) ; i = 1 ; : : : ; pg, it can be guaranteed

that d
dt V (~q) < w (~q) < 0.

De�ne S1 = Rn n S. For a given point in the setS1, there exists an indexs � p (with
a proper rearrangement ofq), such that

yi (qi ) 2 (� i ; � i ); i = 1 ; 2; : : : ; s (6.35)

Sinceyi (qi ) is proper, monotonically increasing and zero inqi = 0 , it admits a continuous
inverse. Thus, the bound onyi (qi ) means thatqi is also bounded. Therefore, there exist
some �nitem > 0 such that

(qi � q�
i )(�( yi ) � yi (q�

i )) > � m (6.36)

and consequently, for each pointq 2 S1, there exist a �niteM > 0 such that

sX

i =1

(qi � q�
i )(�( yi ) � yi (q�

i )) > � M: (6.37)
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Let M S1 > 0 be the bound which ful�ls
sX

i =1

(qi � q�
i )(�( yi ) � yi (q�

i )) > � M S1 ; 8q 2 S1; (6.38)

which exists, since� i < y i (qi ) < � i for i = 1 ; : : : ; s.
Let the setS2 � S 1 denote the set for which the following holds

pX

i = s+1

(qi � q�
i )(�( yi ) � yi (q�

i )) > M S1 : (6.39)

Note thatq�
i is constant and�( yi ) is bounded, thus there exists �niteqi such that (6.39)

is ful�lled, since qi is unbounded fori = s + 1 ; : : : ; p.
Thus in the setS2, the following inequality holds

� h q � q� ; �( � � y(q� )) i � 0; 8� 2 K (Y (y)) ; (6.40)

since� > 0.
Consequentlyd

dt V (~q) < w (~q) < 0 on the setS2.
From the analysis above it is concluded that there exists some compact setQ � Rn ,

whereS1 n S2 � Q , with the property that all trajectories of the system is attracted toQ.
Furthermore, whenever the initial conditions of the closedloop system belong to a

compact set, sayQ, it can be shown by applying Lyapunov arguments that practical output
regulation of the system is achievable. That is: for any arbitrarily small positive number
" , and for any value of the quantization parameter� 2 (0; 1) there exist gains
 �

i > 0
and parametersl and 0 of the quantizer such that for all
 i > 
 �

i , for anyr 2 R , any
Krasovskii solutionq(t) of the closed loop system with initial condition inQ is attracted
by the setf � 2 Rn j j � i j � "; i = 1 ; 2; : : : ; ng, where� i = yi � r i . The proof is similar
to the one presented in [DePersis and Kallesøe(2010)] and isleft out for brevity.

Since the result is global, the basin of attraction of the setQ is the entire state space
Rn . Furthermore, since the result is independent on the numbern of end-users, it will be
possible to add or remove end-users in the system while maintaining stability in the sense
that for the newly obtained system a compact setQ which attracts the system trajectories
will exist, given that (6.28) is ful�lled.

Quantization with Hysteresis

Using the quantizers de�ned in (6.13) may result in sliding modes arising along the
switching surfaces, resulting in chattering and consequently the requirement for a large
bandwidth. However, it is possible to replace the quantizerin (6.10) with an alternative
for which it can be guaranteed that no sliding modes will arise [DePersis et al.(2010)].

Due to space limitations no explicit proof of stability of the closed loop system using
this alternate quantizer will be provided here. However, the proof can be done by a proper
rede�nition of the bounds� i and� i in the previous section.

5 Numerical Results

A numerical simulation of the system in Fig. 6.3 in closed loop with the proposed control
has been performed, and the results are shown in Fig. 6.4. Theproportional control
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Figure 6.4: Result of a numerical simulation of the two end-user system in Fig. 6.3. The
�gure shows control inputsu1 andu2, the controlled variabledp4 anddp5, and the �ow
through valvec6 andc13 obtained with the proportional feedback control. At time 300
s, the end-user connection consisting off c12; c13; c14g is removed from the system. At
time 600 s the end-user connection is re-inserted into the system.

actions de�ned in (6.9) and the quantizers including hysteresis has been used. A scenario,
where the end-user connection consisting off c12; c13; c14g, has been removed from and
later re-inserted into the system has been simulated. The Figure shows that the end-user
connection is removed at time 300 s and re-inserted again at time 600 s. The parameters
used in the simulation are;
 1 = 
 2 = 2 , � = 0 :5,  0 = 1 andl = 2 . The reference values
arer1 = r2 = 0 :5 Bar, which is indicated by the solid line in the middle two plots in Fig.
6.4. Contrary to the result with the continuous proportional control actions [Jensen and
Wisniewski(2010)], it is evident from Fig. 6.4 that a singleunique equilibrium point can
generally not be achieved when the quantized version of the proportional control actions
are used. For instance a limit cycle-type behaviour is achieved for the single end-user
system between time 300 s and 600 s.

6 Conclusion

An industrial case study involving a large-scale hydraulicnetwork underlying a district
heating system was investigated. The results show that the closed loop system using
a set of quantized proportional feedback control actions isglobally stable in the sense
that there exists a compact setQ which attracts all system trajectories. Furthermore, it
has been shown that this set can be made arbitrarily small by choosing a proper set of
parameters for the feedback controller and quantizer. Speci�cally, for the result to hold,
the bounds in (6.28) has to be ful�lled. Since the result is global and independent on the
number of end-users in the system, a setQ with the above mentioned properties will also
exist for the newly obtained system if it should be necessaryto add or remove end-users
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to/from the system. This, along with the decentralized nature of the control structure, will
make it easy to implement structural changes in the system, while maintaining closed
loop stability.

Future extensions of the results presented in this paper, will consist of an investigation
of quantized proportional controllers, which are constrained to deliver only positive con-
trol signals. This is important since the (centrifugal) pumps used in the network are only
able to deliver positive pressure inputs to the system. Furthermore, it will be interesting to
investigate closed loop stability using proportional-integral control actions in order to ac-
commodate for the output regulation error, which is presentwith the proportional control
actions.
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7 Errata

7 Errata

1. Below (6.32) instead of:since� > 0., the argument should be changed to:since
� = diag(
 i ) and
 i > 0.

2. Below (6.34) instead of:Thus for the setS = f q 2 Rn j yi (qi ) =2 (� i ; � i ) ; i =
1; : : : ; pg, it can be guaranteed thatddt V (~q) < w (~q) < 0. , the argument is changed
to: Thus for the setS = f q 2 Rn j yi (qi ) =2 (� i ; � i ) ; i = 1 ; : : : ; pg, it can be
guaranteed thatddt V (~q) < w (~q) < 0, since� = diag(
 i ) and
 i > 0.

3. (6.36) should be changed to


 i (qi � q�
i )(�( yi ) � yi (q�

i )) > � m

4. (6.37) should be changed to

sX

i =1


 i (qi � q�
i )(�( yi ) � yi (q�

i )) > � M

5. (6.38) should be changed to

sX

i =1


 i (qi � q�
i )(�( yi ) � yi (q�

i )) > � M S1 ; 8q 2 S1

6. (6.39) should be changed to

pX

i = s+1


 i (qi � q�
i )(�( yi ) � yi (q�

i )) > M S1

7. Below (6.40) instead of:since� > 0., the argument should be changed to:since
� = diag(
 i ) and
 i > 0.
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1 Introduction

Abstract

An industrial case study involving a large-scale hydraulicnetwork is considered.
The hydraulic network underlies a district heating system.The network is subject
to structural changes, such as the addition or removal of end-users. The actuators
(pumps) in the system are limited to non-negative actuationvalues. The problem of
controlling the pressures across the so-called end-user valves to a vector of desired
reference values is described. The results show that globalpractical output regulation
can be achieved using a set of proportional control actions which are constrained to
non-negative values. Since the result is global, structural changes can be implemented
while maintaining closed loop stability of the system.

1 Introduction

This work investigates an industrial case study of a large scale hydraulic network under-
lying a district heating system. Speci�cally, a new paradigm for the design of district
heating systems is considered in the case study. It has been assessed that a reduction of
the pipe diameter used in district heating systems, which will reduce heat dispersion, can
reduce the heat losses with up to 50 % [1]. Furthermore, the new paradigm also leads
to a more �exible network structure, which calls for a control architecture which is able
to handle structural changes in the system, such as the addition or removal of end-users.
The case study has been proposed by one of the industrial partners involved in the ongo-
ing research programPlug & Play Process Control[5]. This research program considers
automatic recon�guration of the control whenever components such as sensors, actuators
or maybe even entire subsystems are added to or removed from acontrol system.

A set of decentralized proportional control actions will beutilized to accommodate the
control objective, which is to keep the pressure drop acrossthe so-called end-user valves
at a desired reference value. The controllers are decentralized as they use only locally
available information, which is the pressure measurement at each of the end-users. The
actuators (typically centrifugal pumps) used in the hydraulic network are limited in their
actuation in the sense that they are only able to deliver non-negative pressures. Therefor,
the control actions are subject to a non-negativity constraint.

The result presented here comprises an important extensionof the result presented
in [2], where it was shown that the closed loop system is semi-globally attracted to a
neighbourhood of the desired equilibrium. That is; for any compact set of initial con-
ditions, sayQ, the basin of attraction can be designed to containQ by increasing the
gains. Furthermore, the attractor set can be made arbitrarily small by increasing the gains
of the controller. However, if structural changes, such as the addition or removal of end
users, are introduced in the system, the results cannot guarantee closed loop stability of
the newly obtained system without a proper redesign of the control gains.

Whereas, the analysis presented here shows that the decentralized proportional con-
trollers subjected to the constraints, leads to a closed loop system which is globally
asymptotically stable with a unique equilibrium point. Although the attained equilibrium
point is different from the desired one. By adjusting the gains used in the controllers,
the output regulation error can be made arbitrarily small. This result, which is the origi-
nal contribution of this paper, is independent on the numberof end-users in the system;
and as a consequence, end-users can be added to or removed from the system while still
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maintaining the stability properties of the closed loop system, since the initial conditions
of the newly obtained system are guaranteed to belong to the basin of attraction.

The model of the system is introduced in Section 2. In Section3, the control objec-
tive is introduced along with the proposed controllers and the non-negative constraints.
In Section 4, the stability properties of the closed loop system are analysed. Section 5
presents the result of numerical simulations performed on the closed loop system. Fi-
nally, conclusions are drawn in Section 6.

Preliminaries

� Throughout the following,C1 denotes a continuously differentiable function.

� A continuous map is said to be proper if the inverse image of a compact set is
compact.

� For a vectorx 2 Rn , x i denotes thei th component ofx.

� For two vectorsx; y 2 Rn , hx; y i denotes the Euclidean scalar product.

� M (n; m; R) denotes the set ofn � m matrices with real entries andM (n; R) =
M (n; n; R).

� A > 0 means thatA is a positive de�nite matrix.

� For a square matrixA, A = diag(x i ) means thatA hasx i as entries on the main
diagonal and zero elsewhere.

2 System Model

In this section, the model of the large-scale hydraulic network will be described. The
model is derived in [2], which the interested reader can refer to for more details.

Component Models

The hydraulic network is comprised of three types of two-terminal components: valves,
pipes and pumps as well as a number of interconnections between these components.
These components are characterized by dual variables, the �rst of which is the pressure
drop� h across them

� h = hi � hj ; (7.1)

wherei; j are nodes of the network;hi ; hj are the relative pressures at the nodes.
The other variable characterizing the components is the �uid �ow qthrough them. The

components in the network are governed by dynamic or algebraic equations describing
the relation between the two dual variables.

Valves

A valve in the hydraulic network is described by the following algebraic relation

hi � hj = � (kv ; q); (7.2)
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wherekv > 0 is the hydraulic resistance of the valve;� (kv ; �) 2 C1 is proper and for any
constant value ofkv is zero atq = 0 and monotonically increasing.

Pipes

A pipe is described by the dynamic equation

J _q = ( hi � hj ) � � (kp ; q) (7.3)

whereJ > 0 and kp > 0 are parameters of the pipe;� (kp ; �) 2 C1 have the same
properties as� (kv ; �).

Pumps

A (centrifugal) pump is a component which is able to maintaina desired pressure differ-
ence� h across it regardless of the value of the �uid �ow through it. This means that the
constitutive law of the pump is

hi � hj = � � hp (7.4)

where� hp is a non-negative signal, which for the purpose of the present exposition, is
viewed as a control input.

Typically, exact values of the parameterskv andkp are not known but will be assumed
to be positive and to take values in a known compact set. Furthermore, the functions
� (kv ; �) and� (kp; �) are not precisely known. Only their properties of beingC1, proper,
monotonic increasing and zero forq = 0 will be guaranteed.

The varying demand for heating at the end-users in the hydraulic network is modelled
by a (end-user) valve for which the hydraulic resistance canbe changed in a piecewise
constant way. Thus, a distinction is to be made between the end-user valves and the
remaining valves in the network. Likewise, a distinction ismade between end-user pumps
and booster pumps in the network. The latter are pumps placedin the network to meet
constraints on the relative pressures across the network. The former are pumps located
in the vicinity of the end-user valves and are mainly used to meet the demands of the
end-users.

Subsequently,� (�) (� (�)) will be used to denote� (kv ; �) (� (kp; �)).

Network Model

The model of the hydraulic network has been derived by using tools from circuit theory
[2]. The network is comprised ofm components andn end-users, wherem > n . To the
network there is associated a graphG, where the nodes ofGcoincides with the terminals
of the components and the edges ofG coincides with the components themselves. A
vector of independent �ow variables is identi�ed with the �ows through the chords1 of G.
These �ow variables have the property that they can be set independently of all other �ow
variables in the network. A fundamental �ow loop is associated to each chord inG(i.e. to

1Let T denote the spanning tree ofG, i.e. a connected subgraph which contains all nodes ofG but no
cycles. Then the edges ofG which are not included inT are the chords ofG (see [2]).
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each independent �ow variable). Along each of the fundamental �ow loops Kirchhoff's
voltage law holds, which can be expressed as

B � h = 0 ; (7.5)

whereB 2 M (n; m; R) is called the fundamental loop matrix;� h is a vector consisting
of the pressure drops across the components in the network. The entries of the funda-
mental loop matrixB consist of� 1; 0; 1, and the values depend on the structure of the
network.

The class of hydraulic networks which are considered here satisfy the following two
assumptions:

Assumption2.1: [2] Each end-user valve is in series with a pipe and a pump, as seen in Fig. 7.1.
Furthermore, each chord inGcorresponds to a pipe in series with a user valve.

Assumption2.2: [2] There exists one and only one component called the heat source. It corresponds
to a valve2 of the network, and it lies in all the fundamental loops.

Remaining network

Pump

Valve

Pipe

q
i

Figure 7.1: The series connection associated with each end-user.

Proposition 16. [2] Any hydraulic network satisfying Assumption 2.1 admitsthe repre-
sentation:

J _q = f (B T q) + u (7.6)

yi (qi ) = � i (qi ) ; i = 1 ; 2; : : : ; n (7.7)

whereq 2 Rn is the vector of independent �ows;u 2 Rn is a vector of independent
inputs, which is a linear combination of the delivered pump pressures;yi is the pressure
drop measured across thei th end-user valve (see (7.2));J 2 M (n; R) and J > 0;
f (B T q) is a C1 vector �eld; � i (qi ) is the constitutive law of thei th end-user valve. In
(7.7), it is assumed that the �rstn components coincide with the end-user valves.

De�ning x = B T q, the vector �eldf (x) can be written as [2]:

f (x) = � B (� (x) + � (x)) (7.8)

where� (x) = [ � 1(x1); : : : ; � m (xm )]T ; � (x) = [ � 1(x1); : : : ; � m (xm )]T .

2The valve models the pressure losses in the secondary side ofthe heat exchanger of the heat source.
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Under Assumption 2.1 and Assumption 2.2, it is possible to select the orientation of
the components in the network such that the entries of the fundamental loop matrixB are
equal to1 or 0.

A sketch of a simple district heating system with a heat source and two apartment
buildings is illustrated in Fig. 7.2. The corresponding hydraulic network is illustrated in
Fig. 7.3. The two end-users are represented by the series connectionsf c12; c13; c14g and
f c5; c6; c7g. The heat source is represented by the valvef c10g which models the pressure
losses in the secondary side of the heat exchanger of the heatsource.

dp dp dp

dp

dp

Centrifugal pump

Heat exchanger

Pressure sensor dp

1000 [m] 500 [m]

200 [m]
300 [m]

Heat source
c c

c

c

c

c

10 1

12

13

6

5

dp

dpdp

dp

dp 1 2

5

4

3

Figure 7.2: A sketch of a small district heating system.
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Figure 7.3: The hydraulic network diagram.
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3 Pressure Regulation by Positive Constrained Proportional
Control

In this section, the pressure regulation problem is introduced along with a number of
proposed control actions to accommodate the control objective. Furthermore, a saturation
map is introduced, in order to take into account the fact thatthe (centrifugal) pumps used
in the system are only able to deliver non-negative actuation. This means that the control
actions are subject to constraints.

Pressure Regulation Problem

It is desired to regulate the pressure (yi (qi )) across thei th end-user valve to a given refer-
ence value (r i ) with the use of a feedback controller using locally available information
only. The vectorr = ( r1; : : : ; rn ) of desired reference values is assumed to be piecewise
constant, taking values in a known compact setR:

R = f r 2 Rn j 0 < r m � r i � rM g (7.9)

For the purpose of practical output regulation, a family of decentralized proportional
controllers will be the focus of the work presented here. Thecontrollers considered will
be of the form:

ui = � 
 i (yi (qi ) � r i ) ; i = 1 ; 2; : : : ; n (7.10)

where
 i > 0 is the controller gain.
The controllers are decentralized in the sense that the individual controller uses lo-

cally available information only. Thus, the control for thei th end-user uses information
obtained only at thei th end-user, which is the measurement of the pressure acrossthe
end-user valve.

Constraint Map

Since the pumps in the hydraulic network are only able to deliver positive pressures, it is
desired to constrain the control signalsui to positive values. To that end, let the constraint
maps : R ! R be given as

s(x) =
�

x x � 0
0 x � 0

: (7.11)

Now, de�ne S(u) = ( s(u1); : : : ; s(un ))T , then the closed loop system with the con-
strained control is given as

J _q = f (B T q) + S(u): (7.12)

The control signalui is governed by the expression in (7.10), where
 i andr i are constant.
Thus the constrained version of the control signals(ui ) given by (7.11) can be replaced
by an expression depending on a constrained version of the system output�si (yi (qi )) ,
de�ned by

s(ui ) = � 
 i (�si (yi (qi )) � r i ) (7.13)

which, recalling (7.10), can be rewritten as

s(� 
 i (yi (qi ) � r i )) = � 
 i (�si (yi (qi )) � r i ): (7.14)
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The constraint map�si : R ! R ful�lling (7.14) is

�si (x) =
�

x x � r i

r i x � r i
(7.15)

Let �S(y(q)) = (�s1(y1(q1)) ; : : : ; �sn (yn (qn ))) T , then by using the relation in (7.14), the
closed loop system (7.12) can be written as

J _q = f (B T q) � �( �S(y(q)) � r ) (7.16)

where� = diag(
 i ).

4 Stability Properties of Closed Loop System

Subsequently, a more speci�c class of functions will be usedin the expressions of� (�)
and� (�). This more speci�c class re�ects the presence of turbulent3 �ows in the system
[2]. The following class of functions will be considered

� i (x i ) = kvi jx i jx i (7.17)

� i (x i ) = kpi jx i jx i (7.18)

Now, let the mapF : Rn ! Rn be de�ned as follows

F (z) = y(z) � � � 1f (B T z): (7.19)

Proposition 17. [6] For the class of functions de�ned in (7.17) and (7.18), the map
F : Rn ! Rn de�ned in (7.19) is a homeomorphism.

As a consequence of Proposition 17, there exists a unique vector q� 2 Rn for every
vectorr 2 Rn of reference values, such that

q� = F � 1(r ) (7.20)

and
r = y(q� ) � � � 1f (B T q� ): (7.21)

To simplify notation, de�ne~q = q � q� and ~f (~q) = f (B T (~q + q� )) � f (B T q� ).
Using (7.21), it is possible to rewrite the closed loop system (7.16) as

J _q = ~f (~q) � �( �S(y(q)) � y(q� )) : (7.22)

The following conjecture will be instrumental in the derivation of the stability prop-
erties of the closed loop system.

Conjecture 2. Under Assumption 2.1 and Assumption 2.2 the vectorq� de�ned by (7.20),
ful�ls that yi (q�

i ) < r i , when� = diag(
 i ), 
 i > 0 andr 2 R .

3Since the motivation for considering the new paradigm is reducing the diameters of the pipes used in the
network, the likelihood for turbulent �ows increases.
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Conjecture 2 is supported by simulation results similar to those presented in Section
5. Furthermore, the conjecture can be proved to hold for a twoend-user system (n = 2 ).

Proof of Conjecture 2 forn = 2 . Let C denote the set of components in the network.
Furthermore, letL 1 andL 2 denote the chords of the graph associated to the network.
Create a partition ofC denotedC1; C2; C12 such that the �ow through components inC1

equals the �ow throughL 1, the �ow through components inC2 equals the �ow through
L 2 andC12 = C n (C1

S
C2).

Consider the system in Fig. 7.3 thenC = f c1; : : : ; c14g. By Assumption 2.1 let
L 1 be given by the series connectionf c6; c7g andL 2 be given by the series connection
f c13; c14g. Then the partition is given asC1 = f c3; : : : ; c8g, C2 = f c11; : : : ; c14g and
C12 = f c1; c2; c9; c10g.

For a two end-user system the right hand side of (7.21) can be rewritten as

�
y1(q�

1 )
y2(q�

2 )

�
+

� 1

 1

0
0 1


 2

� �
�� 1(q�

1 ) + �� 12(q�
1 + q�

2 )
�� 2(q�

2 ) + �� 12(q�
1 + q�

2 )

�
(7.23)

where�� 1(q�
1 ) =

P
i 2 C1

� i (q�
1 )+ � i (q�

1 ); �� 2(q�
2 ) =

P
i 2 C2

� i (q�
2 )+ � i (q�

2 ); �� 12(q�
1 +

q�
2 ) =

P
i 2 C12

� i (q�
1 + q�

2 ) + � i (q�
1 + q�

2 ). Note, that the functions�� 1(�), �� 2(�) and
�� 12(�) are monotonically increasing and zero when the argument is zero.

The proof of the proposition is by contradiction. Suppose that y1(q�
1 ) � r1 > 0.

Then, sinceyi (�) is monotonically increasing and zero in zero, it follows that q�
1 > 0

and consequently that�� 1(q�
1 ) > 0. Since
 i > 0 and (7.21) needs to be ful�lled, it is

concluded that�� 12(q�
1 + q�

2 ) < 0 and consequently thatq�
2 < 0. However, this means

that

r2 6= y2(q�
2 ) +

1

 2

(�� 2(q�
2 ) + �� 12(q�

1 + q�
2 )) < 0; (7.24)

sincer2 > 0. This gives a contradiction since (7.21) is not ful�lled.

Proofs similar to the one above have been made forn = 3 andn = 4 .

Proposition 18. Suppose Conjecture 2 holds, that is;yi (q�
i ) < r i , with the pointq�

de�ned by (7.20). Thenq� is the global asymptotically stable equilibrium point of the
closed loop system (7.16).

Proof of Proposition 18.First, let the Lyapunov function candidateV : Rn ! R be
given as

V (~q) =
1
2

h~q; J~qi ; (7.25)

which has the properties

� V (0) = 0

� V (~q) > 0 ; 8~q 6= 0

� lim jj ~qjj!1 V (~q) = 1 .
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The time derivative ofV (~q) is given by

d
dt

V (~q) = h~q; J _qi : (7.26)

Using the expression (7.16) for the closed loop system, the time derivative (7.26) ofV (~q)
can be expressed as

d
dt

V (~q) = h~q; ~f (~q)i � h ~q;�( �S(y(q)) � y(q� )) i (7.27)

It can be shown that the following inequality holds [6]

W (~q) � �h ~q; ~f (~q)i > 0; 8~q 6= 0 : (7.28)

The second term on the right hand side of (7.27) can be writtenas

�h ~q;�( �S(y(q)) � y(q� )) i = �
nX

i =1


 i ~qi (�si (yi (qi )) � yi (q�
i )) (7.29)

since� is diagonal with entries
 i .
Recall that the functionsyi (qi ) = � i (qi ) are monotonically increasing and zero for

qi = 0 . Because of this, the following holds

qi < q 0
i , yi (qi ) < y i (q0

i ): (7.30)

Now, the following two situations forqi are examined

1) qi � q�
i

2) qi � q�
i

for the product

 i (qi � q�

i )(�si (yi (qi )) � yi (q�
i )) : (7.31)

First, consider situation 1). Sinceqi � q�
i , using the property (7.30), it follows that

yi (qi ) � yi (q�
i ). Furthermore, by Conjecture 2yi (qi ) < r i , then it follows from (7.15)

that �si (yi (qi )) = yi (qi ). In conclusion for situation 1)


 i (qi � q�
i )(�si (yi (qi )) � yi (q�

i )) � 0 (7.32)

since
 i > 0. Furthermore, the inequality is strict forqi 6= q�
i .

Now, consider situation 2). Again, sinceqi � q�
i , from (7.30), it follows thatyi (qi ) �

yi (q�
i ). By Conjecture 2 and (7.15), it follows that�si (yi (qi )) � yi (q�

i ). In conclusion for
situation 2)


 i (qi � q�
i )(�si (yi (qi )) � yi (q�

i )) � 0 (7.33)

again with strict inequality forqi 6= q�
i .

From the consideration above it is concluded that

d
dt

V (~q) < � W (~q) < 0; 8~q 6= 0 : (7.34)

with W (~q) as de�ned in (7.28) and consequently that~q = 0 is a global asymptotically
stable equilibrium point of the closed loop system (7.16).
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Using (7.21) and that� is diagonal with entries
 i > 0, it can be seen that the follow-
ing holds

r i = yi (q�
i ) �

1

 i

f i (B T q� ); (7.35)

which shows that the use of large gains
 i will let the output regulation error become
small.

Furthermore, since Proposition 18 is independent of the numbern of end-users in the
system, the closed loop system will remain stable when adding or removing end-users
to or from the system. However, note that the equilibrium point q� will change when
structural changes are made, so it may be necessary to adjustthe controller gains in order
to keep the same level of performance.

5 Numerical Results

The proportional controllers with the non-negativity constraints have been tested using
numerical simulations. In the simulations, a four end-usersystem like the one illustrated
in Fig. 7.4 has been used. The end-users in the system are comprised of the connections
f c4; c5; c6g, f c9; c10; c11g, f c18; c19; c20g andf c23; c24; c25g. The gains
 1; 
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Figure 7.4: The hydraulic network diagram for the system with four end-users which has
been used in the simulations.

2 and referencesr1; r2; r3; r4 = 0 :2 Bar have been used.
First, a scenario, where the two end-users consisting off c18; c19; c20g andf c23; c24; c25g

have been removed from and later re-inserted into the system, has been simulated. The
results of the simulation are shown in Fig. 7.5. As can be seenin this �gure a steady state
q� (100) = (0 :1517; 0:1502; 0:1432; 0:1424)m2/h has been attained before the end-user
connections are removed at time 100 s. After the end-user connections have been removed
a new steady stateq� (200) = (0 :1707; 0:1756)m2/h is attained before the re-insertion of
the end-user connections at time 200 s. At time 300 s, the steady stateq� (300) = q� (100)
is attained. This is expected since the mapF (�) de�ned in (7.19) is a homeomorphism.
Furthermore, notice that the steady state values ofdp1; dp2; dp3; dp4 ful�ls Conjecture 2.

Secondly, a scenario has been simulated in which the hydraulic resistance (kv5, kv10,
kv19 andkv24) of the end-user valves is varied. This corresponds to a variation in the
heating demands at the end-users, and is considered the maindisturbance in the system.
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Figure 7.5: Result of a numerical simulation of the four end-user system in Fig. 7.4. The
�gure shows control inputsu1; u2; u3; u4, the controlled variabledp1; dp2; dp3; dp4, and
the �ow through valvesc24; c19; c10; c5 obtained with the proportional feedback control.
At time 100 s, the end-user connections consisting off c18; c19; c20g andf c23; c24; c25g
are removed from the system. At time 200 s the end-user connections are re-inserted into
the system. The solid line at 0.2 Bar in the two middle plots indicates the reference value.

The results of the simulation are given in Fig. 7.6. As seen inthis �gure, the closed loop
system remains stable also with the disturbances present inthe system.

6 Conclusion

An industrial case study involving a large scale hydraulic network underlying a district
heating system has been examined. A set of decentralized proportional control actions
to accommodate the output regulation problem were presented. The control actions were
modi�ed to take into consideration non-negative constraints on the actuators in the sys-
tem. The results show that the proposed control actions are able to provide global practical
asymptotic output regulation. Furthermore, since the result is independent on the number
of end-users in the system, end-users can be added to or removed from the system while
maintaining the closed loop stability properties of the system.

Some natural future extensions of the work presented here isto incorporate event
based control actions as in [7] and [3, 4], which explicitly take the non-negativity con-
straints into consideration. Furthermore, incorporationof integral control action is seen
natural in order to eliminate the output regulation error, which is present with the propor-
tional control actions.

103



Paper D

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4
u 1, u

2 (
B

ar
)

0 50 100 150 200 250 300
0.25

0.3

0.35

0.4

0.45

u 3, u
4 (

B
ar

)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

dp
1, d

p 2 (
B

ar
)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

dp
3, d

p 4 (
B

ar
)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

q c5
, q

c1
0 (

m
3 /h

)

time (s)
0 50 100 150 200 250 300

0

0.05

0.1

0.15

0.2

q c1
9, q

c2
4 (

m
3 /h

)
time (s)

Figure 7.6: Result of a numerical simulation of the four end-user system in Fig.
7.4. Throughout the simulation steps are made in the hydraulic resistance of the end-
user valves. At time 100 s, the end-user connections consisting of f c18; c19; c20g and
f c23; c24; c25g are removed from the system. At time 200 s the end-user connections are
re-inserted into the system.
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1 Introduction

Abstract

The work presented here considers an industrial case study.The case study in-
volves a large-scale hydraulic network which underlies a district heating system. The
structure of the network is subject to change, such as the removal or addition of end-
users. The problem of controlling the output of the system toa desired reference
point is addressed. The actuators in the system are geographically separated from
the controllers, which means that control signals should becommunicated via a com-
munication network with �nite bandwidth. Furthermore, theactuators are limited to
positive actuation only. This is solved by using decentralized control architecture us-
ing quantized proportional control signals limited to positive values. The results show
that practical output regulation is achievable. Furthermore, it is possible to add and
remove end-users while the system is on-line without destabilizing the closed loop
system.

1 Introduction

An industrial case study involving a large-scale hydraulicnetwork is considered. The
hydraulic network underlies a district heating system. Thecase study considers a new
paradigm for designing district heating systems. By reducing the diameter of the pipes
used in the network and using a multi-pump architecture, it has been assessed that a
reduction in the heat losses in the system of up to 50 % is possible [1]. Furthermore,
a more �exible network structure is achievable, in which forinstance end-users can be
arbitrarily added to or removed from the system.

The added �exibility in the network structure calls for a control architecture which is
able to handle these types of changes in the network structure. In the work presented here,
a set of decentralized proportional control actions will bein the focus. The individual
control signal relies only on information obtained at the individual end-user. Furthermore,
since the (centrifugal) pumps used in the system are only able to deliver non-negative
actuation to the hydraulic network, the control signals will be limited to non-negative
values. Lastly, the multi-pump architecture leads to the actuators being geographically
separated from the controllers. This means that it is necessary to communicate the control
signals over a communication network. To accommodate this need, the control signals
are quantized in the sense that they are piecewise constant and take value in a �nite set.
This has the bene�t that it is possible to communicate them across a �nite bandwidth
communication network.

The results presented here represents an important extension of the results presented
in [2]. In [2], it was shown that semi-global practical output regulation is achievable
using the proposed control architecture. That is, the trajectories of the system are locally
attracted to a neighborhood of the desired equilibrium, andfor every initial condition
contained within some compact set, sayQ, the basin of attraction can be designed to
coverQ by increasing the gains of the controllers. Furthermore, the attractor set can be
made an arbitrarily small neighborhood of the desired equilibrium by increasing the gains
of the controllers.

On the other hand, the results presented here show that, given a properly designed
maximum quantization level, the trajectories of the closedloop system are globally at-
tracted to a compact set. That is, for an arbitrary value of the controller gain, a compact
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attractor set exists with a global basin of attraction, given a proper design of the maxi-
mum quantization level. Furthermore, the attractor set canbe made arbitrarily small with
a proper design of the controller gains and quantization parameters.

Since the result presented here is global and independent ofthe number of end-users in
the system, it is possible to add and remove end-users to/from the system while maintain-
ing the closed loop stability properties. That is, for the newly obtained system a compact
set of attractors with a global basin of attraction will exist, however, to keep the same
level of performance it may be necessary to adjust the controller gains and the parame-
ters of the quantizer. Furthermore, since the controllers are decentralized, changes in the
network structure are easy to implement.

The outline of the paper is as follows. The component and network models are de-
scribed in Section 2. In Section 3, the output regulation problem is described along with
the proposed set of controllers. The stability properties of the closed loop system are
derived in Section 4. The results of tests performed on closed loop system in a laboratory
setup are presented in Section 5. Finally, conclusions are drawn in Section 6.

Nomenclature

Let Rn denote then-dimensional Euclidean space, with the standard scalar productha; bi
between two vectorsa; b 2 Rn . For a vectorx 2 Rn , x i denotes thei 'th element ofx.
The notationRn

+ denotes the positive orthant ofRn , that isRn
+ = f x 2 Rn j x i > 0g,

i 2 f 1; 2; : : : ; ng. The symbolZ denotes the set of integers andZ+ the set of integers
greater than zero. LetM (n; m; R) denote the set ofn � m matrices with real entries,
andM (n; R) = M (n; n; R). For a matrixA , the notationA ij will be used to denote the
entry in thei 'th row andj 'th column of A . For a square matrixA , A > 0 means that
A is positive de�nite, i.e.,A = A T andxT Ax > 08x 6= 0 . For a square matrixA ,
A = diag(x i ) means thatA hasx i as entries on the main diagonal and zero elsewhere.
Throughout the following,C1 denotes the set of continuously differentiable maps. A
continuous function (map) is said to beproper if the inverse image of a compact set
is compact. A functionf : R ! R is called monotonically increasing if it is order
preserving, i.e., for allx andy such thatx � y thenf (x) � f (y). The open ball with
radiusr and centred inx is denotedB r (x).

2 System model

In this section, the model of the large-scale hydraulic network will be described. The
model is derived in [2], which the interested reader can refer to for more details.

Component Models

The hydraulic network is comprised of three types of two-terminal components: valves,
pipes and pumps as well as a number of interconnections between these components.
These components are characterized by dual variables, the �rst of which is the pressure
drop� h across them

� h = hi � hj ; (8.1)

wherei; j are nodes of the network;hi ; hj are the relative pressures at the nodes.
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The other variable characterizing the components is the �uid �ow qthrough them. The
components in the network are governed by dynamic or algebraic equations describing
the relation between the two dual variables.

Valves

A valve in the hydraulic network is described by the following algebraic relation

hi � hj = � (q) � � (v; q); (8.2)

wherev > 0 is the hydraulic resistance of the valve;� (v; �) 2 C1 is proper and for any
constant value ofv is zero atq = 0 and monotonically increasing.

Pipes

A pipe is described by the dynamic equation

J _q = ( hi � hj ) � � (q) (8.3)

where� (q) � � (p; q); J > 0 andp > 0 are parameters of the pipe;� (p; �) 2 C1 have
the same properties as� (v; �).

Pumps

A (centrifugal) pump is a component which is able to maintaina desired pressure differ-
ence� h across it regardless of the value of the �uid �ow through it. This means that the
constitutive law of the pump is

hi � hj = � � hp (8.4)

where� hp is a non-negative control input.
Typically, exact values of the parametersv andp are not known but will be assumed

to be positive and to take values in a known compact set. Furthermore, the functions� (�)
and� (�) are not precisely known. Only their properties of being inC1, proper, monotonic
increasing and zero forq = 0 will be guaranteed.

The varying demand for heating at the end-users in the hydraulic network is modelled
by a (end-user) valve for which the hydraulic resistance canbe changed in a piecewise
constant way. Two types of pumps are present in the network; the end-user pumps, which
are mainly used to meet the demand at the end-users, and booster pumps which are used
to meet constraints on the relative pressures in the network.

Network Model

The model of the hydraulic network has been derived by using tools from circuit theory
[2]. The network is comprised ofm components andn end-users, wherem > n . To the
network there is associated a graphG, where the nodes ofGcoincides with the terminals
of the components and the edges ofG coincides with the components themselves. A
vector of independent �ow variables is identi�ed with the �ows through the chords1 of G.

1Let T denote the spanning tree ofG, i.e. a connected subgraph which contains all nodes ofG but no
cycles. Then the edges ofG which are not included inT are the chords ofG (see [2]).
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These �ow variables have the property that they can be set independently of all other �ow
variables in the network. A fundamental �ow loop is associated to each chord inG(i.e. to
each independent �ow variable). Along each of the fundamental �ow loops Kirchhoff's
voltage law holds, which can be expressed as

B�h = 0 ; (8.5)

whereB 2 M (n; m; R) is called the fundamental loop matrix;�h is a vector consisting
of the pressure drops across the components in the network. The entries of the funda-
mental loop matrixB consist of� 1; 0; 1, and its value depends on the structure of the
network.

The class of hydraulic networks which are considered here satisfy the following three
assumptions:

Assumption2.1: [2] The graphG is connected.

Assumption2.2: [2] Each end-user valve is in series with a pipe and a pump, as seen in Fig. 8.1.
Furthermore, each chord inGcorresponds to a pipe in series with a user valve.

Assumption2.3: [2] There exists one and only one component called the heat source. It corresponds
to a valve2 of the network, and it lies in all the fundamental loops.

Remaining network

Pump

Valve

Pipe

q
i

Figure 8.1: The series connection associated with each end-user.

Proposition 19. [2] Any hydraulic network satisfying Assumptions 2.1 and 2.2 admits
the representation:

J _q = f (B T q) + u (8.6)

yi = � i (qi ) ; i = 1 ; 2; : : : ; n (8.7)

whereq 2 Rn is the vector of independent �ows;u 2 Rn is a vector of independent
inputs, which is a linear combination of the delivered pump pressures;yi is the pressure
drop measured across thei th end-user valve (see (8.2));J 2 M (n; R) and J > 0;
f (B T q) 2 C1; � i (qi ) is the constitutive law of thei th end-user valve. In (8.7), it is
assumed that the �rstn components coincide with the end-user valves.

2The valve models the pressure losses in the secondary side ofthe heat exchanger of the heat source.
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De�ning x = B T q, the mapf (x) can be written as [2]:

f (x) = � B (� (x) + � (x)) (8.8)

where� (x) = [ � 1(x1); : : : ; � m (xm )]T ; � (x) = [ � 1(x1); : : : ; � m (xm )]T .

Under Assumption 2.2 and Assumption 2.3, it is possible to select the orientation of
the components in the network such that the entries of the fundamental loop matrixB are
equal to1 or 0.

A sketch of a simple district heating system with a heat source and two apartment
buildings is illustrated in Fig. 8.2. The corresponding hydraulic network is illustrated in
Fig. 8.3. The two end-users are represented by the series connectionsf c12; c13; c14g and
f c5; c6; c7g. The heat source is represented by the valvef c10g which models the pressure
losses in the secondary side of the heat exchanger of the heatsource.

dp dp dp

dp

dp

Centrifugal pump

Heat exchanger

Pressure sensor dp

1000 [m] 500 [m]

200 [m]
300 [m]

Heat source
c c

c

c

c

c

10 1

12

13

6

5

dp

dpdp

dp

dp 1 2

5

4

3

Figure 8.2: A sketch of a small district heating system.

3 Stabilization by Positive and Quantized Proportional Control

Pressure Regulation Problem

It is desired to regulate the pressureyi across thei th end-user valve to a given reference
valuer i with the use of a feedback controller using locally available information only. The
vectorr = ( r1; : : : ; rn ) of desired reference values is assumed to be piecewise constant,
taking values in a known compact setR:

R = f r 2 Rn j 0 < r m � r i � rM g (8.9)

For the purpose of practical output regulation, a set of decentralized proportional con-
trollers will be the focus of the work presented here. The controllers considered will be
of the form:

ui =
�

� 
 i (yi � r i ) ; yi � r i

0 ; yi � r i
; i = 1 ; 2; : : : ; n (8.10)

where
 i > 0 is the controller gain.

113



Paper E

Pump

Pipeline

Valve

Sensor

dp dp

dp

dpdp

c

c c

c

c

c

c

c c

c

c

c

c

c

n n

n

n n

n

n

n n

n

nn

n

1 2

1 2
110

10

11

11

12

12

13

13

14

2

3
3

4

4

5

5

6

6

7

7

8899

3

45

dp

Figure 8.3: The hydraulic network diagram.

Quantization Map

This section describes the family of quantizers which will be considered in the exposi-
tion, which are a set of piecewise constant, non-decreasingfunctions taking non-negative
values in a �nite set. Furthermore, the quantizers will havehysteresis in order to prevent
sliding modes and thereby chattering.

First, for l 2 Z+ let A = f A0; A1; : : : ; A l g andB = f B0; B1; : : : ; B l +1 g be the
following family of intervals

A = f (�1 ; � 0]; (� 0; � 1]; : : : ; (� l � 2; � l � 1]; (� l � 1; 1 )g (8.11)

B = f (�1 ; � 0]; (� 0; � 1]; : : : ; (� l � 2; � l � 1]; (� l � 1; � l ]; (� l ; 1 )g (8.12)

wherel , � i and � j for i = 0 ; 1; : : : ; l � 1 and j = 0 ; 1; : : : ; l are design parameters
of the quantizer and such that� i < � i < � i +1 for i = 0 ; 1; : : : ; l � 1. Note that

R =
l[

i =1

A i =
l +1[

j =1

B j .

Let  m : R ! R be the map

 m (x(t)) =

8
>>>>>>>><

>>>>>>>>:

 A
k ; if t = t0 ^ x(t0) 2 Ak

 A
k ;

if x(t) = � k ^  m (x(t � )) =  B
k+1 or

x(t) = � k ^  m (x(t � )) =  B
k ; 1 � k � l

 B
k ;

if x(t) = � k � 1 ^  m (x(t � )) =  A
k or

x(t) = � k � 1 ^  m (x(t � )) =  A
k� 1; 1 � k � l

 A
0 ; if x(t) = � 0 ^  m (x(t � )) =  B

1
 m (x(t � )) ; otherwise

(8.13)

where A
k and B

k are design parameters of the quantizer, A
0 = 0 and A

k� 1 <  B
k <

 A
k for all k = 1 ; 2; : : : ; l .
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Remark5: The map m (�) is de�ned for piecewise monotone signalsx : [t0 ; t ] ! R. There is a
family of k partitions of[to ; t ] denotedI 1 ; I 2 ; : : : ; I k whereI 1 = [ t0 ; t1); I 2 = [ t1 ; t2); : : : ; I k =
[tk � 1 ; t ] and t i < t i +1 < t for i = 0 ; 1; : : : ; k � 2, such thatx(� ) is monotone for� 2 I j for
j = 1 ; 2; : : : ; k . Thent � is de�ned ast � = � if � 2 int(I k � 1).

De�ne 	 m : Rn ! Rn as	 m (x) = (  m (x1); : : : ;  m (xn ))T , then the closed loop
system with the quantized version of the proportional control actions is given as

J _q = f (B T q) + 	 m (u) (8.14)

The quantized version ( m (ui )) of the control signal can be replaced with an expres-
sion depending on a quantized version of the system output (� i (yi )) such that

 m (� 
 i (yi � r i )) = � 
 i (� i (yi ) � r i ): (8.15)

To this end, the following map is considered

� i (x(t)) = r i +

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

�  A
k


 i
; if t = t0 ^ � 
 i (x(t0) � r i ) 2 Ak

�  A
k


 i
;

if � 
 i (x(t) � r i ) = � k ^ � i (x(t � )) = r i �
 B

k +1


 i
or

� 
 i (x(t) � r i ) = � k ^ � i (x(t � )) = r i �  B
k


 i
;

1 � k � l

�  B
k


 i
;

if � 
 i (x(t) � r i ) = � k � 1 ^ � i (x(t � )) = r i �  A
k


 i
or

� 
 i (x(t) � r i ) = � k � 1 ^ � i (x(t � )) = r i �
 A

k � 1


 i
;

1 � k � l

�  A
0


 i
; if � 
 i (x(t) � r i ) = � 0 ^ � i (x(t � )) = r i �  B

1

 i

� i (x(t � )) ; otherwise
(8.16)

De�ne Y : Rn ! Rn asY (x) = (� 1(x1); : : : ; � n (xn ))T , and� = diag(
 i ), then
the closed loop system (8.14) can be rewritten to

J _q = f (B T q) � � (Y (y) � r ) (8.17)

since the identity in (8.15) is ful�lled.
The closed loop system in (8.17) has a discontinuous right hand side. Solutions to this

system will here be considered in the sense of Krasovskii solutions.

De�nition 3.1: [3] A map ' : I ! Rn is a Krasovskii solution of an autonomous system of
ordinary differential equations_x = G (x ), whereG : Rn ! Rn , if it is absolutely continuous and
for almost everyt 2 I it satis�es the differential inclusion_' (t) 2 K G (' (t )) , whereK G (x ) =T

�> 0 coG (B � (x )) andcoG is the convex closure of the setG .

HereI is an interval of real numbers, possibly unbounded. By de�nition, the operators
K associates toG(x) a set valued map which is compact for everyx 2 Rn . Furthermore,
if G(x) is locally bounded this set valued map is upper semi-continuous with convex
values [4]. Then, for each initial statex0, there exists at least one Krasovskii solution of
_x = G(x) [4].
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Using the calculus given in [5] it can be calculated that the Krasovskii solutions of
(8.17) are absolutely continuous functions which solves the Cauchy problem

J _q 2 f (B T q) � � (K (Y (y)) � r ); q(0) = q0 (8.18)

whereK (Y (y)) � � n
i =1 K (� i (yi )) andK (� i (yi )) is given by

K (� i (yi )) = r i +

8
><

>:

�  A
l


 i
; � 
 i (yi � r i ) > � l

f� �  A
l


 i
; � 2 [0; 1]g ; � 
 i (yi � r i ) 2 [� 0; � l ]

0 ; � 
 i (yi � r i ) < � 0

(8.19)

4 Stability Properties of Closed Loop System

In this section, the stability properties of the closed loopsystem introduced above will be
examined. Subsequently, a more speci�c class of functions will be used in the expressions
of � (�) and� (�). This more speci�c class re�ects the presence of turbulent3 �ows in the
system [6]. The class of functions, which will be considered, is the following

� i (x i ) = kvi jx i jx i (8.20)

� i (x i ) = kpi jx i jx i (8.21)

Let the mapF : Rn ! Rn be given as

F(z) = y(z) � � � 1f (B T z): (8.22)

Proposition 20. [7] For the class of functions de�ned in (8.20) and (8.21), the map
F : Rn ! Rn de�ned in (8.22) is a homeomorphism.

As a consequence of Proposition 20, there exists a unique vector q� 2 Rn for each
vector of reference valuesr 2 Rn , and the relation betweenr andq� is

q� = F � 1(r ); (8.23)

furthermore
r = y(q� ) � � � 1f (B T q� ): (8.24)

De�ne ~q = q � q� , then the expression for the closed loop system given in (8.17) can
be replaced by

J _q 2 ~f (~q) � � (K (Y (y)) � y (q� )) (8.25)

where~f (~q) = f (B T (~q + q� )) � f (B T q� ).
The following conjecture will be instrumental in the derivation of the stability prop-

erties of the closed loop system.

Conjecture 3. Under Assumption 2.2 and Assumption 2.3 the vectorq� de�ned by (8.23),
with � = diag(
 i ), 
 i > 0 andr i > 0 ful�ls that yi (q�

i ) < r i .

3Since the motivation for considering the new paradigm is reducing the diameters of the pipes used in the
network, the likelihood for turbulent �ows increases.

116



4 Stability Properties of Closed Loop System

A proof of Conjecture 3 forn = 2 is given in [8]. Furthermore, the conjecture has
been supported by numerical simulations of a small scale system with up to four end-
users.

By (8.24), Conjecture 3 corresponds to� f i (B T q� ) > 0. Before stating the main
result, the following Lemma will be given.

Lemma4.1: Let q � be de�ned by (8.23) and� f i (B T q � ) > 0 by Conjecture 3, then for every
r 2 R , if  A

l > � f i (B T q � ) for every i = 1 ; 2; : : : ; n , there exists a bounded intervalI i � R,
such that for everyqi 2 I c

i

(qi � q�
i )(�( yi ) � yi (q

�
i )) > 0: (8.26)

Furthermore
jqi j ! 1 ) (qi � q�

i )(�( yi ) � yi (q
�
i )) ! 1 : (8.27)

Proof of Lemma 4.1.By (8.24), the property

 A
l > � f i (B T q� ) (8.28)

corresponds to

r i �
 A

l


 i
< y i (q�

i ) (8.29)

since� = diag(
 i ) and
 i > 0.
Furthermore, by Conjecture 3

r i �
 A

l


 i
< y i (q�

i ) < r i : (8.30)

By the de�nition of � i (yi ) in (8.16)

� i (yi ) =

(
r i ; 8yi > r i � � 0


 i

r i �  A
l


 i
; 8yi < r i � � l


 i

: (8.31)

Now, de�ne the intervalI i = f qi 2 R j yi 2 [r i � � l

 i

; r i � � 0

 i

]g which is bounded by
continuity of� i (�).

Since� i (�) is monotonically increasing it follows that

(qi � q�
i )(� i (yi ) � yi (q�

i )) > 0; 8qi 2 I c
i : (8.32)

Furthermore, sinceq�
i andyi (q�

i ) are constant and� i (yi ) is bounded, from (8.32) it
follows that

jqi j ! 1 ) (qi � q�
i )(� i (yi ) � yi (q�

i )) ! 1 (8.33)

which completes the proof.

The following proposition regarding the stability properties of the closed loop system
can now be proved. The proposition states that for any gain� of the proportional control
actions, there exists a value A

l of the quantizer and a compact setQ, such that the
trajectories of the closed loop system are attracted toQ.
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Proposition 21. For any gain
 i > 0 and for any valuel 2 Z+ and � j , � j , where
j = 0 ; 1; : : : ; l , of the quantizer, such that� j < � j < � j +1 , if the parameter A

l of the
quantizer ful�ls  A

l > � f i (B T q� ), whereq� is de�ned by (8.24), then a compact setQ
exists, with the property that the Krasovskii solutionsq(t) to the Cauchy problem (8.18)
are attracted toQ.

Proof of Proposition 21.Recall, that~q is de�ned by the following change of coordinates

~q = q � q� : (8.34)

The Lyapunov candidate functionV : Rn ! R is de�ned as

V (~q) =
1
2

h~q; J~qi : (8.35)

The time derivative ofV (~q) is then given as

d
dt

V (~q) = h~q; J _qi (8.36)

d
dt

V (~q) 2
D

~q; ~f (~q) � � (K (Y (y)) � y (q� ))
E

(8.37)

d
dt

V (~q) 2
D

~q; ~f (~q)
E

� h ~q; � (K (Y (y)) � y (q� )) i (8.38)

It can be shown that the following inequality holds [7]

W (~q) � �
D

~q; ~f (~q)
E

> 0; (8.39)

from which it follows

d
dt

V(~q) < � h ~q; � (� � y (q� )) i ; 8� 2 K (Y (y)) : (8.40)

De�ne the setI = f q 2 Rn j qi 2 I i g, with I i de�ned by Lemma 4.1, then it follows
that there exists a �niteM > 0 such that

nX

i =1


 i (qi � q�
i )(� i (yi ) � yi (q�

i )) > � M; 8q 2 I; (8.41)

since
 i > 0, q�
i andyi (q�

i ) are constants andqi and� i (yi ) belong to a bounded set.
Furthermore, since(qi � q�

i )(� i (yi ) � yi (q�
i )) > 0 for everyqi 2 I c

i , consequently

nX

i =1


 i (qi � q�
i )(� i (yi ) � yi (q�

i )) > � M; 8q 2 Rn : (8.42)

From Lemma 4.1, and (8.42) it follows that

jqj ! 1 )
nX

i =1


 i (qi � q�
i )(� i (yi ) � yi (q�

i )) ! 1 : (8.43)
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4 Stability Properties of Closed Loop System

From (8.43) and Lemma 4.1 it is concluded that there exists a compact setQ � I , with
the property

h~q; � (Y (y) � y (q� )) i =
nX

i =1


 i (qi � q�
i )(� i (yi ) � yi (q�

i )) > 0; 8q 2 Q c; (8.44)

and consequently for everyq 2 Q c

� h ~q; � (� � y (q� )) i < 0; 8� 2 K (Y (y)) ; (8.45)

and the thesis follows.

Remark6: Since the result is global and independent on the numbern of end-users in the system
it follows that end-users can be added to or removed from the system while maintaining stability in
the sense that a compact setQ which attracts system trajectories will exist for the newlyobtained
system, given that (8.28) is ful�lled. However, to keep the same level of performance it may be
necessary to adjust the gains
 i and quantization parameters A

l andl .

Furthermore, if logarithmic quantizers are considered, practical output regulation
have been proved in [2].

To that end, letl be a positive integer, 0 a positive real number,� 2 (0; 1), and
 k = � k  0 for k = 1 ; 2; : : : ; l with � = 1� �

1+ � (i.e.  k = 1� �
1+ �  k � 1). The following

(logarithmic) quantizer is then proposed [2]:
Let  : R ! R be the map

 (x) =

8
>>><

>>>:

 0 ;  0
1� � < x

 k ;  k
1+ � < x �  k

1� � ; 0 � k � l
 k

1+ � ;  k
(1+ � )2 < x �  k

1� � 2 ; 0 � k � l

0 ; 0 � x �  l
1+ �

(8.46)

The parametersl ,  0 and� of the map (quantizer) are to be designed.
Then, the following proposition is proved in [2]:

Proposition 22. For any choice of the parameterqM > 0, any compact setR � R+ ,
any compact setQ of initial conditions described by

Q = f q 2 Rn j jqi j � qM ; i = 1 ; : : : ; ng ; (8.47)

for any arbitrarily small positive number" , and for any value of the quantization parame-
ter � 2 (0; 1) there exist gains
 �

i > 0 and parameters 0, l of the quantizer such that for
all 
 i > 
 �

i , for anyr 2 R , any Krasovskii solutionq(t) of the closed loop system (8.14)
with initial condition in Q is attracted by the setf � 2 Rn j j � i j � " ; i = 1 ; : : : ; ng,
where� i = yi � r i .

Furthermore, it is remarked in [2] that Proposition 22 holdsfor other quantizers as
well, such as the uniform quantizer for instance.
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5 Numerical Results

In this section, the results of numerical simulations performed on the closed loop sys-
tem, are presented. The hydraulic network diagram of the system used in the simula-
tions is shown in Fig. 8.4. The system is a laboratory scale system, in which four end-
users are present. The end-users are represented by the series connectionsf c4; c5; c6g,
f c9; c10; c11g, f c18; c19; c20g andf c23; c24; c25g. The quantization map used throughout

p

p

pp

C3

C4

C6

p

C8

C9

C11

dp1 dp2dp

p

Pipeline

Pump

Valve

Pressure diff. sensor

Relative pressure sensor

Expansion tank

C16
p

C27

p

dp3

C

C

C

C
17

18

19

20

C21

C26

p

dp4

C

C

C

C
22

23

24

25

C10C5

C
C

C

C

C

C
C1

2 7

1213

14

15

Figure 8.4: Diagram of the hydraulic network used in the simulation.

the simulations is the logarithmic quantizer introduced in(8.46). The parameters used in
the simulation are:J11 = 1 :0787, J12 = J13 = J14 = J21 = J31 = J41 = 0 :4421,
J22 = 1 :1318, J23 = J24 = J32 = J42 = 0 :7074, J33 = 1 :4854, J34 = J43 = 1 :061,
J44 = 1 :7507; p2 = p13 = 0 :0586, p3 = p6 = 0 :6755, p7 = p12 = p21 = p26 = 0 :0352,
p8 = p11 = p17 = p20 = p22 = p25 = 0 :4503, p16 = p27 = 0 :0469; v5 = v10 = v19 =
v24 = 0 :005, v14 = 0 :0013; r = 0 :21 4; � = 2 I 4;  0 = 0 :5; l = 2 ; � = 0 :5.

A scenario is simulated, where the end-user connectionsf c18; c19; c20gandf c23; c24; c25g
are �rst removed from and then later re-introduced into the system. The removal of
the end-users are simulated by changing the parametersv19 and v24 to a large value
(0.005+1.25�103), thereby reducing the �owsqc19 andqc24 to close to zero.

In Fig. 8.5 the results of the simulations are shown. As it is evident from the �gure,
system trajectories are bounded and practical output regulation is achieved, both in the
situation where all four end-users are present as well as when only two are. However, as
shown in Section 4 asymptotic stability is generally not achievable, and limit-cycle-type
behaviour is possible as shown in [9].

6 Conclusion

An industrial case study involving a large scale hydraulic network has been examined.
The hydraulic network underlies a district heating system.Speci�cally, stability proper-
ties of the closed loop system using quantized proportionalcontrol actions constrained
to non-negative values were investigated. Particularly, the quantized control actions was
constrained to take values in a �nite set, thereby making it possible to send them across a
communication network using a �nite bandwidth. The stability analysis shows that given
a properly chosen upper level of the quantizer, a compact setQ exists with the prop-
erty that all closed loop system trajectories are globally attracted to it. Furthermore, by
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Figure 8.5: Results of the simulation performed on the system in Fig. 8.4 in closed loop
with the proposed controllers. The �gure shows control inputs u1; u2; u3; u4, the con-
trolled variabledp1; dp2; dp3; dp4, and the �ow through valvesc24; c19; c10; c5 obtained
with the quantized proportional feedback control. At time 100 s, the end-user connec-
tions consisting off c18; c19; c20g andf c23; c24; c25g are removed from the system. At
time 200 s the end-user connections are re-inserted into thesystem. The solid line at 0.2
Bar in the two middle plots indicates the reference value.

a proper design of the parameters of the quantizer and the control gain, practical output
regulation is achieved. Since these results are both globaland independent of the number
of end-users in the system, it is concluded that end-users can be added to and removed
from the system, while still maintaining the property that acompact setQ, which globally
attracts system trajectories, exists for the newly obtained system. However, to keep the
same level of performance may require an adjustment of the parameters of the quantizer
and the controller gains.

Some natural future extensions of the work presented here are considered the intro-
duction of delays in the communication network as well as theintroduction of integral
control actions. Since a communication network in practiceis likely to introduce delays
in the control loop, it is considered necessary to examine the stability properties of the
closed loop system when such delays are introduced. The addition of integral control
actions are considered natural to accommodate for the steady state output regulation error
which is present with the proportional control actions only.
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1 Introduction

Abstract

An industrial case study involving a large-scale hydraulicnetwork is examined.
The hydraulic network underlies a district heating system.The network is subject
to structural changes in the sense that end-users may be added to or removed from
the network. The problem of output regulation in the networkis addressed. The re-
sults show that semi-global exponential output regulationis achievable using a set
of decentralized proportional-integral control actions.Furthermore, by adding an as-
sumption about the behaviour of the components in the system, which is justi�ed
in practice, global asymptotic output regulation is shown.The fact that the result is
global and independent on the number of end-users has the consequence that struc-
tural changes can be made in the network while maintaining the stability properties
of the system. Furthermore, the decentralized nature of thecontrol architecture eases
the implementation of structural changes in the network.

1 Introduction

The work presented here concerns an industrial case study involving a large-scale hy-
draulic network. The hydraulic network underlies a district heating system. The case
study considers a new paradigm for the design of district heating systems, in which it has
been proposed to reduce the diameter of the pipes in the network. By reducing the pipe
diameter, it is possible to reduce the heat dispersion from the pipes and thereby reduce the
energy losses in the system [2]. On the other hand, the reduced diameters induce increased
pressure losses throughout the network which must be compensated by multiple pumps.
Studies held that the multi-pump architecture is the technology which can compensate
for the increased pressure losses while still achieving a substantial energy saving ([1]).
The multi-pump architecture raises the question of how the pumps should be operated to
control the network in appropriate way. The new paradigm also gives rise to a �exible
network structure in which end-users can be added to or removed from the network. The
case study is part of the ongoing research programPlug & Play Process Control[3] which
considers automatic recon�guration of the control system if components such as sensors,
actuators or subsystems are added to or removed from a system.

To ful�l the control objective, which is to keep the pressureacross the so-called end-
user valves at a constant reference, a set of proportional-integral control actions is pro-
posed. The control actions are decentralized in the sense that the individual controllers
use only locally available information, which is the pressure measurement at the end-user.
The results show that it is possible to achieve semi-global exponential output regulation
using this control architecture. By adding an additional assumption regarding the con-
stitutive relation of the components in the system, it is, furthermore, possible to show
global asymptotic output regulation. These two results represent an important extension
of [5], where semi-global practical stability was achievedby proportional controllers, and
we believe they are instrumental for further developments which are brie�y discussed in
conclusions of the paper.

In Section 2, the model of the system is introduced along withthe output regulation
problem. The main results of the paper are presented in Section 3. In Section 4, the results
of numerical simulations of the closed loop system are presented. Finally, conclusions are
given in Section 5 along with possible future research directions.
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Nomenclature:For a vectorx 2 Rn , x i denotes thei th element ofx. LetM (n; m; R)
denote the set ofn � m matrices with real entries, andM (n; R) = M (n; n; R). For
a square matrixA, A > 0 means thatA is positive de�nite. For a square matrixA,
A = diag(x i ) means thatA hasx i as entries on the main diagonal and zero elsewhere.
For a matrixA, A ij will be used to denote the entry in thei th row andj th column of
A. A matrix A is said to beHurwitz if all eigenvalues ofA have strictly negative real
part. Throughout the paper,C1 denotes a continuously differentiable map. A continuous
map is said to beproper if the inverse image of a compact set is compact. A function
f : R ! R is called monotonically increasing if it is order preserving, i.e., for allx and
y such thatx � y thenf (x) � f (y). For a mapf : Rn ! Rm , let Df (�) denote the
Jacobian matrix off (�).

2 System Model

The system under consideration is a hydraulic network comprising a district heating sys-
tem. The model has been derived in detail in [4] and will be recalled here, but in fewer
details.

The hydraulic network consists of a number of connections between two-terminal
components, which in this work are: valves, pipes and pumps.Thekth system component
is characterized by dual variables, the �rst of which is the pressure drop� hk across it

� hk = hi � hj ; (9.1)

wherei; j are nodes in the network;hi ; hj are the relative pressures at the nodes.
The second variable characterizing the component is the �uid �ow qk through it. The

components have algebraic or dynamic expressions governing the relationships between
the two variables.

Valves

The behaviour of valves in the network is governed by the following algebraic expression

hi � hj = � k (qk ) � � k (vk ; qk ); (9.2)

wherevk is the hydraulic resistance of the valve;� k (�) is a C1 and proper function,
which for any �xed value ofvk is zero atqk = 0 , strictly monotonically increasing and
� k (vk ; �) = 0 for vk = 0 .

Pipes

The behaviour of pipes in the network is governed by the dynamic equation

J k _qk = ( hi � hj ) � � k (qk ) (9.3)

where� k (qk ) � � (pk ; qk ); J k andpk are parameters of the pipe;� k (�) is a function with
the same properties as� k (�).
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Pumps

A (typically centrifugal) pump is a component which delivers a desired pressure differ-
ence� hk regardless of the value of the �uid �ow through it. Thus, the behaviour of
pumps in the network is governed by the following expression

hi � hj = � � hp;k ; (9.4)

where� hp;k is a non-negative control input. In this paper we disregard the constraint
on control input and refer the interested reader to [5] wherepositiveproportionalcontrol
laws have been studied.

Component Model

A generalised component model can be derived using the following expression

� hk = J k _qk + � k (qk ) + � k (qk ) � � hp;k ; (9.5)

whereJ k ; pk are non-zero for pipe components and zero for other components;vk is non-
zero for valve components and zero for other components;� hp;k is non-zero for pump
components and zero for other components.

The values of the parameterspk andvk are typically unknown, but they will be as-
sumed to take values in a compact set of non-negative values.Likewise, the functions
� k (qk ) and� k (qk ) are not precisely known, only their properties of beingC1, monotone,
zero inqk = 0 and proper are guaranteed. The varying heating demand of theend-users,
which is the main source of disturbances in the system, is modelled by a (end-user) valve
with variable hydraulic resistance. In the network model, adistinction is to be made be-
tween end-user valves and the rest of the valves in the network. Two types of pumps are
present in the network; the end-user pumps, which are mainlyused to meet the demand
at the end-users, and booster pumps which are used to meet constraints on the relative
pressures in the network [6].

Network Model

The network model has been derived using standard circuit theory [4]. The hydraulic net-
work consists ofm components andn end-users (m > n ). The network is associated with
a graphGwhich has nodes coinciding with the terminals of the networkcomponents. The
edges of the network are the components themselves. The graph satis�es the following:

Assumption2.1: [5] G is a connected graph.

By the use of graph theory, a set ofn independent �ow variablesqi have been iden-
ti�ed. These �ow variables have the property that their values can be set independently
from other �ows in the network. The independent �ow variables coincide with the �ows
through the chords1 of the graph [4]. To each chord in the graph, a fundamental (�ow)

1Let T denote the spanning tree ofG, i.e. a connected subgraph which contains all nodes ofG but no
cycles. Then the edges ofG which are not included inT are the chords ofG (see [4]).
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loop is associated, and along this loop Kirchhoffs voltage law holds. This means that the
following equality applies

B � h = 0 ; (9.6)

whereB 2 M (n; m; R) is called the fundamental loop matrix;� h is a vector consisting
of the pressure drops across the components in the network.

The entries of the fundamental loop matrixB are� 1; 1 or 0, depending on the net-
work topology. For the case study in question, the hydraulicnetwork underlies a district
heating system. Because of the latter, the following statements can be made regarding the
network.

Assumption2.2: [5] Each end-user valve is in series with a pipe and a pump, as seen in Fig. 9.1.
Furthermore, each chord inGcorresponds to a pipe in series with a user valve.

Assumption2.3: [5] There exists one and only one component called the heat source. It corresponds
to a valve2 of the network, and it lies in all the fundamental loops.

Remaining network

Pump

Valve

Pipe

q
i

Figure 9.1: The series connection associated with each end-user [4].

Proposition 23. [5] Any hydraulic network satisfying Assumptions 2.1 and 2.2 admits
the representation

J _q = f (B T q) + u (9.7)

yi (qi ) = � i (qi ) ; i = 1 ; : : : ; n; (9.8)

whereq 2 Rn is the vector of independent �ows;u 2 Rn is a vector of independent inputs
consisting of a linear combination of the delivered pump pressures;yi is the measured
pressure drop across thei th end-user valve;J 2 M (n; R), J > 0; f (�) is a C1 vector
�eld; � i (�) is the fundamental law of thei th end-user valve. In (9.8), it is assumed that
the �rst n components coincide with the end-user valves.

Under Assumptions 2.1-2.3, it is possible to select the orientation of the components
in the network such that the entries of the fundamental loop matrix B are equal to1 or 0,
whereB ij is 1 if componentj belongs to fundamental �ow loopi and0 otherwise.

2The valve models the pressure losses in the secondary side ofthe heat exchanger of the heat source.
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3 Stability properties of closed loop system

De�ning the vector of �ows through the components in the system asx = B T q 2
Rm , the vector �eldf (�) can be written as [4]

f (x) = � B (� (x) + � (x)) ; 8x 2 Rm ; (9.9)

where� (x) = [ � 1(x1); : : : ; � m (xm )]T ; � (x) = [ � 1(x1); : : : ; � m (xm )]T and � i (�) is
non-zero for pipe components and� i (�) is non-zero for valve components.

The matrixJ in (9.7) is given by

J = B J B T (9.10)

whereJ = diag(J 1; : : : ; J m ).

Output Regulation Problem

It is desired to regulate the pressureyi across thei th end-user valve to a given reference
valuer i with the use of a feedback controller having available only local information.
The vectorr = ( r1; : : : ; rn ) of reference values takes values in a known compact setR:

R = f r 2 Rn j 0 < r m � r i � rM g: (9.11)

For the purpose of asymptotic output regulation, a set of decentralized proportional-
integral controllers is the focus of the work presented here. The controllers considered
will be of the form

_� i = � K i (yi (qi ) � r i ) (9.12)

ui = � i � N i (yi (qi ) � r i ) (9.13)

whereK i ; N i > 0 andi = 1 ; 2; : : : ; n.

3 Stability properties of closed loop system

In this section, the stability properties of the closed loopsystem will be examined. First,
it is shown that global asymptotic output regulation can be proved by adding an additional
assumption on the algebraic relations governing the components in the system. Secondly,
semi-global exponential stability is shown.

Global Asymptotic Stability

If it is further assumed that the functions� i (�), which govern the behaviour of pipes,
have derivatives@

@xi
(� i (x i )) bounded away from zero, then it is possible to show global

asymptotic stability of the closed loop system. This assumption is motivated by the fact
that for small values, the �ow through the pipes can be considered laminar [7].

First, de�ne the proportional gain matrixN = diag(N i ). The following lemma will
be instrumental in deriving the closed loop stability properties of the system.

Lemma3.1: Let the matrixG(q) 2 M (n; R) be given by

G(q) � NDy (q) � Df (B T q); (9.14)

thenG(q) > 0.
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Proof. Again, letx = B T q and recall that

f (x) = � B (� (x) + � (x)) (9.15)

where� (x) = ( � 1(x1); : : : ; � m (xm ))T and � (x) = ( � 1(x1); : : : ; � m (xm ))T . Then
� Df (B T q) is given by

� Df (B T q) = �
@
@x

f (x)
@x
@q

(9.16)

= B �( x)B T : (9.17)

where�( x) = diag( @
@xi

(� i (x i ) + � i (x i ))) .
By Assumption 2.2, each chord in the graphGdescribed by the network corresponds

to a pipe in series with a user valve. Therefore, by rearranging the numbering of the
components, such that the �rstn components are the pipes in the chords ofG, (9.17) can
be rewritten as

� Df (B T q) =
�

I n F
�

�
� 1(x) 0

0 � 2(x)

� �
I n

F T

�
(9.18)

= � 1(x) + F � 2(x)F T (9.19)

where� 1(x) = diag( @
@xi

(� i (x i ))) for i = 1 ; : : : ; n and � 2(x) = diag( @
@xi

(� i (x i ) +
� i (x i ))) for i = n + 1 ; : : : ; m.

Since� i (�) are monotonically increasing functions with derivatives@
@xi

(� i (x i )) bounded
away from zero, the matrix� 1(x) is positive de�nite for allx. Furthermore, since� i (�)
are monotonically increasing functions, the matrix� 2(x) is positive semi de�nite for all
x (recall that� i (�) is non-zero only for pipe components and� i (�) is non-zero only for
valve components). Then it follows that� Df (B T q) is positive de�nite.

The matrixDy (q) is given by

Dy (q) = diag(
@

@qi
yi (qi )) : (9.20)

Recall thatyi (qi ) = � i (qi ), and� i (�) is a monotonically increasing function. As a con-
sequenceDy (q) is positive semi de�nite. SinceN is diagonal and positive de�nite and
Dy (q) is positive semi de�nite diagonal, it follows thatNDy (q) is positive semi de�nite.

From the derivations above, it is concluded thatNDy (q) � Df (B T q) is a positive
de�nite matrix.

Since the functions� i (�) are monotonically increasing and proper, they admit inverses
� � 1

i (�). Now, let
q�

i � � � 1
i (r i ); (9.21)

that is:q�
i is the �ow through thei th end-user valve which produce the reference output.

Furthermore, de�ne
~q � q � q� ; (9.22)

then the main result of this subsection can be stated.

Proposition 24. The point(~qT ; _qT ) = 0 is a globally asymptotically stable equilibrium
point of the closed loop system given by (9.7), (9.8), (9.12)and (9.13).

130



3 Stability properties of closed loop system

Proof. De�ne the variable

~yi (~qi ) � � i (~qi + q�
i ) � r i : (9.23)

The following Lemma has been derived in [5]:

Lemma3.2: The function~yi (~qi ) is monotonically increasing and zero at~qi = 0 , and moreover

~yi (~qi )~qi > 0; 8 ~qi 6= 0 : (9.24)

The closed loop system de�ned by (9.7), (9.8), (9.12) and (9.13) is

J _q = f (B T q) + � � N ~y(~q) (9.25)
_� = � K ~y(~q) (9.26)

From (9.25) the following can be derived

J •q = Df (B T q) _q + _� � NDy (q) _q (9.27)

which can be rewritten as
J •q = � G(q) _q � K ~y(~q): (9.28)

In the aboveJ > 0, G(q) > 0 by Lemma 3.1 andK ~y(~q) can be written asr W (~q), with
W (~q) > 0 given as

W (~q) =
nX

i =1

K i

Z ~qi

0
~yi (s)ds: (9.29)

Therefore, the structure of (9.28) is similar to that of a mechanical system in the standard
Lagrangian form [8].

This motivates the choice of the Lyapunov function candidate V : R2n ! R, which
can be seen as an equivalent of the total energy function for amechanical system:

V (~q; _q) =
nX

i =1

K i

Z ~qi

0
~yi (s)ds +

1
2

_qT J _q (9.30)

which is positive de�nite and radially unbounded.
The time derivative ofV (~q; _q) is

d
dt

V (~q; _q) = _qT J •q + _qT K ~y(~q) (9.31)

= � _qT G(q) _q: (9.32)

From Lemma 3.1 it then follows thatddt V (~q; _q) < 0 for every _q 6= 0 and consequently
that all trajectories are bounded and_q ! 0 ast ! 1 .

From (9.28) it follows thatK ~y(~q) ! 0 as t ! 1 . Since~yi (�) is monotonically
increasing and zero in zero, it is concluded that~q ! 0 ast ! 1 .

From (9.21) and (9.23) it can be seen as~yi (~qi ) ! 0 the output� i (qi ) ! r i .
Since Proposition 24 is independent of the numbern of end-users in the system, it

follows that end-users can be added to or removed from the system while maintaining
asymptotic output regulation.
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Semi-global Exponential Stability

In this section semi-global exponential output regulationof the closed loop system is
shown. This result does not depend on the derivatives@

@xi
(� i (x i )) being bounded away

from zero. Rather, it reposes on the assumption that@
@xi

(� i (x i )) jx i = q�
i

6= 0 .
First, some preliminaries will be instrumental.
Perform the change of coordinates

~� � � + f (B T q� ); (9.33)

so as to obtain

J _~q = ~f (~q) + ~� � N ~y(~q) (9.34)
_~� = � K ~y(~q); (9.35)

where ~f (~q) = f (B T (~q + q� )) � f (B T q� ).
Let ~F 2 M (n; R) be a Hurwitz matrix and de�ne further the new coordinate ([9])

� = ~� � ~F J ~q

which yields

J _~q = ~f (~q) + � + ~F J ~q � N ~y(~q) (9.36)

_� = � K ~y(~q) � ~F ~f (~q) � ~F � � ~F 2J ~q + ~F N ~y(~q): (9.37)

Lemma3.3: [10] Let f : Rn ! R be aC1 function in a convex neighborhoodU of 0 in Rn , with
f (0) = 0 . Then

f (x1 ; : : : ; x n ) =
nX

i =1

x i gi (x1 ; : : : ; x n ) (9.38)

for some suitableC1 functionsgi : Rn ! R de�ned in U, with gi (0) = @
@xi

f (0) .

By Lemma 3.3 the map~f (~q) can be written as

~f (~q) = �̂ (~q)~q (9.39)

with �̂ (~q) a continuously differentiable matrix.
ChoosingK = ~F N , the closed-loop system can be written more simply as

_� = � ~F � � � (a) (~q)~q (9.40)

J _~q = � (b) (~q)~q + � � N ~y(~q) (9.41)

where

� (a) (~q) = ~F �̂ (~q) + ~F 2J (9.42)

� (b) (~q) = �̂ (~q) + ~F J: (9.43)
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3 Stability properties of closed loop system

Again by Lemma 3.3, the relation between~qi and~yi can be written as

~yi (~qi ) = gi (~qi )~qi : (9.44)

Observe that, as@
@~qi

(~yi (~qi )) j~qi =0 = @
@qi

(� i (qi )) jqi = q�
i

6= 0 , and the fact that~yi (x i ) =
0 if and only if x i = 0 , for every~qi the functiongi (�) on the right-hand side is positive.
Moreover, if ~qi range over a compact set, then by continuity ofgi (�) there existsm > 0
such that

gi (~qi ) � m > 0 ; i = 1 ; 2; : : : ; n: (9.45)

Then the main result of this subsection can be stated.

Proposition 25. Given system (9.7), (9.8), and a compact set of initial conditionsQ �
Rn � Rn , there exist diagonal positive de�nite matricesN andK in (9.12), (9.13), such
that every trajectory(q(t); � (t)) of the closed-loop system (9.7), (9.8), (9.12), (9.13) with
initial condition inQ is bounded and satis�eslim t ! + 1 yi (t) = r i for i = 1 ; 2; : : : ; n.

Proof. Let P > 0 be such that~F T P + P ~F = � I and consider the Lyapunov function
candidateV : R2n ! R given by

V (�; ~q) =
1
2

� T P � +
1
2

~qT J ~q

which is positive de�nite and radially unbounded. Compute the time derivative along the
trajectories of the system, to obtain

d
dt

V (�; ~q) = � � T P ~F � � � T P � (a) (~q)~q+

+ ~qT � (b) (~q)~q + ~qT � � ~qT N ~y(~q) : (9.46)

Let S be a level set ofV (�; ~q) containing the set of initial conditions of the system.
Bearing in mind (9.45), the time derivative ofV (�; ~q) can be written in compact form as

d
dt

V (�; ~q) � � j � j2 + j� jjj P � (a) (~q)jjj ~qj+

+ j~qjjj � (b) (~q)jjj ~qj + j~qjj � j � m~qT N ~q : (9.47)

Let � be a positive constant such thatmaxfjj P � (a) (~q)jj ; jj � (b) (~q)jj j ~q 2 Sg � � , which
exists by continuity of� (a) (�) and� (b) (�). Then

d
dt

V (�; ~q) � �
j� j2

2
+ (� 2 + � + 1) j~qj2 � m~qT N ~q :

Let N1 = : : : = Nn = m� 1 ~N , with N i 's the diagonal entries ofN and ~N to design, so
that

d
dt

V (�; ~q) � �
j� j2

2
+ (� 2 + � + 1 � ~N )j~qj2 :

Set ~N � = � 2 + � + 1 + 1
2

� M (J )
� M (P ) , where� M (�) denotes the maximum eigenvalue of a

(symmetric) matrix. Then, for all~N � ~N �

d
dt

V (�; ~q) � �
1

� M (P)
V (�; ~q): (9.48)
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