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Abstract

The R package spatstat provides a very flexible and useful frame-
work for analyzing spatial point patterns. A fundamental feature is
a procedure for fitting spatial point process models depending on co-
variates. However, in practice one often faces incomplete observation
of the covariates and this leads to parameter estimation error which is
difficult to quantify. In this paper we introduce a Monte Carlo version
of the estimating function used in spatstat for fitting inhomogeneous
Poisson processes and certain inhomogeneous cluster processes. For
this modified estimating function it is feasible to obtain the asymp-
totic distribution of the parameter estimates in the case of incomplete
covariate information. This allows a study of the loss of efficiency due
to the missing covariate data.

Keywords: asymptotic normality, cluster process, estimating function, exper-
imental design, inhomogeneous point process, missing covariate data, Poisson
process.

1 Introduction

The basic model for the relation between a spatial point pattern X and spatial
covariates is an inhomogeneous Poisson process with intensity function λ(·;β)
depending on the spatial covariates and an unknown parameter β. In this
paper we focus on the log-linear model λ(u;β) = exp(z(u)βT) and the score
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function for β is then

u(β) =
∑
u∈X

z(u)−
∫

W

z(u)λ(u;β)du (1)

where W is the observation window and z(u) is the vector of spatial covariates
at location u ∈ W . A spatial Poisson process is often not appropriate due to
clustering not explained by the covariates. However, (1) may still be used as
an estimating function for regression parameters in certain inhomogeneous
cluster processes, see Waagepetersen (2006) and Møller and Waagepetersen
(2006).

In practice z(·) is often only observed at a finite set of locations so that
the integral in (1) cannot be evaluated exactly. Rathbun (1996) proposes to
substitute the missing covariate values by kriging predictions. One disadvan-
tage of this approach is the need to specify a model for the covariate process
(typically involving new parameters to be estimated). In practice, the score
function is often approximated by an estimating function∑

u∈X

z(u)−
∑
u∈Q

z(u)λ(u;β)w(u) (2)

obtained using numerical quadrature with quadrature points u ∈ Q ⊂ W and
associated weights w(u) assuming that z(u) is observed for u both in X and
Q. This is implemented in the R package spatstat (Baddeley and Turner,
2000, 2005) where for computational reasons explained in Section 2, X ⊂
Q. It is in general not clear whether an approximate maximum likelihood
estimate (MLE) obtained from (2) is consistent and asymptotically normal
and how the variance matrix of the estimate differs from that of the MLE.
Rathbun et al. (2006) suggest to use instead an estimating equation of the
form

ur(β) =
∑
u∈X

z(u)−
∑
u∈D

z(u)λ(u;β)

ρ(u)
(3)

where D is a point process on W with intensity function ρ(·). Rathbun et al.
(2006) demonstrate asymptotic normality of the estimate obtained using (3)
under conditions valid e.g. if D is a simple random sample (i.e. a binomial
point process) independent of X.

The package spatstat is by far the most versatile and popular software
for fitting spatial point process models. In this paper we build on the ideas
in Rathbun et al. (2006) and introduce in Section 2 Monte Carlo versions of
the spatstat estimating equation. Asymptotic normality of the associated
parameter estimates is discussed in Section 3 both for inhomogeneous Pois-
son processes and inhomogeneous cluster processes. Practical examples are
considered in Section 4, and Section 5 contains some closing remarks.
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2 Monte Carlo versions of the spatstat esti-

mating function

Two types of quadrature schemes are available in spatstat: grid and
dirichlet. In both cases, the set of quadrature points Q is the union of
the observed points X and a set of dummy points D. The approximate like-
lihood is then formally equivalent to the likelihood of a weighted Poisson
regression which can easily be maximized using standard software for gener-
alized linear models (Berman and Turner, 1992). For the grid option, the
observation window is divided into rectangular tiles Cv, v ∈ D, each contain-
ing exactly one dummy point v ∈ D. The quadrature weight for a quadrature
point u ∈ Q falling in a tile Cv is the area of Cv divided by the number of
quadrature points falling in Cv (hence adjusting for the possible multiple oc-
currence of a tile Cv in the quadrature sum). The advantage of this scheme
is the easy calculation of the quadrature weights. For the dirichlet option,
the weights are the areas of the cells for the Dirichlet tesselation generated
by the quadrature points Q. A thorough account of the quadrature schemes
is given in Baddeley and Turner (2000).

Our Monte Carlo versions of the spatstat estimating function are of the
form ∑

u∈X

z(u)−
∑

u∈X∪D

z(u)λ(u;β)wβ(u) (4)

where D is a homogeneous dummy point process of intensity ρ > 0 (see Sec-
tion 2.1) and wβ(u) is a weight which may depend on β. The first instance
of (4) is equivalent to the grid option in spatstat but with random strat-
ified dummy points, see Section 2.1 (this possibility is briefly mentioned in
Section 4.3 of Baddeley and Turner, 2000). Consider as above rectangular
tiles Cv, v ∈ D with v ∈ Cv, v ∈ D, and let Nv denote the number of points
in X ∩ Cv. Letting wβ(u) = (ρNu + ρ)−1,

ug(β) =
∑
u∈X

z(u)−
∑

u∈X∪D

z(u)
λ(u;β)

ρNu + ρ
(5)

is obtained. Note that if the Cu are very small, then the dummy points in
X ∩Cu essentially become replicates of the dummy point u ∈ D and the last
term in (5) is well approximated by

∑
u∈D z(u)λ(u;β)/ρ as in (3).

To some extent, an analogue of the dirichlet version of spatstat is
obtained with

ud(β) =
∑
u∈X

z(u)−
∑

u∈X∪D

z(u)
λ(u;β)

λ(u;β) + ρ
(6)
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where wβ(u) = (λ(u;β)+ρ)−1 is the inverse intensity of X∪D. The analogy is
based on two considerations: first, as for the dirichlet option in spatstat

all quadrature points in X ∪D are treated on an equal footing. Second, for
a stationary point process of intensity α, the expected area of the associated
typical Dirichlet cell is 1/α. Hence the weight (λ(u;β)+ρ)−1 may be viewed
as an approximation to the expected area of a Dirichlet cell in a region of
constant intensity λ(u;β) + ρ. Although intuitively appealing, (6) yields an
asymptotically suboptimal estimating function for certain choices of dummy
point distributions, see Section 3.1.

Let Z be the matrix with rows z(u), u ∈ X ∪ D, and V the diago-
nal matrix with diagonal entries λ(u;β)/(ρNu + ρ) in the case of (5) or
ρλ(u;β)/(λ(u;β) + ρ)2 in the case of (6). Then we may write us(β) and
j(β) = −dus(β)/dβ as

ZT
(
1[u ∈ x]− wβ(u)λ(u;β)

)
u∈X∪D

= ZT V 1/2y and j(β) = ZTV Z

where y = V −1/2
(
1[u ∈ x]−wβ(u)λ(u;β)

)
u∈X∪D

. Newton-Raphson steps for
solving us(β) = 0 thus become equivalent to iterative weighted least squares
and can be implemented using minor modifications of code for estimation in
generalized linear models.

2.1 Dummy point distributions

To establish asymptotic results for the estimating functions (5) and (6) we
need a dummy point sampling design that ensures a central limit theorem for
the Monte Carlo integration error. In Section 3 we more specifically consider
sequences of dummy point processes Dn of increasing intensity ρn = nkρ,
ρ > 0, 0 < k ≤ 1, and require for integrable functions f : W → R

p,

n1/2

[ ∑
u∈Dn

f(u)

nkρ
−

∫
W

f(u)du

]
→ N(0, Gf/ρ

1/k) (7)

where Gf is a positive definite matrix.
Suppose Dn is a simple random sample of nρ|W | independent uniform

points on W (i.e. Dn is a binomial point process of intensity nρ). Then (7)
holds with k = 1 and

Gf =

∫
W

f(u)Tf(u)du− 1

|W |
∫

W

f(u)Tdu

∫
W

f(u)du.

This is a special case of the type of dummy point distributions considered in
Rathbun et al. (2006). An immediate generalization is to use independent
binomial processes within regions of a fixed subdivision of W .
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If the components of f = (f1, . . . , fp) are continuously differentiable we
may achieve k = 1/2 in (7) using a stratified sampling design where the
stratification depends on the number of dummy points. Suppose to be specific
that W = [0, a] × [0, b] is rectangular. Divide W in Mn = n1/2ρ|W | =
m1,nm2,n, m2,n = m1,nb/a, squares si,n, i = 1, . . . ,Mn, each of sidelength
a/m1,n. We then obtain stratified dummy points Dn = {u1,n, . . . , uMn,n}
where the points ui,n are independent with ui,n uniform on si,n. Generalizing
results in Okamoto (1976) to the multivariate case, (7) holds with

Gf =
1

12

∫
W

Af (u)du

where

Af (u1, u2) =

[
∂fi

∂u1

∂fj

∂u1

+
∂fi

∂u2

∂fj

∂u2

]
. (8)

Note that when using (5) and stratified dummy points we naturally choose
Cu,n = si,n if u ∈ Dn is generated in si,n. Stratified dummy points can easily
be generated with the spatstat procedure stratrand().

3 Asymptotic distribution of parameter esti-

mates

The asymptotic distribution of parameter estimates is obtained using infill
asymptotics where both the intensities of X and D tend to infinity. One may
think of X as representing the accumulation of points up to a certain ‘time’
point n and the intensity of X is then proportional to n. The intensity of
the dummy points is chosen to match the increasing intensity of observed
points as n increases. More specifically we consider sequences of Poisson
point processes Xn and dummy point processes Dn with intensity functions

λn(u;β∗) = nλ(u;β∗), β∗ ∈ R
p and ρn = nkρ (9)

where ρ > 0, 0 < k ≤ 1, and Xn and Dn are independent for each n. Note
that k < 1 corresponds to the case where the intensity ρn tends to infinity
at a slower rate than the intensity of Xn.

Considering first the case of maximum likelihood estimation using (1), it
is easy under infill asymptotics to show (see comments in Appendix B) that
the maximum likelihood estimate is asymptotically normal with asymptotic
covariance matrix

V =

[∫
W

z(u)Tz(u)λ(u;β∗)du

]−1

. (10)
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A similar expression is obtained using increasing domain asymptotics, see
Rathbun and Cressie (1994) and Kutoyants (1998). Assuming (7) and fol-
lowing Rathbun et al. (2006), the solution of ur,n(β) = 0 with

ur,n(β) =
∑
u∈Xn

z(u)−
∑
u∈Dn

z(u)
λ(u;β)

nk−1ρ
(11)

is asymptotically normal with asymptotic covariance matrix

V r = V + V GgV/ρ1/k (12)

with g(u) = z(u)λ(u;β∗), cf. (7). Note that this converges to V as ρ →∞.
Consider next the grid type estimating function,

ug,n(β) =
∑

u∈Xn

z(u)−
∑

u∈Xn∪Dn

z(u)
nλ(u;β∗)

nkρ(Nu,n + 1)
(13)

where Cu,n is the square cell to which u belongs (cf. Section 2.1) and Nu,n is
the number of points in Xn∩Cu,n. In the case of stratified dummy points we
assume continuously differentiable covariates zi(·) to apply (7) with k = 1/2.
The estimating function ug,n is then asymptotically equivalent to (11) (see
Appendix B) and the asymptotic covariance matrix V g is again given by (12).

3.1 The ‘Dirichlet type’ estimating function

For the ‘Dirichlet type’ estimating function, the estimate β̂n is the solution
of ud,n(β) = 0 where

ud,n(β) =
∑
u∈Xn

z(u)−
∑

u∈Xn∪Dn

z(u)
λ(u;β)

λ(u;β) + nk−1ρ
. (14)

The following result is verified in Appendix A.

Theorem 1. Assume that the matrix Zn with rows z(u), u ∈ Xn ∪Dn, has
full rank almost surely and that (7) holds. Further, let

F =

∫
W

z(u)Tz(u)du and C =

∫
W

z(u)Tz(u)
1

λ(u;β∗)
du (k < 1)

or (k = 1)

F =

∫
W

z(u)Tz(u)
λ(u;β∗)

ρ + λ(u;β∗)
and C =

∫
W

z(u)Tz(u)
λ(u;β∗)

(λ(u;β∗) + ρ)2
du.
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Then n1/2(β̂n − β∗) → N(0, V d) with

V d = F−1CF−1 + F−1GgF
−1/ρ1/k (15)

where

g(u) = z(u) (k < 1) or g(u) = z(u)
λ(u;β∗)

λ(u;β∗) + ρ
(k = 1).

Note that ρ controls the proportion of the asymptotic variance for β̂n

which is due to Monte Carlo integration error. Suppose k = 1 and ρ → ∞.
Then V d tends to the asymptotic covariance matrix V of the MLE. In the case
k < 1 we obtain in the limit F−1CF−1 	= V . The Dirichlet type estimating
function is thus suboptimal in the case k < 1 even when ρ →∞.

3.2 Inhomogeneous cluster processes

As an alternative to an inhomogeneous Poisson process, Waagepetersen (2006)
considers a cluster process X = Xc∈Y where the Xc are clusters of ‘offspring’
associated with ‘mother’ points c in a stationary Poisson point process Y of
intensity κ > 0. Given Y , the clusters Xc are independent Poisson processes
with intensity functions

λc(u) = α exp(z2:p(u)βT
2:p)h(u− c)

where α > 0, z2:p(u) = (z2(u), . . . , zp(u)) is a vector of spatially varying
covariates, β2:p = (β2, . . . , βp) is a vector of regression parameters, and h
is a probability density determining the spread of offspring points around
c. The intensity function of X is then of log-linear form exp(z(u)βT) where
β1 = log(κα) and z1(u) = 1. Waagepetersen (2006) suggests to estimate the
regression parameter β using the estimating function (1). In the following
we consider asymptotic results when (5) or (6) is used instead.

3.3 Asymptotic results

To obtain asymptotic results in the case of inhomogeneous cluster processes
we consider a sequence of cluster processes Xn with increasing mother in-
tensities nκ∗ and dummy point processes Dn of intensities nkρ. The inten-
sity function of Xn is nλ(u;β∗) = n exp(z(u)β∗) with β∗1 = log(κ∗α∗). The
asymptotic covariance matrix in the case of completely observed covariates
is (Waagepetersen, 2006)

V c = V + V AV/κ∗ (16)
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where A is defined as B in Theorem 2 below but with H(c) =
∫

W
z(u)λ(u;β)

h(u− c)du.
Consider first the grid type estimating function (13) with stratified dummy

points and continuously differentiable covariates. In analogy with the Poisson
process case we then obtain the asymptotic covariance matrix

V c,g = V c + V GgV/ρ1/k. (17)

For the Dirichlet type weights where β̂n is obtained by solving ud,n(β) = 0
with ud,n given by (14), the asymptotic distribution is given by the following
theorem.

Theorem 2. Suppose that the conditions of Theorem 2 are satisfied and
define the matrices F and C as in Theorem 1. Moreover, let

B =

∫
H(c)TH(c)dc

where (k < 1)

H(c) =

∫
W

z(u)h(u−c)du or H(c) =

∫
W

z(u)λ(u;β∗)
λ(u;β∗) + ρ

h(u−c)du (k = 1).

Then n1/2(β̂n − β∗) → N(0, V c,d) with

V c,d = F−1CF−1 + F−1BF−1/κ∗ + F−1GgF
−1/ρ1/k (18)

where Gg is given as in Theorem 1.

A sketch of the proof is given in Appendix A.

3.4 Estimation of asymptotic covariances

Suppose in practice that the first component in β is an intercept and that
an estimate β̂ is obtained using (5) or (6) with M dummy points. Then the
various integrals in the asymptotic covariance matrices may be estimated
using that for a function g(·;β), an estimate of

∫
W

g(u;β∗)du is given by

∑
u∈Xn∪Dn

g(u;β∗)
nλ(u;β∗) + nkρ

and plugging in X ∪D for Xn ∪Dn, exp(β̂1) for n exp(β∗1), β̂2:p for β∗2:p, and
M/|W | for nkρ.
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The above equation may also be used to estimate the integrals for Gg in
the case of binomial dummy points. For stratified dummy points a consistent
estimate of the ijth entry of Gg may be obtained using an additional set of
dummy points {v1, . . . , vM} distributed as and independent of {u1, . . . , uM}.
Extending Okamoto (1976) to the multivariate case, the estimate is

1

2

M∑
l=1

(gi(ul)− gi(vl))(gj(ul)− gj(vl)).

Of course, averaging Monte Carlo estimates of
∫

W
g(u)du based on the two

sets of dummy points, the variance is halved.

4 Comparison of asymptotic variances in a

specific example

In this section we investigate the efficiency of the various estimating func-
tions by evaluating their corresponding asymptotic covariance matrices for a
specific example of spatial covariates. Figure 1 shows elevation z2(u) on a 5
by 5 m square grid covering a 500× 1000 m2 rain forest research plot W at
Barro Colorado Island in Panama, see Condit et al. (1996); Condit (1998);
Hubbell and Foster (1983). The elevations are in fact interpolated from data
on a coarser grid but for sake of the example we here consider them as ‘true’
elevation observations.

In the following Section 4.1 we evaluate asymptotic variances in the case
of a Poisson process with covariate vector z(u) = (1, z2(u)) fixing β∗1 =
0 and letting β∗2 = 0.01, 0.1 or 1.0. In Section 4.2 a third covariate z3

is used where z3 is the norm of the gradient obtained from the elevation
map. In all the examples, asymptotic covariance matrices are computed by
approximating the integrals with Riemann sums corresponding to the 5 by
5 m grid. With stratified dummy points, numerical approximation of the
partial derivatives of g (cf. (8)) are used when computing Gg appearing in
the asymptotic covariance matrices.

4.1 Poisson process case

In the case where Dn is a binomial process of intensity nρ, we let ρ =
q
∫

W
exp(z(u)β∗)du/|W | for values of q = 0.25, 1, 10, or 100, so that the

number of dummy points nρ|W | is q times the expected number of observed
points. For stratified dummy points where k = 1/2, the proportion of dummy
points in Xn∪Dn depends on n. To consider realistic values of ρ we imagine

9
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Figure 1: Elevation.

an n corresponding to an expected number N = 1000 = n
∫

W
exp(z(u)β∗)du

of observed points and for various values of q choose ρ = qN/(n1/2|W |) so
that the number of dummy points M = n1/2ρ|W | = qN .

Table 1 shows ratios of asymptotic standard errors for the estimate β̂2

obtained from ur, ug, ud or u given by (3), (5), (6), and (1), respectively. The
standard errors are extracted from V r, V d, and V given by (12), (15), and
(10), respectively. We consider ug only in the case of stratified dummy points
and recall that in this case the asymptotic covariance matrix V g coincides
with V r.

bin. str.
β∗2 Est. fct. \q 0.25 1 10 100 0.25 1 10 100
.01 ur (ug) 2.22 1.41 1.05 1.00 1.06 1.00 1.00 1.00

ud 2.21 1.41 1.05 1.00 1.06 1.01 1.01 1.01
0.1 ur (ug) 2.47 1.51 1.06 1.01 1.08 1.01 1.00 1.00

ud 2.12 1.43 1.06 1.01 1.56 1.53 1.53 1.53
1.0 ur (ug) 9.11 4.64 1.75 1.10 5.33 1.65 1.01 1.00

ud 3.68 2.52 1.47 1.09 6e6 6e6 6e6 6e6

Table 1: Asymptotic standard errors for estimates of β2 obtained from either
(3), (5), or (6) divided by the asymptotic standard error for the MLE. The
numbers of either binomial or stratified dummy points is q times the expected
number of observed points and the ‘true’ parameter value β∗2 is either 0.01,
0.1, or 1.0.

When binomial dummy points are used, the Dirichlet type estimating
function ud does in general a bit better than the Rathbun et al. (2006) type

10



estimating function ur. For stratified dummy points on the other hand,
the performance of ud quickly deteriorates as β∗2 increases and already with
β∗2 = 0.1 the standard errors become at least 53% larger than the MLE
standard errors regardless of the value of ρ. Hence, in the case of stratified
dummy points it is clearly preferable to use grid weights rather than Dirichlet
type weights. All of the Monte Carlo estimating equations perform less well
as β∗2 and hence the variability of the intensity function increases. Note the
potentially substantial increase in the standard errors which, depending on
ρ and β∗2 , may occur due to missing covariate data.

4.2 Clustered rain forest trees

Waagepetersen (2006) fits an inhomogeneous cluster process with covariate
vector (1, z2(u), z3(u)) to the positions of 3604 rain forest trees observed in the
Barro Colorado Island research plot. The parameter estimates obtained for β
and κ are (−4.99, 0.02, 5.84) and 8e-5. Due to clustering, the standard errors
for β2 and β3 obtained from (16) are respectively 8.8 and 9.9 times larger than
the standard errors obtained from (10) assuming an inhomogeneous Poisson
process.

We now investigate a hypothetical situation where the parameter estimate
is obtained using (3), (5), or (6) assuming that Figure 1 does represent the
true elevation map. We consider varying numbers M = 450, 800, 1800 of
either binomial or stratified dummy points. For the binomial dummy points
we consider (3) and (6) while (5) is used in the stratified case where the
asymptotic covariance matrices for (3) and (5) coincide. Table 2 shows ratios
between standard errors for estimates of β2 extracted from V c,r = V c,g, V c,d,
and V c given by (17), (18), and (16), respectively. A similar pattern is
obtained for β3 (not shown). In the computations, ρ = M/|W |, β∗ is the
estimate obtained in Waagepetersen (2006), while varying values of κ∗ given
by 1, 10, or 100 times 8e-5 are considered corresponding to decreasing degree
of clustering.

The results for the highly clustered case κ∗ = 8e-5 indicate that the
increase in the parameter standard error due to the incompletely observed
covariates is rather small and less than 1 % if 1800 dummy points are used.
As the amount of clustering decreases, the incomplete observation of the
covariates plays a relatively bigger role. For binomial dummy points, ud

again does a bit better than ur and curiously, the standard errors obtained
with ud and M = 800 or M = 1800 are in fact a bit smaller than with
completely observed covariates. This is because the diagonal entries in the
second term (due to clustering) of V c,d are smaller than those of the second
term in V c. As one might expect, with binomial dummy points (for which

11



κ∗ 8e-5 8e-4 8e-3
M 450 800 1800 450 800 1800 450 800 1800

ur (bin.) 1.06 1.03 1.01 1.44 1.26 1.12 2.49 1.98 1.52
ud (bin.) 1.01 0.99 0.97 1.35 1.20 1.08 2.32 1.86 1.45
ug (str.) 1.00 1.00 1.00 1.04 1.01 1.00 1.17 1.06 1.01

Table 2: Asymptotic standard errors for estimates of β2 obtained with (3),
(6), or (5) divided by the asymptotic standard error for the MLE. Binomial
dummy points are used for (3) and (6) while (5) is used with stratified dummy
points. The number of dummy points is M and the asymptotic variances are
evaluated with β∗ = (−4.99, 0.02, 5.84) and κ∗ equal to 1, 10, or 100 times
κ̂ = 8e-5 from Waagepetersen (2006).

the covariates need not be continuously differentiable) we, for a given M ,
obtain larger standard errors than with stratified dummy points.

5 Discussion

The Monte Carlo versions of the spatstat estimating function can be im-
plemented in much the same manner as the current spatstat estimating
function. At the same time it is feasible to derive the asymptotic distribu-
tion of the associated parameter estimates. If the assumption of continuously
differentiable covariates is tenable, the choice of stratified dummy points com-
bined with the grid type estimating function (5) seems preferable. Otherwise
one may use the option of binomial dummy points and the Dirichlet type es-
timating function (6). One concern is the loss of efficiency which occurs with
the Dirichlet type weights in the case k < 1 and ρ → ∞ in Theorem 1.
This may, however, also be an issue with the original spatstat estimating
function when the dirichlet quadrature scheme is used.

The asymptotic results in Section 3 require an experimental design where
the distribution of the dummy points is chosen so that (7) holds. In Sec-
tion 2.1 we discuss binomial and stratified dummy points. Other possibilities
include vertices on a randomly translated lattice (see e.g. the review in Kiêu
and Mora, 2006) or so-called scrambled nets (Owen, 1997). A central limit
theorem is currently not available in the case of a randomly translated lat-
tice whereas Loh (2003) establishes a central limit theorem for scrambled
nets. From a theoretical point of view, scrambled nets offer better conver-
gence rates than stratified dummy points but the implementation is much
less straightforward. The description of scrambled nets is moreover quite
technical and omitted here for brevity.
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A Proof of Theorem 1

Recalling the notation introduced in Section 2 and 3 we here give a proof of
Theorem 1 and sketch a proof of Theorem 2.

Proof of Theorem 1:

In the following identify Xn with a union of n independent Poisson processes
X i each of intensity λ(·;β∗). Let

jd,n(β) = − d

dβ
ud,n(β) = nk

∑
u∈Xn∪Dn

z(u)Tz(u)
ρnλ(u;β)

(nλ(u;β) + nkρ)2
.

We consider first the case k < 1 and verify the conditions 1-5 of Theorem 3
in Appendix C with an = nk/2 and cn = nk−1/2; the case k = 1 follows along
similar lines but with an = cn = n1/2 – the first condition of Theorem 3 is
satisfied for both choices of an and cn. Condition 2 holds since Zn has full
rank almost surely, see also the discussion in the first part of Section 2.

Turning to condition 3, note that

n−kjd,n(β∗) =
1

n

∑
u∈Xn

z(u)Tz(u)ρλ(u;β∗)
(λ(u;β∗) + nk−1ρ)2

+
1

n

∑
u∈Dn

z(u)Tz(u)ρλ(u;β∗)
(λ(u;β∗) + nk−1ρ)2

The last term has mean value of order nk−1 and hence converges to zero in
probability by Markovs inequality. The first term converges to ρF by the
strong law of large numbers replacing

∑
u∈Xn

by
∑n

i=1

∑
u∈Xi . Condition 4

follows by continuity and Markovs inequality. Hence the main task is to
verify condition 5.

Rewrite

ud,n(β∗) = Vn −Wn =(
Vn−nk

∫
W

z(u)
ρλ(u;β∗)

λ(u;β∗) + nk−1ρ
du

)−(
Wn−nk

∫
W

z(u)
ρλ(u;β∗)

λ(u;β∗) + nk−1ρ
du

)
where the two terms

Vn =
∑
u∈Xn

z(u)
nk−1ρ

λ(u;β∗) + nk−1ρ
and Wn =

∑
u∈Dn

z(u)
λ(u;β∗)

λ(u;β∗) + nk−1ρ

13



are independent. Note

Vn ∼
n∑

i=1

Yi,n where Yi,n =
∑
u∈Xi

z(u)
nk−1ρ

λ(u;β∗) + nk−1ρ
.

Let μn = EYi,n = nk−1
∫

W
z(u)ρλ(u;β∗)/(λ(u;β∗) + nk−1ρ)du and

σ2
n = VarYi,n = n2k−2

∫
W

z(u)Tz(u)
ρ2λ(u;β∗)

(λ(u;β∗) + nk−1ρ)2
du.

Then by the central limit theorem (CLT II in Hoffmann-Jørgensen, 1994,
using condition 5.22.5), n−1/2σ−1

n

∑n
i=1(Yi,n − μn) converges to a standard

multivariate normal distribution. Note that limn→∞ σ2
n/n2k−2 → ρ2C =

ρ2
∫

W
z(u)Tz(u)/λ(u;β∗)du. Hence

n−k+1/2

n∑
i=1

(Yi,n − μn) = n−k+1/2(Vn − nk

∫
W

z(u)
ρλ(u;β∗)

λ(u;β∗) + nk−1ρ
du)

converges to N(0, ρ2C).
Considering Wn,

n−k+1/2Wn =n−k+1/2
∑
u∈Dn

z(u)
λ(u;β∗)

λ(u;β∗) + nk−1ρ
=

n1/2
∑

u∈Dn

z(u)ρ

nkρ
− n1/2

∑
u∈Dn

z(u)nk−1ρ2

(λ(u;β∗) + nk−1ρ)nkρ

where the last term converges to zero in probability since

lim
n→∞

Varn1/2
∑

u∈Dn

z(u)nk−1ρ2

(λ(u;β∗) + nk−1ρ)nkρ
=

lim
n→∞

n2k−2
Varn1/2

∑
u∈Dn

z(u)ρ2

λ(u;β∗)nkρ
= 0

as Varn1/2
∑

u∈Dn
z(u)ρ2/(λ(u;β∗)nkρ) converges to a constant.

Hence n−k+1/2
(
Wn − nk

∫
W

z(u) ρλ(u;β∗)
λ(u;β∗)+nk−1ρ

du
)

is asymptotically normal

with covariance matrix ρ2−1/kGz and we obtain that n−k+1/2ud,n(β∗) con-
verges to N(0, ρ2C) + N(0, ρ2−1/kGz). Theorem 1, case k < 1, thus follows
from Theorem 3. The proof for k = 1 proceeds in a similar manner.

Proof of Theorem 2:

14



The proof of Theorem 2 is analogous to the proof of Theorem 1 except that
we obtain a different asymptotic covariance matrix for ud,n(β∗) identifying
Xn with a superposition of independent cluster processes X i where X i has
intensity function λ(·;β∗) and consists of offspring for mothers in a stationary
Poisson process Y i of intensity κ∗.

Assume k < 1. The variance Var
∑

u∈Xi z(u)nk−1ρ/(λ(u;β) + nk−1ρ) is
computed using conditioning on Y i,

σ2
n =Var

∑
u∈Xi

z(u)nk−1ρ

λ(u;β∗) + nk−1ρ
=

EVar[
∑
u∈Xi

z(u)nk−1ρ

λ(u;β∗) + nk−1ρ
|Y i] + VarE[

∑
u∈Xi

z(u)nk−1ρ

λ(u;β∗) + nk−1ρ
|Y i] =

n2k−2

∫
W

z(u)Tz(u)
ρ2λ(u;β∗)

(λ(u;β∗) + nk−1ρ)2
du + n2k−2ρ2

∫
Hn(c)THn(c)dc/κ∗

where

Hn(c) =

∫
W

z(u)
λ(u;β∗)

λ(u;β∗) + nk−1ρ
h(u− c)du

Following the proof of Theorem 1 it follows that n−k+1/2ud,n(β∗) is asymp-
totically zero mean normal with covariance matrix

ρ2C + ρ2

∫
H(c)TH(c)dc/κ∗ + ρ2−1/kGg.

The asymptotic variance in the case k = 1 is obtained in a similar manner.

B Asymptotic equivalence of estimating func-

tions

The asymptotic distribution of parameter estimates obtained with the esti-
mating functions (1) and (3) can be derived along the lines of the proofs in
Appendix A using the general Theorem 3 in Appendix C. The basic steps are
to establish asymptotic normality of n−1/2 times the estimating function and
convergence of n−1 times minus the derivative of the estimating function.

Consider now ur,n and ug,n given by (11) and (13). Assuming that the
covariates zi(u) are continuously differentiable and since the sidelength of
Cu,n is a constant times n−k/2, it follows that n−1/2(ug,n(β∗)−ur,n(β∗)) tends
to zero in probability and the two terms thus have the same weak limit.
Similarly, jg,n(β∗)/n has the same limit in probability as jr,n(β∗)/n where
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jg,n and jr,n denote the derivatives of −ug,n and −ur,n. Hence, the parameter
estimates obtained from ug,n and ur,n are identically distributed asymptoti-
cally.

C Some general asymptotic results for esti-

mating functions

The following results are adapted from unpublished lecture notes by Professor
Jens L. Jensen, University of Aarhus. The use below of normalizing sequences
an and cn where an may differ from cn is not standard in the literature on
asymptotics for estimating functions. However, we need this to deal with the
case k < 1 in the proofs of Theorems 1 and 2.

Consider a parametrized family of probability measures Pθ, θ ∈ R
p, and a

sequence of estimating functions un : R
p → R

p, n ≥ 1. The ‘true’ parameter
value is denoted θ∗. The conditions for consistency and asymptotic normality
are that there exist sequences an and cn such that

1. cna−2
n → 0,

2. un(θ) = 0 has almost surely a unique solution θ̂n for each n,

3. jn(θ∗)/a2
n → F in probability for a positive definite matrix F ,

4. For all c > 0, sup‖θ−θ∗‖a2
n/cn≤c |jn(θ)− jn(θ∗)|max/a

2
n = 0 in probability,

5. The normalized score function un(θ∗)/cn is asymptotically zero-mean
normal with covariance matrix Σ,

where probabilities are computed under P ∗
θ and |A|max = maxij |aij | for a

matrix A = [aij ]. The second condition is assumed for ease of exposition and
can be relaxed in view of the third condition. The following theorem ensures
a2

n/cn consistency of θ̂n and asymptotic normality.

Theorem 3. Under the conditions stated above, for each ε > 0, there exists
a c > 0 such that

Pθ∗(‖θ̂n − θ∗‖a2
n/cn < c) > 1− ε

whenever n is sufficiently large. Moreover,

(θ̂n − θ∗)a2
n/cn → N(0, F−1ΣF−1).

A proof of the result can be found in Waagepetersen (2007).
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