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Time-Frequency Distributions of Music
based on Sparse Wavelet Packet Representations

Line Ørtoft Endelt and Anders la Cour-Harbo
Aalborg University

Department of Control Engineering
Frb. Vej 7C, 9220 Aalborg East, Denmark

{oertoft, alc}@control.aau.dk

Abstract

We introduce a new method for generating time-frequency distributions, which is particularly useful for the analysis of
music signals. The method presented here is based onℓ1 sparse representations of music signals in a redundant wavelet
packet dictionary. The representations are found using theminimization methods basis pursuit and best orthogonal basis.
Visualizations of the time-frequency distribution are constructed based on a simplified energy distribution in the wavelet
packet decomposition. The time-frequency distributions emphasizes structured musical content, including non-stationary
content, by masking the energy from less structured music instruments. We present four examples for visualizing structured
content, including vocal and single instrument.

Keywords: wavelet packet, redundant representations, time-frequency distribution, music.

1 Introduction

The basic idea of redundant representation is that by em-
ploying a richer dictionary there is potential for faster decay
of the weight coefficients in the representation than is the
case for a ‘sufficient’ dictionary. This seemingly appeal-
ing fact can then be explored for the purpose of compres-
sion, denoising, feature extraction, and other applications.
However, the use of redundant representations holds many
challenges compared to the non-redundant case, and con-
sequently redundant representations as a mean to achieve
sparseness in signal representation has been investigated
by many researchers in recent years. Further, these chal-
lenges often inhibits the use of redundant representations
in applications, which otherwise would seem to benefit
from the redundancy. One example of an application where
non-redundant representations is very common is time-
frequency distributions.1

In this work we are interested in using redundant rep-
resentations of music signals for extracting or emphasiz-

1We disregard sliding windows, over-sampled FFTs, and the like as
truly redundant representations.

ing certain time-frequency (TF) related features. In par-
ticular, we demonstrate how redundant wavelet representa-
tions can be used for generating ‘scalograms’ with specific
properties not usually found in standard wavelet represen-
tations. We approach this from a mathematical point-of-
view rather than applicational, and consequently our work
is more on what can be achieved using this specific method
rather than attempting to address a particular task, like de-
tection of fundamental frequency, onset detection, beat es-
timation, and so on. This makes our approach somewhat
different from other works in this field, see for instance
[23, 19, 22, 5, 20].

One of the features that comes out of using redundant
representation on music signals is a visualization of the
presence of a distinct melody from a human vocal or a sin-
gle instrument.

2 Methodology

When applying a Fourier or Wavelet transform to de-
scribe a music signal a complete description is achieved,
which is usually more sparse than the original signal, and



often more meaningful in terms of what the music signals
contains. But although the description is complete it is not
necessarily useful or sufficiently sparse. The main reason
being that a music signal typically is a very complex signal
consisting of a variety of different events that does not fit a
single type of dictionary, such as pure frequencies (Fourier
or sin/cosine). Ideally, we can think of music as being well
represented in a ‘music instrument’ domain, i.e. a domain
where each instrument is somehow represented in the dic-
tionary. The representation of the individual instrumentsis
then composed of a number of frequency and time local-
ized events, and each of these are in turn associated with a
set of parameters, like attack, sustain, decay, vibrato, into-
nation, and so on. Adding to the complexity is the fact that
in some cases rather different settings of the above leads to
sounds almost indistinguishably by human, while in other
cases even small alternations can lead to very detectable
changes in the sound. As an example the phase of frequen-
cies are not detectable (directly) by humans, while small
changes in pitch are very detectable.

While it is relatively simple to bring music from a de-
scription in the above form (MIDI is an example of such
a type of representation) to a digital waveform of decent
quality, it is at present in general not possible to go the
other way, to do automatic scoring. The mathematics of
signal representation is still far from being able to handle
this complexity.

However, we are indeed able to push the limit further
than the standard dictionaries by employing the redundant
representations. They are one step closer to the ideal rep-
resentation in the sense that the redundancy allows much
more freedom in the choice of dictionary content, the so-
called atoms. This freedom comes specifically with redun-
dant representations; while orthogonality introduces sev-
eral very nice properties in the signal representation, it
simultaneously introduces (unnecessarily) severe restric-
tions. This restriction is clearly seen in any orthogonal TF
distribution (TFD) like a spectrogram or scalogram of a si-
nusoid with a single spike, where the frequency event and
time event cannot be simultaneously well localized.

Although the dictionaries in this work are redundant
they are still composed of ‘standard’ dictionaries. In par-
ticular, we have chosen to focus on a redundant wavelet
dictionary. The reason for not including a ‘pure tone’ dic-
tionary is mainly that the frequency localization property
of the Fourier dictionary is to some extend present in a
multi-level wavelet packet (WP) transform. However, on-
going work by the authors include TFD based on combined
Fourier and WP dictionaries. We denote the TFD based on
a redundant representation RR-TFD.

The following sections will describe the details of the
redundant signal representations, the WP dictionaries and
two minimization methods for finding sparse representa-

tions of signals in dictionaries. There is a description of
the calculation setup, and how the RR-TFD shown in sec-
tion 3 are produced from the energy of the coefficients of a
redundant representation of a music piece.

2.1 Redundant Signal Representations

A dictionary forRN is a set ofM vectors inRN , M ≥
N , that spanRN . The elements of a dictionary are called
atoms. Thus, for any signalb ∈ RN we can findx ∈ RM

such thatAx = b, whereA is anN × M matrix with
the atoms as columns. Since this set of equations is over-
complete it has infinitely many solutions, and we therefore
need to specify, which solution is desired. In the present
setting we want a sparse solution, and we choose to use the
ℓp norm, p ≤ 2, although many other measure could be
used.

Consequently, the initial problem of interest here is

min ‖x‖p subject to Ax = b (1)

whereb is the music signal,A is the dictionary, andx is
the representation. When the dictionary contains more than
N elements this representation is not unique, and this is the
source of the increased flexibility in choice of representa-
tion compared to the orthogonal case.

There are many methods for constructing a sensible dic-
tionary, as examples see e.g. [2, 1, 14]. It can contain har-
monic and Gabor waveforms, wavelets, chirps, spikes, and
so on. It can also contain elements learned by training on a
set of similar signals. In this work we use a WP dictionary
(see section 2.2).

There exists a number of optimization methods for find-
ing the most sparse representations in a dictionary for a
given signal, i.e. for solving (1). We have chosen the two
rather different methods basis pursuit and best orthogonal
basis. This is further described in section 2.3.

2.2 Wavelet Packets

A WP transform is the application of a pair of wavelet
FIR filters combined with a hierarchical way of applying
the filters. The filters are a low pass filterh[n] and a high
pass filterg[n], where the filter taps (impulse response) sat-
isfies a series of constraints [25]. In general, the WP is
applied the following fashion. First, the filters are applied
on the original signalb of lengthN , followed by a down
sampling resulting in two new signals (or filter outputs),
xlow andxhigh, with

xlow[k] =
∑

n

b[n]h[2k − n] (2)

xhigh[k] =
∑

n

b[n]g[2k − n] . (3)

2



Next, the low and high pass filters are applied on bothxlow

andxhigh. This procedure is continued until the desired
frequency resolution is reached. Figure 1 shows the hier-
archical structure of the outcome of the WP. The first level
contains the original signal, the second level contains the
output of the low and high pass filters (when applied to
the original signal). This is continued, so that below each
box in the scale frequency diagram is the outcome, boxes,
of applying the low pass filter (on the left) and the high
pass filter (on the right) on the signal in that particular box.
Each level in Figure 1 containsN elements, and since the

1st level

2nd level

3rd level

4th level

- freq

.

.

.
.
.
.

Figure 1. Four levels of a WP transform, each box correspondsto a filter
output.

filters are invertible, the signal can be reconstructed from
the information in one level. Coefficientj at theith level,
αij , in the WP decomposition corresponds to one particu-
lar waveformφij in the time domain. This can be exploited
to generate the transform matrix, and thus the atoms in the
dictionary. In short, this is done by assumingαij = 1 and
all other coefficients are 0, and then apply the inverse WP
transform. See [17] for a more thorough description of this
construction and of the generation of the transform matrix.

Therefore the output of the WP transform is the coeffi-
cients

αij =

N
∑

n=1

φij [n]b[n] . (4)

The collection of the waveformsφij is a dictionary forRN .
So the WP dictionary is basically the matrix embodiment of
the linear WP transform.

Using the notation from (1) each waveformφij corre-
sponds to a column inA. Note that in any software coding
for the purpose of actually computing the coefficient vector
x the filter implementation is used rather than the matrix
implementation, as the former is anO(N log N) and the
latter isO(N2).

The representation of a signal in a WP dictionary is
not unique; there are infinitely many solutions to the over-
complete system of equations in (1). Consequently, some
methods for choosing the optimal solution is needed. In
particular, we want sparse representation. Optimal and
near-optimal sparse solutions can be achieve in several
ways. This is the subject of the following sections.

2.3 Finding the Sparsest Representation

The perhaps most obvious choice for the sparseness
measure in (1) is theℓ0 norm since this measures the num-
ber of non-zero entries. Unfortunately, finding this particu-
lar representation is in general NP hard, and thus not feasi-
ble for even moderately sized problems. Also, the probabil-
ity that an arbitrary signal inRN lies in any of the finitely
manyN −1 dimensional subspace spanned by the atoms is
0, so in (1) the probability ofminx ‖x‖0 = N is 1. How-
ever, there is a series of results on the relations between
solutions to (1) for varyingp. In particular, it has been
shown [12, 6] that under some separability conditions im-
posed on the dictionary (basically requiring sufficiently dif-
ferent atoms) the solution to (1) is the same forp = 0 and
p = 1. Similar results exists for more general sparseness
measures [11]. Although these conditions are rather dif-
ficult to fulfill, in particular when constructing dictionaries
by combining various collections of waveforms, it indicates
that theℓ1 norm is a feasible spareness measure. In the fol-
lowing only this norm is considered. For a discussion ofℓ0

versusℓ1 and the use ofℓ1 as sparseness measure, see for
instance [2, 12, 6].

Except forp = 2 no known method exists for analyt-
ically determining the solution to (1). In thep = 2 case
the solution is given by the the pseudo inverse (also called
Moore Penrose inverse, method of frames [3]), but this so-
lution is in general not sparse as no entries inx are vanish-
ing. Forp = 1 it is a challenge to actually find the mini-
mizerx, and the challenge varies (occasionally a lot) with
the choice of method, dictionary, measure, and signals.

Fortunately, there do exists general methods for iter-
atively approximating the solutionx when p = 1 (and
for other similar sparseness measures). Some examples
are linear programming [2] (also known as basis pursuit),
quadratic programming [9], minimum fuel neural networks
[24, 18], and FOCUSS [10] (actually solves for somep <
1). Sub-optimal solutions can be obtained by various types
of matching pursuit [16, 21], alternating projections, and
best orthogonal basis [25, 13, 17].

In this paper we use basis pursuit (BP) and best orthogo-
nal basis (BOB). The overall advantage of the best orthog-
onal basis search is that it is much faster than basis pursuit
(for a comparison of computation times, see [8]).

In our experience the basis pursuit method is capable of
producing a truly sparse representation of a music signal.
That is, not only is theℓ1 minimal, but the decay of the en-
tries inx is also satisfying. In particular, when using a WP
dictionary with the appropriate mother wavelet, or indeed
a combined WP and cosine packet (CP) dictionary. For an
example of the latter see [15], where a representation of a
piece of music is found using basis pursuit on a large dictio-
nary consisting of five sub-dictionaries. The representation
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has a good resolution, where the signal is divided into a
‘beat/drum’ part (described in a WP) and a ‘melody’ part
(described in a CP).

A best orthogonal basis search is an adaptive way to
choose an orthogonal subset of the atoms in dictionary with
a particular structure, such as found in the WP or CP dic-
tionaries, so that the coefficients of the representation are
minimized according to some cost function (likeℓp norm
or entropy). This is a fast way to find a fairly sparse repre-
sentation, but it is restricted by the orthogonality constraint
(as discussed earlier), which in turn restricts the possibly
tiling of the TF plane.

2.4 Calculation the Sparse Representations

We want to find the sparsest representation of a collec-
tion of music pieces for the purpose of making RR-TFD
of each piece. This section contains a description of the
calculation setup.

Basis pursuit and best orthogonal basis are applied for
finding sparse representations of music signals in a WP dic-
tionary with 9 levels generated with the least asymmetric
(almost linear phase) Daubechies wavelet of filter length
12 (also known as Symlets, see [4]).The choice of wavelet
is based on the considerations in [7]. BOB is applied with
theℓ1 norm as cost function. Representations are found on
a collection of approximately 400 music signals from var-
ious genres. The sample frequency is44.1 kHz, and the
sampling starts 60 seconds after the beginning of the song
and lasts 30 seconds. Each of these music sequences are
divided into non-overlapping windows of lengthL = 8192
samples, so eachb is an8192 × 1 vector, and basis pursuit
is applied on each of the⌊30 × 44100/8192⌋ = 161 anal-
ysis windows. Thus, the are161 representations found for
each music piece.

The basis pursuit and best orthogonal basis implementa-
tions described in [2] are used for all computations of rep-
resentations shown in this paper.

The calculations are obtained as part of a larger calcu-
lation setup which is described in [8]. In this setup five
different dictionaries, five different minimization methods,
and four different window lengths are combined, with and
without down sampling, giving 168 calculation combina-
tions, which are all applied on approximately 400 pieces
of music. Since storing all the representations found for
this calculation setup required too much storage space (in
the order of terabytes) a number of measures applied to
the coefficients has been stored instead. The RR-TFDs de-
scribed in Section 2.5 are based on theℓ2

2 measure applied
to the boxes in the WP decomposition, see Figure 1, that is,
the energy distribution of the coefficients of the represen-
tations found of music signals in a WP dictionary. This is
explained in more detail in the following section.

2.5 Time-Frequency Distributions

The coefficient vectorx of the representation of an anal-
ysis window b is split up according to the hierarchical
structure in the WP (see Figure 1) such that each vector
contains the coefficients of the atoms corresponding to one
particular filter output (or box). The notation used for the
resulting coefficient vectors is shown in Figure 2.

x11

x21 x22

x31 x32 x33 x34

x41 x42 x43 x44 x45 x46 x47 x48

1st level

2nd level

3rd level

4th level
...

...
- freq

Figure 2. The coefficient vectorx of a representation in a WP dictionary
divided according to the WP hierarchy.

The number of elements in the coefficient vectorxij is
#xij = L/2i−1 and the energy inxij is ‖xij‖

2
2. These en-

ergies are the measurements available from the calculations
described in the previous section.

The standard approach for making a TFD of a WP de-
composition is to find the best basis (i.e. choosing the best
boxes in the decomposition) and then map each coefficient
in the chosen basis to a single tile. Due to the interpreta-
tion of the WP atoms this particular approach produces a
disjoint tiling covering the entire TF plane.

Our approach for constructing a RR-TFD is slightly dif-
ferent. We do not use the individual coefficients in the
sparse representation. Instead we use the total energy of
each box in the decomposition in the following way. De-
fine ‘frequency’ vectors

f ij = 129−i
×1 ⊗

‖xij‖
2
2

29−i
, i = 1, . . . , 9 ,

with ⊗ being the matrix direct product. Note that there
are 9 levels in our WP dictionary. This produces vectors
that has the same length as the original coefficient vectors
xij , but with the entries equal to the average energy of the
coefficients in the box. Due to the frequency localization
property of iterated wavelet filters and Parselval’s equality
this gives a simplified version of the frequency energy dis-
tribution in the redundant representation.

To generate the TFD define

f =
9

∑

i=1











f i1

f i2

...
f i2i−1











256×1
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and plotf as a column in the TFD at the time instant cor-
responding to the position of the window in the original
30 second signal. Plotting all 161f vectors produce an
RR-TFD plot. All plots in this paper are visualized with
in dB scale. Note that the frequency vectorf satisfies
||f ||22 = ||x||22.

This procedure results in a tiling where all tiles have
equal width and varying height, varying according to fre-
quency content. Consequently, the tiles are overlapping,
and thus each point in the RR-TFD contains information
from all levels in the WP decomposition.

The RR-TFD is constructed such that elements that have
the same behavior (structure or frequency) over an entire
window will be seen more clearly in the mapping, since
these elements are described at the lower levels of the WP,
and therefore the energy is only distributed in a few of the
frequency bins. This means that time localized musical
content has a tendency to be less visible in the TF plane,
and thus we expect the harmonic content to be emphasized,
even when this is not stationary. This is an important fea-
ture for this methods since it is not directly available with
standard TFD based on harmonic dictionaries.

Note that in terms of mathematical properties the RR-
TFD has in general the same properties as the scalogram
(i.e. positivity, marginals not satisfied, etc.). Note alsothat
the distributions plotted in the following sections are only
the lowermost one fourth of the frequency interval, since
the higher frequency part only contains vertical lines, that
extends from the lower frequencies.

3 Results

To demonstrate the RR-TFD based on a wavelet dictio-
nary this section shows the method applied to four different
music excerpts:

1. Celine Dion “River Deep Mountain High”, soft rock
with female vocal, drums, guitar, synthesizer,

2. DAD “Candid”, with male vocal, heavy drums, and
electrical guitar.

3. The Sandmen “Don’t let me down”, primarily drums,
bass, and male vocal.

4. An orchestral piece with a predominant oboe.

3.1 Vocal

The first example is shown in Figure 3. Three distri-
butions are shown, the first two plots are RR-TFD using
BOB and BP, respectively, and the third plot is a standard
spectrogram made by an STFT. The TF resolution and the
window length and shape are the same in all three plots.
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Figure 3. TFD of ‘River deep mountain high’ by Celine Dion. The two
upper plots are RR-TFD based on BOB and BP, respectively. Thethird
plot is a spectrogram. The lines under the plots mark when there is a
vocal present in the music (determined manually by the authors).

This song contains a distinct female voice mixed with a
few instruments. While the voice is very clearly heard in
the music for a human listener, it is only just visible in the
spectrogram. This is because the music instruments contain
energy at most TF tiles (as discussed previously), and con-
sequently, the spectrogram to some extent resembles that of
noisy sound. In comparison, the RR-TFD presents a some-
what less noisy, and thus more clear, image of the predom-
inant structure in the music. In particular, the BP based
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RR-TFD shows a more clean TFD.
It is importance to note that the RR-TFD enhances

the musical structure by ‘disregarding’ the less structured
parts. This is seen in this example by the fact that the struc-
ture found in the BP RR-TFD is also present in the spec-
trogram; it is just less visible because the other musical
content tends to disguise it.

The BP RR-TFD and the BOB RR-TFD are very much
alike, but the structures in the signal is seen a bit more
clearly in the BP RR-TFD. Therefore only the BP RR-TFD
is shown for the following three examples.

The second example is the song “Candid” by DAD, a
heavy rock music piece with male vocal and significant
drums and guitar. Figure 4 shows the BP RR-TFD and the
spectrogram. While the human vocal is still occasional vis-
ible in the BP RR-TFD it is much less significant than in
the previous example. However, the spectrogram is close
to useless in terms of visualization of structure. Note that
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Figure 4. TFD of “Candid“ by DAD.

in the entire excerpt, except the 2 seconds in the middle
contains heavy drums. The first half part of the signal also
contains electrical guitar. It is possible in the RR-TFD to
see a slightly increased energy in the 500-2000 Hz region
for the vocal parts. In the last half part of the excerpt there
is a larger correlation between the vocal parts in excerpt

and the “increased energy” areas, than in the first half. So
it seems that the electrical guitar, which is very pronounced
in the signal, do not get masked.

The third example is the song “Dont let me down”, by
the danish band “The Sandmen”. It is a semi-hard rock
music piece, similar to the previous example, but with less
significant music instruments. In particular, the drum is less
pronounced, but still fairly strong. Figure 5 shows the BP
RR-TFD. The presence of a vocal is clearly seen, and the
drums are efficiently suppressed. At the beginning of the
vocal sequences, the boundary between the non-vocal and
the vocal parts is seen very clearly.
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Figure 5. RR-TFD of “Dont let me down“ by The Sandmen.

3.2 One Instrument

While the previous three examples emphasized the vocal
as the predominant structure, this last example shows how
an instrument can generate the main structure. In Figure 6
is a RR-TFD of a 30 second excerpt from an Oboe concerto.
There are a few other instruments playing in this excerpt
besides the oboe. The immediate impression from the RR-
TFD is that not only is the structure clearly present. The
actual notes can (almost) be determined from the plot. For
comparison, the notes are also shown in the figure.

4 Discussion

We have present a time-frequency distribution based on
the energy distribution of a sparse representation found in
a redundant WP dictionary. The purpose of this TFD is
to visualize main structures in music piece, in particular to
be able to extract such structure in the presence of several
other music instruments with highly varying TF content.

The method used here to visualize the energy distribu-
tion is thus able to mask instruments such as a drum, which
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Figure 6. TFD of an excerpts from Händels Oboe Concerto no. 3in G
minor. Below is the score for this 30 second excerpt. The “line break” in
the score occurs at 18 seconds. Notice that the duration of each note in
the score is determined by the note-type, not the distance tothe following
note.

in standard harmonic dictionaries tends to produce noise-
like TF structure when analyzed with long windows. This
is clear from the spectrograms in Figure 3 and 4. This ef-
fect in turn makes structured sound such as human singing
voice more visually apparent. The effect is greater for a
female voice, since the frequencies, most often, are higher
than for a male voice.

In general, whenever there is a distinct vocal it shows up
in the mapping, even when the signal contains drumming,
and the singing voice and the drum beats perceptually are
equally strong. This tendency do get disturbed if the vocal
is a very deep male voice, or if the music piece contains
electrical guitar.

When the signal contains an instrument playing one tone
at a time, it is almost possible to “follow” the notes in the
TF plot.

In the current presentation we have relied solely on
wavelet dictionaries. There are two reasons for this choice.
Firstly, the wavelet transform has well-known and fairly
simple interpretation in terms of time-frequency, and sec-
ondly, any wavelet dictionary has anN log N implementa-
tion making it significantly faster than a matrix multiplica-
tion. While these two properties are arguably very useful
in music analysis due to the time-frequency content and
the length of music signals, the nature of our investigation
easily leads to the question of learned dictionaries. That is,
would it be advantageous to use dictionaries based on prop-
erties inherited directly from the given signal class rather
than dictionaries that just happens to have fairly appropri-
ate properties?

Since we want to use the redundant representations for
classification purposes it seems obvious that learned dictio-
naries should perform better than any ‘standard’ dictionary,
at least for the signals in the set used for generating the dic-
tionaries, and possibly for other very similar signals. This
is to be understood in the sense that there exist a repre-
sentation, which for a given sparsity measure and signal set
produces the optimal separation of the signals in coefficient
space. If the representation is restricted to an orthogonal
basis (in which case there is no redundancy) the Karhunen-
Loeve transform would be optimal.

So data learned dictionaries (see e.g. [1, 14]) are inter-
esting to investigate in relation to feature extraction of mu-
sic. Ideally, such learned dictionaries might lead to an ‘in-
strument transform’ and/or a ‘vocal’ transform. But using
a data learned dictionary might also lead to an increased
computation time, since the new dictionary most likely will
not have a fast implementation (in contrast to the WP dic-
tionary). And if the dictionary is learned on a large collec-
tion of music it might lead to a fairly large dictionary, since,
even though the individual signals are sparse (in terms of
time and frequency), the whole collection may not be, at
least not sparse enough to overcome the lack of a fast im-
plementation.
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