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Time-Frequency Distributions of Music
based on Sparse Wavelet Packet Representations

Line @rtoft Endelt and Anders la Cour-Harbo
Aalborg University
Department of Control Engineering
Frb. Vej 7C, 9220 Aalborg East, Denmark
{oertoft, alg¢ @control.aau.dk

Abstract

We introduce a new method for generating time-frequendyilulisions, which is particularly useful for the analysié o
music signals. The method presented here is based sparse representations of music signals in a redundant iwave
packet dictionary. The representations are found usingrim@mization methods basis pursuit and best orthogonakbas
Visualizations of the time-frequency distribution are stoucted based on a simplified energy distribution in the eletv
packet decomposition. The time-frequency distributiongheasizes structured musical content, including nonestaty
content, by masking the energy from less structured musticiments. We present four examples for visualizing siradt
content, including vocal and single instrument.

Keywords: wavelet packet, redundant representatione-fiequency distribution, music.

1 Introduction ing certain time-frequency (TF) related features. In par-
ticular, we demonstrate how redundant wavelet representa-

The basic idea of redundant representation is that by effions can be used for generating ‘scalograms’ with specific
ploying a richer dictionary there is potential for fastecay ~Properties not usually found in standard wavelet represen-
of the weight coefficients in the representation than is th&tions. We approach this from a mathematical point-of-
case for a ‘sufficient’ dictionary. This seemingly appealYieW rather than applicational, and consequently our work
ing fact can then be explored for the purpose of compre§5 more on what can be achieved using this specific method
sion, denoising, feature extraction, and other applicatio rath.er than attempting to address a particular t_ask, like de
However, the use of redundant representations holds maf@ftion of fundamental frequency, onset detection, beat es
challenges compared to the non-redundant case, and c§fation, and so on. This makes our approach somewhat
sequently redundant representations as a mean to achigiferent from other works in this field, see for instance
sparseness in signal representation has been investiga{%'%l’ 19, 22,5, 20].
by many researchers in recent years. Further, these chal-One of the features that comes out of using redundant
lenges often inhibits the use of redundant representatiofPresentation on music signals is a visualization of the
in applications, which otherwise would seem to benefipresence of a distinct melody from a human vocal or a sin-
from the redundancy. One example of an application whe&€ instrument.
non-redundant representations is very common is time-
frequency distributions. 2 Methodology

In this work we are interested in using redundant rep-

resentations of music signals for extracting or emphasiz- When applying a Fourier or Wavelet transform to de-

lwe disregard sliding windows, over-sampled FFTs, and tee dis scrjbe a music signal a complete descripti.on iS.aChieved:
truly redundant representations. which is usually more sparse than the original signal, and




often more meaningful in terms of what the music signaltons of signals in dictionaries. There is a description of
contains. But although the description is complete it is ndhe calculation setup, and how the RR-TFD shown in sec-
necessarily useful or sufficiently sparse. The main reasaion 3 are produced from the energy of the coefficients of a
being that a music signal typically is a very complex signaledundant representation of a music piece.

consisting of a variety of different events that does not fit a

single type of dictionary, such as pure frequencies (Fouri@.1 Redundant Signal Representations

or sin/cosine). ldeally, we can think of music as being well

represented in a ‘music instrument’ domain, i.e. a domain A dictionary for R" is a set ofM vectors inRY, M >
where each instrument is somehow represented in the dit%, that spanR”. The elements of a dictionary are called
tionary. The representation of the individual instrumesits atoms. Thus, for any signale R" we can finde € RY

then composed of a number of frequency and time locasuch thatAxz = b, where A is an N x M matrix with

ized events, and each of these are in turn associated withh& atoms as columns. Since this set of equations is over-
set of parameters, like attack, sustain, decay, vibrato; in complete it has infinitely many solutions, and we therefore
nation, and so on. Adding to the complexity is the fact thateed to specify, which solution is desired. In the present
in some cases rather different settings of the above leadsdetting we want a sparse solution, and we choose to use the
sounds almost indistinguishably by human, while in othef,, norm,p < 2, although many other measure could be
cases even small alternations can lead to very detectabised.

changes in the sound. As an example the phase of frequen-Consequently, the initial problem of interest here is

cies are not detectable (directly) by humans, while small ]
changes in pitch are very detectable. min |||,

While it is relatively simple to bring music from a de-\yherep is the music signald is the dictionary, and: is
scription in the above form (MIDI is an example of suchye representation. When the dictionary contains more than
a type of representation) to a digital waveform of decenj; glements this representation is not unique, and this is the
quality, it is at present in general not possible 0 go therce of the increased flexibility in choice of representa-
other way, to do automatic scoring. The mathematics qfy,, compared to the orthogonal case.
signal repres_entation is still far from being able to handle Tnhere are many methods for constructing a sensible dic-
this complexity. . o tionary, as examples see e.qg. [2, 1, 14]. It can contain har-

However, we are indeed able to push the limit furthep,onic and Gabor waveforms, wavelets, chirps, spikes, and
than the standard dictionaries by employing the redundagg, on_ |t can also contain elements learned by training on a

representations. They are one step closer to the ideal ey of similar signals. In this work we use a WP dictionary
resentation in the sense that the redundancy allows m“(%be section 2.2).

more freedom in the choice of dictionary content, the S0- There exists a number of optimization methods for find-
called atoms. This freedom comes specifically with redunng the most sparse representations in a dictionary for a
dant representations; while orthogonality introduces SeYiven signal, i.e. for solving (1). We have chosen the two

eral very nice properties in the signal representation, fhiher different methods basis pursuit and best orthogonal
simultaneously introduces (unnecessarily) severe €estrip,sis. This is further described in section 2.3.

tions. This restriction is clearly seen in any orthogonal TF
distribution (TFD) like a spectrogram or scalogram of asis 5 \wavelet Packets
nusoid with a single spike, where the frequency event and

time event cannot be simultaneously well localized. A WP transform is the application of a pair of wavelet
Although the d|ct|onar|e‘s in this ’Wf_Jfk_ are redundangg filters combined with a hierarchical way of applying
they are still composed of ‘standard’ dictionaries. In parge filters. The filters are a low pass filte] and a high
ticular, we have chosen to focus on a redundant wavelghss filtery ], where the filter taps (impulse response) sat-
dictionary. The reason for not including a ‘pure tone’ dicisfies 3 series of constraints [25]. In general, the WP is
tionary is mainly that the frequency localization property;ppjied the following fashion. First, the filters are apglie

of the Fourier dictionary is to some extend present in g, the original signab of length N, followed by a down
multi-level wavelet packet (WP) transform. However, ongampling resulting in two new signals (or filter outputs),
going work by the authors include TFD based on combmeQIOW andap;g,, with

Fourier and WP dictionaries. We denote the TFD based on

subjectto Az =15 ()

a redundant representation RR-TFD. Tiowlk] = Z b[n]h[2k — n] (2)
The following sections will describe the details of the n

redun(_jalnt15|g|_’1al representatlon_s, Fhe WP dictionaries and ohign[k] = Zb[n]g[% ). 3)

two minimization methods for finding sparse representa- —



Next, the low and high pass filters are applied on bath, 2.3 Finding the Sparsest Representation
andxnign. This procedure is continued until the desired
frequency resolution is reached. Figure 1 shows the hier- The perhaps most obvious choice for the sparseness
archical structure of the outcome of the WP. The first levaheasure in (1) is thé norm since this measures the num-
contains the original signal, the second level contains thger of non-zero entries. Unfortunately, finding this partic
output of the low and high pass filters (when applied tdar representation is in general NP hard, and thus not feasi-
the original signal). This is continued, so that below eachle for even moderately sized problems. Also, the probabil-
box in the scale frequency diagram is the outcome, boxegy that an arbitrary signal itR” lies in any of the finitely
of applying the low pass filter (on the left) and the highmanyV — 1 dimensional subspace spanned by the atoms is
pass filter (on the right) on the signal in that particular box), so in (1) the probability ofning ||z||o = N is 1. How-
Each level in Figure 1 contain§ elements, and since the ever, there is a series of results on the relations between
solutions to (1) for varying. In particular, it has been
shown [12, 6] that under some separability conditions im-
posed on the dictionary (basically requiring sufficientlfy d
ferent atoms) the solution to (1) is the samejos 0 and
p = 1. Similar results exists for more general sparseness
4th level ‘ ‘ ‘ ‘ measures [11]. Although these conditions are rather dif-
ficult to fulfill, in particular when constructing dictionias
by combining various collections of waveforms, it indicate

1st level

2nd level

3rd level

freq that the/; norm is a feasible spareness measure. In the fol-
Figure 1. Four levels of a WP transform, each box correspamddilter  lowing only this norm is considered. For a discussiofiof
output. versus?; and the use of; as sparseness measure, see for

il . ible. the sianal b qf instance [2, 12, 6].
ilters are invertible, the signal can be reconstructed from Except forp — 2 no known method exists for analyt-

the information in one level. Coefficieritat theith level, ically determining the solution to (1). In the = 2 case
¢, in the WP dgcomposﬂmn co'rrespc'mds to one pa'rt|cqhe solution is given by the the pseudo inverse (also called
lar waveform,; in the time domain. This can be exploited ;e penrose inverse, method of frames [3]), but this so-
tq ggnerate the transf(_)rm matrix, and thu; the atoms in trI\ftion is in general not sparse as no entrieg iare vanish-
d:lcuor?ary. Inﬁ;hort, this is don§ k;y assur?kmE - 1and ing. Forp = 1itis a challenge to actually find the mini-

all other coefficients are 0, and then apply the inverse Wﬁlizeraz, and the challenge varies (occasionally a lot) with

transform. See [17] for a more thorough description of thi§ne choice of method, dictionary, measure, and signals.
construction and of the generation of the transform matrix. Fortunately, there do exists general methods for iter-

Therefore the output of the WP transform is the Coeﬁiétively approximating the solutiom whenp — 1 (and

cients for other similar sparseness measures). Some examples
N are linear programming [2] (also known as basis pursuit),
Qij = Z ¢ij[n]b[n] - (4) guadratic programming [9], minimum fuel neural networks
n=1 [24, 18], and FOCUSS [10] (actually solves for some:
The collection of the waveform; ; is a dictionary folR™. 1). Sub-optimal solutions can be obtained by various types
So the WP dictionary is basically the matrix embodiment obf matching pursuit [16, 21], alternating projections, and
the linear WP transform. best orthogonal basis [25, 13, 17].

Using the notation from (1) each wavefor),; corre- In this paper we use basis pursuit (BP) and best orthogo-
sponds to a column id. Note that in any software coding nal basis (BOB). The overall advantage of the best orthog-
for the purpose of actually computing the coefficient vectoonal basis search is that it is much faster than basis pursuit
x the filter implementation is used rather than the matrigfor a comparison of computation times, see [8]).
implementation, as the former is @(N log N) and the In our experience the basis pursuit method is capable of
latter iSO(N?). producing a truly sparse representation of a music signal.

The representation of a signal in a WP dictionary i§ hat s, not only is thé; minimal, but the decay of the en-
not unique; there are infinitely many solutions to the overtries inx is also satisfying. In particular, when using a WP
complete system of equations in (1). Consequently, sontkctionary with the appropriate mother wavelet, or indeed
methods for choosing the optimal solution is needed. Ia combined WP and cosine packet (CP) dictionary. For an
particular, we want sparse representation. Optimal arekample of the latter see [15], where a representation of a
near-optimal sparse solutions can be achieve in seveméce of music is found using basis pursuit on a large dictio-
ways. This is the subject of the following sections. nary consisting of five sub-dictionaries. The represenati



has a good resolution, where the signal is divided into 2.5 Time-Frequency Distributions
‘beat/drum’ part (described in a WP) and a ‘melody’ part
(described in a CP). The coefficient vectaz: of the representation of an anal-

A best orthogonal basis search is an adaptive way igsis window b is split up according to the hierarchical
choose an orthogonal subset of the atoms in dictionary wittructure in the WP (see Figure 1) such that each vector
a particular structure, such as found in the WP or CP digontains the coefficients of the atoms corresponding to one
tionaries, so that the coefficients of the representatien aparticular filter output (or box). The notation used for the
minimized according to some cost function (likenorm  resulting coefficient vectors is shown in Figure 2.
or entropy). This is a fast way to find a fairly sparse repre-
sentation, but it is restricted by the orthogonality coaistr

(as discussed earlier), which in turn restricts the pogsibl1St level T11
tiling of the TF plane. 2nd level T21 T22
3rd level T31 T32 T33 T34

2.4 Calculation the Sparse Representations 4th level ac41‘ac42 :1:43‘7:44 sc45‘:1:46 :1:47‘:1:48

We want to find the sparsest representation of a collec-
tion of music pieces for the purpose of making RR-TFD freq
of each'plece. This section contains a descrlptlon of thﬁgure 2. The coefficient vectat of a representation in a WP dictionary
calculation setup. divided according to the WP hierarchy.

Basis pursuit and best orthogonal basis are applied for
finding sparse representations of music signals in a WP dic- The number of elements in the coefficient vectgy is
tionary with 9 levels generated with the least asymmetrig.z;; = 1,/2'~! and the energy iw;; is || x;;||3. These en-
(almost linear phase) Daubechies wavelet of filter lengtBrgies are the measurements available from the calcusation
12 (also known as Symlets, see [4]).The choice of wavelefescribed in the previous section.
is based on the considerations in [7]. BOB is applied with The standard approach for making a TFD of a WP de-
the/; norm as cost function. Representations are found afbmposition is to find the best basis (i.e. choosing the best
a collection of approximately 400 music signals from varpoxes in the decomposition) and then map each coefficient
ious genres. The sample frequencytisl kHz, and the in the chosen basis to a single tile. Due to the interpreta-
sampling starts 60 seconds after the beginning of the sofign of the WP atoms this particular approach produces a
and lasts 30 seconds. Each of these music sequencesdgoint tiling covering the entire TF plane.
divided into non-overlapping windows of length= 8192 Our approach for constructing a RR-TFD is slightly dif-
samples, so eadhis an8192 x 1 vector, and basis pursuit ferent. We do not use the individual coefficients in the
is applied on each of the30 x 44100/8192] = 161 anal-  sparse representation. Instead we use the total energy of
ysis windows. Thus, the a1 representations found for each box in the decomposition in the following way. De-

each music piece. fine ‘frequency’ vectors
The basis pursuit and best orthogonal basis implementa-
tions described in [2] are used for all computations of rep-
resentations shown in this paper.
The calculations are obtained as part of a larger calcu-, . L
lation setup which is described in [8]. In this setup ﬁveWlth ® belng the matrix .dlr.ect produgt. Note that there
different dictionaries, five different minimization metts '€ 9 levels in our WP dictionary. This produces vectors

and four different window lengths are combined, with an&hat has the same length as the original coefficient vectors

without down sampling, giving 168 calculation combina-%ii" but with the entries equal to the average energy of the

tions, which are all applied on approximately 400 piecegoeﬁicients.in the box. Due.to the frequency IoFaIizatiqn
of music. Since storing all the representations found f r_°pe_“y of 't?rat?q Wavele_t filters and Parselval's eq;aal_l
this calculation setup required too much storage space Q’I.'S gvesa simplified version of the fr_equency energy dis-
the order of terabytes) a number of measures applied tgoution in the redundant representation.

the coefficients has been stored instead. The RR-TFDs de- 1° 9enerate the TFD define

scribed in Section 2.5 are based on theneasure applied

2
Fij = loomix1 ® "Q;i'JQ, i=1,....9,

to the boxes in the WP decomposition, see Figure 1, that is, ;“
the energy distribution of the coefficients of the represen- f= Z &
tations found of music signals in a WP dictionary. This is — :
explained in more detail in the following section. Figia

256 x1



and plotf as a column in the TFD at the time instant cor- BOB
responding to the position of the window in the original
30 second signal. Plotting all 16f vectors produce an
RR-TFD plot. All plots in this paper are visualized with
in dB scale. Note that the frequency vectprsatisfies
1113 = [l][3-

This procedure results in a tiling where all tiles have g
equal width and varying height, varying according to fre- g 2
guency content. Consequently, the tiles are overlappin -
and thus each point in the RR-TFD contains informatiol
from all levels in the WP decomposition. 0

The RR-TFD is constructed such that elementsthathar  © 5 10 15 20 25 30
the same behavior (structure or frequency) over an entire ==~
window will be seen more clearly in the mapping, since
these elements are described at the lower levels of the W
and therefore the energy is only distributed in a few of th
frequency bins. This means that time localized musici 3 4
content has a tendency to be less visible in the TF planZ

ncy (kHz)

even when this is not stationary. This is an important fee §
ture for this methods since it is not directly available with £

standard TFD based on harmonic dictionaries.

Note that in terms of mathematical properties the RR
TFD has in general the same properties as the scalogr:
(i.e. positivity, marginals not satisfied, etc.). Note aisat
the distributions plotted in the following sections areyonl
the lowermost one fourth of the frequency interval, sinc
the higher frequency part only contains vertical linest the
extends from the lower frequencies.

3 Results

To demonstrate the RR-TFD based on a wavelet dictic
. . . . [T

nary this section shows the method applied to four differer
music excerpts:

0 5 10 15 20 25 30

Spectrogram

1. Celine Dion “River Deep Mountain High”, soft rock
with female vocal, drums, guitar, synthesizer, -—
2. DAD “Candid”, with male vocal, heavy drums, andFigure 3. TFD of ‘River deep mountain high’ by Celine Dion. €Ttwo
electrical guitar. upper plots are RR-TFD based on BOB and BP, respectively. thire
plot is a spectrogram. The lines under the plots mark wheretlsea
3. The Sandmen “Don’t let me down”, primarily drums vocal present in the music (determined manually by the as}ho
bass, and male vocal.
4. An orchestral piece with a predominant oboe. This song contains a distinct female voice mixed with a
few instruments. While the voice is very clearly heard in
3.1 Vocal the music for a human listener, it is only just visible in the

spectrogram. This is because the music instruments contain

The first example is shown in Figure 3. Three distrienergy at most TF tiles (as discussed previously), and con-
butions are shown, the first two plots are RR-TFD usingequently, the spectrogram to some extent resembles that of
BOB and BP, respectively, and the third plot is a standandoisy sound. In comparison, the RR-TFD presents a some-
spectrogram made by an STFT. The TF resolution and thehat less noisy, and thus more clear, image of the predom-
window length and shape are the same in all three plotimant structure in the music. In particular, the BP based



RR-TFD shows a more clean TFD. and the “increased energy” areas, than in the first half. So
It is importance to note that the RR-TFD enhancei seems that the electrical guitar, which is very pronoaince
the musical structure by ‘disregarding’ the less structurein the signal, do not get masked.
parts. This is seen in this example by the fact that the struc- The third example is the song “Dont let me down”, by
ture found in the BP RR-TFD is also present in the spedhe danish band “The Sandmen”. It is a semi-hard rock
trogram; it is just less visible because the other musicahusic piece, similar to the previous example, but with less
content tends to disguise it. significant music instruments. In particular, the drum ssle
The BP RR-TFD and the BOB RR-TFD are very muchpronounced, but still fairly strong. Figure 5 shows the BP
alike, but the structures in the signal is seen a bit moreR-TFD. The presence of a vocal is clearly seen, and the
clearly in the BP RR-TFD. Therefore only the BP RR-TFDdrums are efficiently suppressed. At the beginning of the
is shown for the following three examples. vocal sequences, the boundary between the non-vocal and
The second example is the song “Candid” by DAD, d@he vocal parts is seen very clearly.
heavy rock music piece with male vocal and significant
drums and guitar. Figure 4 shows the BP RR-TFD and tr BP
spectrogram. While the human vocal is still occasional vis i
ible in the BP RR-TFD it is much less significant than in 5 | I
the previous example. However, the spectrogram is clo: _ ?,
to useless in terms of visualization of structure. Note the ! I

w

Frequency (kHz

Frequency (kHz)

Figure 5. RR-TFD of “Dont let me down" by The Sandmen.

3.2 One Instrument

While the previous three examples emphasized the vocal
as the predominant structure, this last example shows how
an instrument can generate the main structure. In Figure 6
is a RR-TFD of a 30 second excerpt from an Oboe concerto.
There are a few other instruments playing in this excerpt
besides the oboe. The immediate impression from the RR-
TFD is that not only is the structure clearly present. The
actual notes can (almost) be determined from the plot. For
comparison, the notes are also shown in the figure.

Frequency (kHz)

o 5 10 15 20 25 30 4 Discussion

Figure 4. TFD of “Candid" by DAD. We have present a time-frequency distribution based on
the energy distribution of a sparse representation found in
in the entire excerpt, except the 2 seconds in the midd& redundant WP dictionary. The purpose of this TFD is
contains heavy drums. The first half part of the signal alst® visualize main structures in music piece, in particubar t
contains electrical guitar. It is possible in the RR-TFD tde able to extract such structure in the presence of several
see a slightly increased energy in the 500-2000 Hz regigther music instruments with highly varying TF content.
for the vocal parts. In the last half part of the excerpt there The method used here to visualize the energy distribu-
is a larger correlation between the vocal parts in excerpibn is thus able to mask instruments such as a drum, which



BP Since we want to use the redundant representations for
classification purposes it seems obvious that learneddicti
naries should perform better than any ‘standard’ dictignar

TR o B at least for the signals in the set used for generating the dic
- . tionaries, and possibly for other very similar signals. SThi
il T : is to be understood in the sense that there exist a repre-
sentation, which for a given sparsity measure and signal set
produces the optimal separation of the signals in coefficien
space. If the representation is restricted to an orthogonal
basis (in which case there is no redundancy) the Karhunen-
Loeve transform would be optimal.

So data learned dictionaries (see e.g. [1, 14]) are inter-
esting to investigate in relation to feature extraction efm
sic. Ideally, such learned dictionaries might lead to an ‘in
strument transform’ and/or a ‘vocal’ transform. But using
a data learned dictionary might also lead to an increased
computation time, since the new dictionary most likely will
Figure 6. TFD of an excerpts from Handels Oboe Concerto in.G3  not have a fast implementation (in contrast to the WP dic-
T]inor- Below is thetSiCE;Jr; f;%rntgf ?\j)of}igotr;]i teélceerdplj-r aTtgf:ngmge Il?l tionary). And if the dictionary is learned on a large collec-
:hZ sggrrg igc(icgttrﬁined by the n'ote-type, not the distantteetfmllowing tion of music it mlght'le'ad to qfalrly large dICtlona,ry' sec
note. even though the individual signals are sparse (in terms of

time and frequency), the whole collection may not be, at
least not sparse enough to overcome the lack of a fast im-
in standard harmonic dictionaries tends to produce noisptementation.
like TF structure when analyzed with long windows. This
is clear from the spectrograms in Figure 3 and 4. This ei5 Acknowledgment
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