Aalborg Universitet AALBORG

UNIVERSITY

FUNNy
A self learning fuzzy system
Madsen, Per Printz

Published in:
Proceedings of the 2005 International Conference on Machine Learning; Models, Technologies and Applications

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Madsen, P. P. (2005). FUNNYy: A self learning fuzzy system. In Proceedings of the 2005 International
Conference on Machine Learning; Models, Technologies and Applications

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 24, 2025

https://vbn.aau.dk/en/publications/0aa37ef0-9c2d-11db-8ed6-000ea68e967b

THE 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING: MODELS, TECHNOLOGIES AND APPLICATIONS. (MLMTA’05) 1

FulNNy: A self learning fuzzy system

Per Printz Madsen
Ph.D, M.Sc.E.E.
Dept. of Control Engineering, Inst. of Electronic Systems
Aalborg University, Fredrik Bajers vej 7 DK-9220 Aalborg , Denmark
E-mail: ppm@control.aau.dk

Abstract— The purpose of this paper is to describe a tool that
is easy to use for implementing self learning fuzzy systems. This
tool which is called FuNNy generates fuzzy systems. The tool
consists of a compiler and a C learning library. The compiler
translates a fuzzy system (written in a dedicated language, called
FuNNy language) to C. The C learning library contains the
learning algorithm. The generated C code is simple standard
C and therefore it can be applied to all computers with a C-
compiler. The learning algorithm is either a gradient descend
method based on a numerical calculation of the gradient or a
random search method. The input fuzzyfication can be described
by four different kinds of membership functions. The output
fuzzyfication is based on singletons. The rule base can be written
in a natural language. The result of the learning is a new version
of the fuzzy system described in the FuNNy language.

Index Terms— Fuzzy system, Fuzzy control, Natural language,
Self learning, C-target.

I. INTRODUCTION

UZZY SETS and Fuzzy Control have been used in many
applications since Zadeh, in 1965 [7], described the Fuzzy
sets and Mamdani et all, in 1974 [1], described and used
Fuzzy sets for control purpose. Fuzzy sets for control is
often called Fuzzy Control. Another way of doing non-linear
MIMO (Multi-Input, Multi-Output) control is the use of ANN
(Artificial Neural Networks). The main difference between
ANN and Fuzzy systems is that ANN are based on data
driven learning and that Fuzzy systems are based on previous
knowledge described in fuzzy logic terms. Many scientists
around the world have combined Fuzzy systems with the data
driven learning methods known from ANN. This combination
is often called NeuroFuzzy systems. One of the best known of
these combinations is the NeuroFuzzy system called ANFIS
[3]. These combined systems, ex ANFIS, have been used in
many different cases. For instance [5] [2] or [6]. One of the
main advantages of combining fuzzy systems and learning
methods is that it becomes possible to use all the previous
knowledge to build a good start guess, or in other words a
Fuzzy system that describes what the programmer knows about
the system, and after that uses measured input/output relations
to optimize the system. By combining previous knowledges
with measured input/output data it is often possible to: make
a system that inter- and extrapolate better than a pure ANN
system. Another advantage of these combined systems is that
they often are more precise than pure Fuzzy systems because
the learning algorithm often finds a better solution.
The propose of this paper is to describe an easy to use tool
and method to implement a NeuroFuzzy systems called the

FuNNy system. The FuNNy system can be pre-programmed
in a natural fuzzy language and optimized by learning. FuNNy
is a public domain tool, that consists of a compiler and a
C module of learning algorithms. The compiler translates a
fuzzy system, written in the language FuNNy to a C module.
The learning algorithms can easily be used to adjust the fuzzy
system, given by the C module and thereby find the optimal
value for the parameters in the fuzzy system. The result of
the learning is a new fuzzy system expressed in the FuNNy
language.

II. METHOD

HE FuNNy tool can be divided into three different
components. The language FuNNy, the compiler and the
learning algorithms.

Fuzzy system
describt in
FuNNy-language

FuNNy compiler

\ /
F t
uzzyilslys o [Learning algori
ANSI-C C-program

earning method
C-library Fuzzy system
describt in

[FuNNy-languag

Fig. 1. The structure of the FuNNy system.

Figure: 1 shows the software modules and the steeps from a
Fuzzy system, given by a description in the FuNNy language
to a new Fuzzy system, adjusted by the learning algorithm. The
first Fuzzy system could be the pre-description, written by the
programmer. The last Fuzzy system is the same Fuzzy system
as the first one, but now, adjusted be the learning algorithm.
The result of the learning is expressed in the FuNNy language.
This means that it is easy to inspect the learning adjustment
by comparing the two FuNNy programs.

The steeps from the pre-knowledges to a final Fuzzy system.

1) Write a fuzzy system in the FuNNy language, based on

the pre-knowledges.

2) Compile the FuNNy program with the FuNNy compiler

to a C-program.

3) Use this C-program and a learning library to build a

learning algorithm.

THE 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING: MODELS, TECHNOLOGIES AND APPLICATIONS. (MLMTA’05) 2

4) Use this learning algorithm to generate a new FuNNy
program, that describes the adjusted fuzzy system.

5) Compile this adjusted fuzzy system with the FuNNy
compiler.

6) Use the Fuzzy system, given by the new C-program. If
the Fuzzy system does not perform as expected, then go
to step 4.

A. The FuNNy language

The FuNNy language consists of two parts. A definition part
and a rule part. The definition part specifies the fuzzyfication
of input and output.

temp: input;

flow: input;

cold temp: sigmoid(25.0,a, 33.0,a, 1.0,c);
middle temp: bell (33.0,a, 2.0,a, 1.0,c);

hot temp: sigmoid(40.0,a, 33.0,a, 1.0,c);
to_little flow: sigmoid(0.0,a, 0.5,a, 1.0,c);
to_much flow: sigmoid(1.0,a, 0.5,a, 1.0,c);
down cold_water: output (-0.02,a);
no_change cold_water: output(0,a);

up cold_water: output(0.02,a);

down hot_water: output (-0.02,a);
no_change hot_water: output(0,a);

up hot_water: output(0.02,a);

The definition part starts with a declaration of the input
linguistic variables. In this example: temp and £low. Then
the definition of the linguistic values follows: cold, middle
and hot for the temperature and to_little and to_much
for the flow. The last part is the definition of the output
linguistic variables and values. There is two output linguistic
variables: cold_water and hot_water and three values
for each of them: down, no_change and up. Each linguistic
value is given by a membership function. The input can be
defined by four different types of membership functions and
the output can be defined by one type of membership function.
The input membership functions are:

The Trapeze function: trapez (a,A,b,A,c,A,d,A,e,A) 2

where A is the adaption flag. This flag can be set to a or
c. If the flag is set to a, the preceding parameter will be
adjusted by the learning algorithm and if it is set to c, the
parameter will not be affected by the learning algorithm. For
the meaning of the parameters a, b, ¢, d, e see figure: 2.

Fig. 2. Trapeze-membership function

The Triangle function: triangle(a,A,b,A,c,A,d,).
See figure: 3.

Fig. 3. Triangel-membership function

The Bell function: bell (a,A, b, A, c,A). See figure: 4.

— =
/ “

Fig. 4. Bell-membership function

The Sigmoid function: sigmoid(a,A,b,A,c,A). See
figure: 5.

WM

7

b a

Fig. 5. Sigmoid-membership function
The output can only be specified as
singleton membership function. like:
down cold_water: output(-0.02,a); where

—-0.02 is the placement of the singleton and the a specifies
that the placement can be adjusted by the learning algorithm.

The adaption flag gives the opportunity to make a much
more understandable result of the learning. Ex you can ask
the Fuzzy system ”if cold is given by ... what is then the
optimal choice for hot”. Another advantage of the flexible
selection of adjusted parameters is, that it is often possible to
investigate the information in the learning data with respect
to the different parts of the Fuzzy model and by that means
extract some informations about, where in the working area
or, how to collect more learning data.

After the definition part comes the rule part. Each rule
consists of an if part (the antecedent) and a then part (the
consequent). The antecedent consists of one or more logical
expressions. It is possible to use the logical operator and
or to combine logical expressions. The brackets () can be
used to group the logical expressions. The and operator is

THE 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING: MODELS, TECHNOLOGIES AND APPLICATIONS. (MLMTA’05) 3

based on the min operation and the or operator is based
on the max operation. The linguistic hedge not, very,
extremely and more_or_less can be used to manipulate
the linguistic values. If y is the membership function, defining
the linguistic value then the linguistic hedge is defined by: not
Moot = 1 — p, very Mvery = ,UQ’ extremely lextremely = N4
and more_or_1ess fimore or less = /I
The two following rules are a part of a shower controller:

if
then

temp is hot and flow is not to_little
hot_water is down

if
then

The implication is done by the min operation. The rule
if x is A then y is B where A is given by p4 and
B is given by up then the implication pe(y) is given by
Leute(y) = min(pa(z), us(y)). z is a known value, because it
is the input. up(y) is a singleton so e (y) is also a singleton.

The rule inference is done by height defuzzyfication.

y— Zi\; bi - a;
Ziil bi
Where: N: is the number of rules, b;: is the height of the
output singleton given by pe(y), and a;: is the parameter
from the output membership function used in the rules and
defined in the definition part.

temp is cold and flow is not to_much
hot_water is up

B. Learning

The parameters of the FuNNy system can be adapted by a
learning algorithm. This, of course, requires that the learning
algorithm is stable and able to adjust the parameters with
respect to a performance function. The performance function,
P(w), is the squared prediction error between the desired
output and predicted output. The Fuzzy system described by
the FuNNy language consists of some strong non-linearities
and some dis-continuities in the derivative of the output. This
means that it is very complex, if not impossible, to use at
traditional gradient-descent method based on the mathematical
derivation of the output. If it is possible to find the gradient
it will have some dis-continuities and therefore, in some
cases, it will make the learning algorithm unstable. It is
therefore necessary to find another way. One method is to
use a numerical calculation of the gradient and another is to
use learning algorithm that is not based on the gradient ex
Genetic algorithms or other kind of random search methods.

1) Gradient-descent based on numerical calculation of
the gradient. (NG-learning): This learning algorithm for the
FuNNy system is based on two point numerical derivation
of the gradient given by equ: 1. This numerical derivation
method is fast to calculate and gives a good estimation near
the minimum.

8Pi(wj) ~ APZ(’LUJ) _
61.0]’ - ij N

Pi(wj + A’LUJ') - Pz(w] - ij)
QA’LU]'

ey

Performance function: P(w)

FL—_Pw)

0.081

0.061

0.04F

0.25 013 OA‘35 014 o.‘45 015 0.55

The derivative of the performance function: AP(w)/Aw

0.8 | - - - Aw =0.003 : : : :

06— Aw = 0.01
- - Aw =0.03 |

0.4

0.35 0.4 0.45 0.5
The parameter: w

0.25 0.3

Fig. 6. The numerical calculation of the gradient for three different values
of Aw.

where P;(w) is the squared prediction error for the i’th
sample in the learning data. w; is the j’th parameter.

Figure: 6 shows the estimation of the gradient for different
values of Aw. There is a dis-continuity of the real gradient
aglfff’) at the point w = 0.49, but, when using a the numerical
metflod, the gradient is continuous. This means, that it is
easier to make the learning algorithm stable. There is a large
difference between the three curves, but it does not matter,
because it is not close to the minimum of the performance
function P(w). Close to the minimum of P(w) the three
curves it is almost equal. Therefore the minimum is found
quite good in all three cases. If Aw is not chosen too large,
the learning algorithm will find the correct minimum. Another
important observation from figure: 6 is the area: w ~ 0.49
and upwards. In this area the gradient is zero but it is not
the minimum. This means, if the parameter is initialized to a
value in this area the learning algorithm will not be able to
adjust the parameter. This illustrates the importance of using
the previous knowledge to build a good start guess for the
system.

The adjustment of the j’th parameter, given the i’th
input/desired-output data point, is done by equ: 2.

AP;(w;)

o———22

ij

’w]' = wj — (2)
Where « is chosen to a small value ex 0.01.
a can be adjusted during the learning, like this:

o Initiation: o = 0.01

o Increase o with 1 % if) ... P decreases over two
epochs.

o Decrease a with 0.5 % if), .. P increase.

2) The random search learning method: An other way of
adjusting the parameters is the random search method. This
method is not based on a gradient, but only on a random
adjustment of the parameters and on the performance function.

1) Build a fuzzy model based om pre-knowledge.

2) Calculate the output for all inputs: ; = F(©,%;).
Where F' is the vector function from input to output,
Z; is the i’th input and © is the parameter vector.

THE 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING: MODELS, TECHNOLOGIES AND APPLICATIONS. (MLMTA’05) 4

3) Calculate the performance function: P, = - (d; —
7). Where d; is the i’th desired output.

4) Make a copy of the parameters ©: 0, = ©.

5) Adjust the parameters: © = © + 7. where 7 is a vector
with normal distributed random elements with a zero
mean and a small variance.

6) Calculate the output for all inputs: §; = F(0,Z;).
7) Calculate the performance function: P =3, (d;— 7:)?
8) if P < P, then P, = P and O, = 0. else © = O,

9) Go to 5 as long as you wish.

III. EXAMPLES

S an illustration of the capabilities of the FuNNy system
figure: 7 shows the result of an adaption to the function:
F, = 0.6sin(mz) + 0.3 sin(37x) +0.1 sin(57z). This function
is the exact same as in [4]. In this case the adaption is done
by the ANFIS system: [3]. The FuNNy model contains 24
adaptive parameters. In [4] is used an ANFIS model with 25

parameters.
The FuNNy system, before learning:

X : input;
mfl x: bell(-1.05,a, 0.15,a, 1,c);
mf2 x: bell(-0.75,a, 0.15,a, 1,c);
mf3 x: bell(-0.45,a, 0.15,a, 1,c);
mf4 x: bell(-0.15,a, 0.15,a, 1,c);
mf5 x: bell(0.15,a, 0.15,a, 1,c);
mf6 x: bell(0.45,a, 0.15,a, 1,c);
mf7 x: bell(0.75,a, 0.15,a, 1,c);
mf8 x: bell(1.05,a, 0.15,a, 1,c);
ol y: output(0.0,a);
o2 y: output (-0.5,a);
o3 y: output (-0.5,a);
o4 y: output (-0.5,a);
ob y: output(0.5,a);
06 y: output(0.5,a);
o7 y: output(0.5,a);
o8 y: output(0.0,a);
rules
if x is mfl then y is ol
if x is mf2 then y is 02
if x is mf3 then y is o3
if x is mf4 then y is o4
if x is mf5 then y is o5
if x is mf6 then y is 06
if x is mf7 then y is o7
if x is mf8 then y is o8

As shown in figure: 7 the result of the learning gives a
good fitting to the learning data. The learning algorithms
converges smoothly toward a minimum. Figure: 8 illustrates
the difference of the input membership functions before and
after the learning.

The next example illustrates what happens when no pre-
knowledges is used. In this case the input fuzzyfication is set
like in the previous example, but the output singletons is all
set to one.

As shown in figure: 9 the learning result is not nearly as
good as in figure: 7, and the membership functions are not
distributed optimally. Figure 10. The learning algorithm has
found a local minimum of the performance function.

Learning result 0 Performance function
1 10
— Mean square error
________ — - 'Alpha’
05 10° T i
3
5 0
e}
-0.5
— Fuzzy output
* Traening data .
-1 10°
-1 -0.5 0 0.5 1 0 1000 2000 3000 4000
Input Epoch number
Fig. 7. The result of the learning.
Before learning After learning
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Fig. 8. The input membership functions, before and after the learning.

Performance function

— Mean square error
- - 'Apha

Learning result

05 10°
] .
-0.5]
— Fuzzy output
* Traening data

0 0.5 1 0 1000 2000 3000 4000
Input Epoch number

Output
K

-1
-1 -0.5

Fig. 9. The result of the learning.

Before learning After learning
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0—1 -0.5 0 0.5 1 0—1 -0.5 0 05 1

Fig. 10. The input membership functions, before and after the learning.

THE 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING: MODELS, TECHNOLOGIES AND APPLICATIONS. (MLMTA’05)

There is two ways the FuNNy system can deal with local
minimums. One way is to use pre-knowledges and thereby
select a good start point for the learning. If lucky the system
is near the global minimum which means that the gradient
based learning will find a good solution. An other way is to
use the Random search method. The Random search method
is much slower than the gradient based learning method.

IV. CONCLUSION

HE fuNNy system is a self learning Fuzzy system. The

programming and the learning of the FuNNy system
are done by the FuNNy compiler and the C-library. It is
possible to select witch of the parameters that are going to
be adjusted by the learning algorithm. There is two learning
algorithms in the library: A gradient decent method and a
Random search method. The gradient decent method requires
that the pre-programmed FuNNy system is close to a good
minimum. When using the gradient decent method it is often
a good idea to mix the learning data in order to present
the input/output data, to the FuNNy system, in a random
order. This randomizing of the learning data speeds up the
learning and minimizes the risk of ending up in a local
minimum. The compiler translates the Fuzzy system written in
the FuNNy language to a C program. This C program contains
only standard C code, and therefore it can be applied to all
ordinarily micro computers. The FuNNy system can be found
on the webpage: www.control.aau.dk/ ppm/FuNNy.

REFERENCES

[1] S. Assilian and E.H. Mamdani. An experiment in linguistic synthesis
with a fuzzy logic controller. In International Joint Man Machine-Studies,
volume 7(1), pages 1-13, 1974.

[2] Jettrey T. Drake and Nadipuram R. Prasad. ANFIS for parameter
estimation in coherent communications phase synchronization. IEEE
Signal processing Society Workshop, pages 433-442, 2001.

[3] J.-S.R. Jang. ANFIS: Adaptive-Network-based Fuzzy Interence Systems.
IEEE Transactions on Systems, Man, and Cybernetice, pages 665-685,
1993.

[4] J.-S. Roger Jang and Ned Gulley. Fuzzy Logic Toolbox. The MathWorks,
Inc., Januar 1995.

[S] S. Khanmohammadi L. Hassanzadeh and J. Jiang Gh. Alizadeh. Im-
plementation of a Functional Link Net_ANFIS Controller for a Robot
Manipulator. Third International Workshop on Robot Motion and Control,
pages 399-404, 2002.

[6] Chia-Chi Chen Wen-Liang and Shing-Chia Chen. ANFIS based PRML
system for read-out RF signal. /FSA World congress and 20th NAFIPS
International conference, pages 912-917, 2001.

[71 L. A Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

