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Abstract

When using a discrete wavelet transform or a wavelet
packet for obtaining a sparse representation of music
signals the first question that arises is which wavelet fil-
ter/mother wavelet to use. The sparseness is a measure
of how fast the DWT coefficients decay, and we are in-
terested in obtaining a representation where the energy
of the signal is concentrated in a few of the DWT coef-
ficients. It is well-known that the decay of the DWT co-
efficients is strongly related to the number of vanishing
moments of the mother wavelet, and to the smoothness
of the signal. In this paper we present the result of ap-
plying two classical families of wavelets to a series of
musical signals. The purpose is to determine a general
relation between the number of vanishing moments of
the wavelet and the sparseness of the DWT coefficients,
when applied to music signals.

1. Introduction

The results presented are obtained as part of an on-
going research on automatic music classification. The
idea is that by finding a sparse representation of music,
good features that “capture the nature” of the music can
be found. Achieving sparseness is not the main goal of
the project, but a means to extract features that can be
used for distinguishing different classes of music. One
of the methods we investigate is representation of mu-
sic signals in redundant dictionaries (see Section 1.1)
containing a wavelet packet, and we want to base the
choice of wavelet on numerical computations, within a
solid theoretical framework.

1.1. Background

Many different methods for feature extraction from
music or other sound signals exists, eg. [5], [7], and [9].

In most of these methods representations are found by
using the Fourier or wavelet transforms, and by various
kinds of filtering. Classification rates lie between 60%
for categorizing into 10 categories to about 90% for cat-
egorizing into 2-3 classes, but the tests are performed on
samples of very different size and content, and cannot
be compared directly.

A music signal contains events of both short and long
duration. At note onsets the amplitude of a number of
frequencies grows rapidly (short duration event), and
then decreases slowly (long duration). Singing also con-
sists of both short and long duration events. Therefore
the representation of a music signal in an orthonormal
basis where the elements have similar structure (which
is the case for Fourier and wavelet transforms) is not
necessarily the most efficient in term of sparseness.

An alternative to orthogonal bases is decomposition
in a more general dictionary, which is basically a collec-
tion of vectors (or waveforms) of the same length as the
signal. The dictionary can consists of one or more bases,
for instance the Fourier basis and the wavelet bases orig-
inating in a wavelet packet decomposition [12]. The el-
ements in a dictionary are usually denoted atoms.

Our ultimate goal is to make efficient representations
of music signals in dictionaries of various kinds. One
of the key component in any dictionary, we believe, is
wavelets. We therefore want to know which wavelets
will be good for representing typical music signals. By
a representation we mean a vectorx which through the
dictionary can reproduce the signal. More specifically, a
sampled signalb of lengthn can be represented as

Ax = b , (1)

whereA is ann × m full rank matrix containing the
atoms in a dictionary as its columns, andx is the co-
efficients of the representation. For an orthonormalA

the representationx is unique andx = A
−1

b. When
m > n the representation is no longer unique, and we
can choose among all possible representations the one



that is optimal for the application. The downside is that
in general the complexity of finding the representation
increases.

A optimal representation for feature extraction of mu-
sic would be one for which the information is contained
in as few coefficients as possible (when using a dictio-
nary with atoms having well defined time, frequency
and/or scale location). This corresponds to minimizing
the ℓ0 norm of the coefficients in (1). However min-
imizing the ℓ0-norm is an NP hard problem, which is
computationally expensive even for short signals. An al-
ternative is to minimize theℓ1 norm, since it provides a
representation where the main part of the energy is con-
centrated in a few coefficients, and at mostn coefficients
are non-vanishing (which is not the case for theℓ2 min-
imization given by the Moore Penrose inverse. Theℓ1

minimization problem is also in general NP hard, but
can be rewritten into a linear programming problem with
smaller complexity [1].

1.2. Using Wavelets

In the present work we have investigated the approx-
imation ability of various wavelets using just the DWT.
This is admittedly in spite of the fact that we are inter-
ested in sparseness ofℓ1 optimal solutions. The reason
for this is that we want to initiate our investigation within
a somewhat solid theoretical framework. Unfortunately,
very few theoretical results exist (to the best of the au-
thors’ knowledge) on the relation between wavelet prop-
erties such as vanishing moments and regularity and the
sparseness and decay ofℓ1 optimal solutions. This – to
some extent – also applies to best orthogonal bases ob-
tained via the wavelet packet transform. Consequently,
this initial investigation is carried out using the DWT for
which the mentioned properties are well understood. We
believe that this first, limited investigation will account
for some of trends that we observe in a more general
wavelet setting, and we will present related results in a
later paper.

2. Methods

A series of normalized excerpts from music signals
are wavelet transformed over the maximum number of
scales using periodization at the ends of the signal. Fif-
teen different wavelet filters – having one through fif-
teen vanishing moments – from each of the two classi-
cal families Daubechies and symlets (least asymmetri-
cal Daubechies wavelets, see [3]) are used for transfor-
mation. The filters, the filter length and the number of
vanishing moments are presented in Table 1.

Table 1. The filter length and number of
vanishing moments for the 30 different
wavelets applied.

Wavelet family Filter length # vanishing moments
Daubechies 2, 4, 6, . . . , 30 1, 2, 3, . . . , 15

Symlet 2, 4, 6, . . . , 30 1, 2, 3, . . . , 15

The reason for investigating both of these two closely
related families is to determine whether symmetry is sig-
nificant for sparseness of music (as is the case for sparse-
ness of images).

The DWT of a music excerptb of lengthn can be
represented as

A
i
x

i = b, (2)

whereA
i is then × n matrix representing the DWT

using thei’th wavelet, andxi is the coefficients of the
transformation ofb. The sparseness measure is defined
by

S(xi) =
||xi||1

1

30

∑
30

i=1
||xi||1

, (3)

since it is not the level of theℓ1 norm that is interesting,
but theℓ1 norm relative to the norms found for the same
excerpt, but using other wavelets.

The ℓ1 norm is used to measure the sparseness of
the DWT coefficients. While this choice coincides with
our interest inℓ1 norm as stated above, other sparseness
measures might just as well have been used. For instance
using Shannon’s entropy produces more or less the same
results.

Since we are looking for sparse representation we
want a smallℓ1 norm of the DWT coefficients. As ar-
gued in the next section this is more likely with longer
wavelets, and we therefore anticipate to see that theℓ1

norm of the DWT coefficients decrease for increasing
number of vanishing moments. At the same time an in-
creased sparseness is linked to sufficiently high smooth-
ness of the original signal, and since music signals in
general are not particularly smooth we expect the norm
to cease decreasing when the number of vanishing mo-
ments becomes too high. This will happen gradually
as the number of vanishing moments increases because
more and more of the signal energy is ’located in insuf-
ficiently smooth energy’.

This effect can also be used to estimate the smooth-
ness of a musical signal. Due to the close link between
smoothness of the wavelet and of the signal, and rate of
decay of transform coefficients, we can conclude that as



the norm ceases to decrease the smoothness of the musi-
cal signal is found as the regularity of the corresponding
wavelets. For the Daubechies and Symlets the regularity
is approximately0.5, 1, and1.5 for 2, 3, and4 vanishing
moments, respectively [3].

2.1. A Note on Vanishing Moments

When searching for the best wavelet to use for repre-
senting music signals there are two opposing interests in
respect to the length of the wavelet. That is to say, the
number of filter taps in a discrete implementation. From
a computational and numerical point-of-view we would
prefer a short wavelet. Although a fast wavelet trans-
form implementation is indeed quite fast, the methods
for finding optimal representations in various settings
are often iterative and thus need to apply the transform
many times. The issue of numerical stability arises in
fixed point and hardware implementations, which are the
natural platform for musical analysis in low-cost con-
sumer products.

From an approximation and sparseness point-of-view
we want longer wavelets. Or more accurately, we want
more vanishing moments and higher regularity, which is
possible (but not implied) by using more filter taps. The
desire for vanishing moments originates in the Strang-
Fix condition which states (as a special case) that the
approximation order of a wavelet transform increases
with the number of vanishing moments of the wavelet
up to the smoothness index (Hölder regularity) of the
approximated signal [8, 10]. That is, the sparseness of
the wavelet transformed signal is in general higher for
longer wavelets.

While the number of vanishing moments is important
for the sparseness (the decay of the sorted coefficients),
the regularity of the wavelet is related to the decay of
the unsorted transform coefficients. In fact, it is shown
in [11] that wavelet expansions of sufficiently smooth
functions converge at rates equal in measure to the dif-
ferentiability of the wavelet. And conversely, we can-
not expect better convergence when using wavelets with
more smoothness than the approximated function.

The relation between vanishing moments and Hölder
regularity (or Sobolev regularity, for that matter) is not
simple. Althoughψ ∈ Cr does imply thatψ has⌊r⌋
vanishing moments (see e.g. [4, 2]), the converse is not
true (and often far from). For instance, wavelets of the
Daubechies family hasN/2 vanishing moments, but be-
longs toCµN , µ ≈ 0.2 for large N [3]. In fact, some
constructions even sacrifice vanishing moments in or-
der to gain freedom to increase the regularity, see for
instance [6].

In this paper we have decided to use only vanishing

moments as the ’sparseness potential’ of each wavelet.
Although this is only part of the truth, we believe it is
sufficient for our purpose.

3. Results

The discrete wavelet transform is applied on signals
sampled from 12 different pieces of music. From each
song 30 consecutive excerpts are used. The excerpts
have length213, which corresponds to approximately
186 ms (the sample rate is 44.1 kHz). The sparseness
measureS(xi) for 30 signals from each of three songs
are presented in Figure 1. The sparseness measure is
plotted versus the number of vanishing moments. The
measurements are represented as a quartile plot, each
box has lines at the lower quartile, the median and the
upper quartile. The whiskers indicate the extend of
the data and outliers, which are more than 1.5× inter-
quartile range away from lower or upper quartile values,
are marked with a *.

The results for the remaining 9 songs (not shown) are
similar to the results for the “Jarre” and “Dion” songs,
only one differs which is the “Accept” song, but the
difference only lie in the level of the norms. For one
vanishing moment the norms are spread out, but for
higher number of vanishing moments, the variance is
very small, indicating that the regularity of the signal
relative to the regularity of the wavelet applied is the
factor, that determines the sparseness.

3.1. Vanishing Moments and Regularity

Figure 1 shows that the sparseness measureS(xi)
do decrease as the number of vanishing moments of the
mother wavelet increases. For the first two plotsS(xi) is
about 20% higher for wavelets with one vanishing, than
for wavelets with more than three or four vanishing mo-
ments, and for the last plot about 70% higher. So there is
much to gain going from one to four or more vanishing
moments. Three or four vanishing moments seem to be
the limit where the regularity of the wavelet exceeds the
regularity of the signal, and there is not much to gain in
sparseness by increasing the number of vanishing mo-
ments. This indicates that the main part of the signal
energy has regularity in the range 1 to 2.

3.2. Symmetry

The sparseness do not depend on which of the
wavelet families are applied, the sparseness can be di-
rectly compared, since theℓ1 norm of the transformed
signals are normed using the mean value of theℓ1 norms
found for both the Daubechies and the symlet wavelets.
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Figure 1. Sparseness measure applied to DWT coefficients. Ea ch box with whiskers represents
30 consecutive excerpts of length 8192 from a music signal. T he box itself extends from
the lower quartile value through the median (middle notch) t o the upper quartile value. The
whiskers show the range of the remaining sparseness measure s, except for outliers which are
more than 1.5 × inter-quartile range away from lower or upper quartile valu es. Outliers are
marked with *.



So the sparseness do not (for these two families of
wavelets) depend on whether the wavelet is (close to)
symmetric or not.

4. Discussion

The choice of wavelet to use for a given applica-
tion is a challenge that arises all the time. In this work
we have studied the importance of the number of van-
ishing moments for sparse wavelet representations of
musical signals. The computations made on a series
of music examples demonstrated that only a few van-
ishing moments are necessary for achieving a close-to-
optimal sparseness. Although the test was carried out
using only two types of wavelets a number of theoret-
ical results indicates that other wavelet families would
respond similarly (this can also be verified numerically),
and thus that the number of vanishing moments and, to a
lesser degree, the regularity, is important when choosing
a wavelet for representing music signals.

The computations made also showed that the
(Hölder) regularity of music signals is in the region of
1 to 2, and that only very little energy in the signals have
higher regularity.
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