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ABSTRACT

In this paper, we consider the problem of finding sparse repre-
sentations of audio signals for coding purposes. In doing so, it
is of utmost importance that when only a subset of the present
components of an audio signal are extracted, it is the percep-
tually most important ones. To this end, we propose a new
iterative algorithm based on two principles: 1) a reweighted 1-
norm based measure of sparsity; and 2) a reweighted 2-norm
based measure of perceptual distortion. Using these mea-
sures, the considered problem is posed as a constrained con-
vex optimization problem that can be solved optimally using
standard software. A prominent feature of the new method is
that it solves a problem that is closely related to the objective
of coding, namely rate-distortion optimization. In computer
simulations, we demonstrate the properties of the algorithm
and its application to real audio signals.

Index Terms— Audio coding, sparse approximations,
perceptual distortion measures, audio modeling

1. INTRODUCTION

In recent years, there has been significant interest in methods
for finding sparse representations of signals. Such methods
aim at decomposing signals into linear combinations of a few
vectors from a so-called dictionary. Throughout the past cou-
ple of decades, many different methods have been devised for
doing this, including matching pursuit [1], basis pursuit [2],
the Lasso [3], FOCUSS [4] and many others. The reason for
the interest in these methods is that such sparse representa-
tions can be used for a wide range of applications, includ-
ing signal analysis, enhancement, and compression. In audio
modeling and coding, which is the topic of the present paper,
these ideas extend back to the 80s where so-called parametric
models were employed for modeling and modifying musical
tones (e.g., [5]). It was, however, in [6] and [7] that these
ideas were formalized and cast in the framework of sparse
representations. Interestingly, the ideas of using sparse ap-
proximations can also be traced back to early speech coders
employing linear prediction. Techniques like multi-pulse and

regular-pulse excitation use what are essentially sparse mod-
els of the prediction error.

In speech and audio applications, it is often the case that
we do not wish to reconstruct the observed signal exactly, as
would be the case with the representation obtained using basis
pursuit. Rather, we wish to represent the signal using a given
number of vectors or seek to find the minimal representation
that achieves a certain quality. This is, for example, the case
in audio coding applications, where restricting the number of
vectors would correspond to rate-constrained coding (assum-
ing that the number of bits spent is proportional to the number
of vectors used). Similarly, minimizing the number of vectors
used to achieve a certain quality corresponds to minimizing
the bit-rate required for reconstruction at a certain fidelity in
what can be called distortion-constrained coding. In either of
these cases, it is of interest that the measure used to quantify
the quality of the reconstruction reflects the perceived quality
For this reason, efforts have been spent in deriving perceptu-
ally motivated norms (e.g., [8]) and in constructing algorithms
that use these methods for obtaining sparse representations of
audio signals [9–13].

Common to all these methods is that they are based on
modifications of matching pursuit-like algorithms to facili-
tate minimization of an explicit or implicit norm, some being
only approximate methods. In this paper, we break this trend
by investigating the incorporation of a perceptually motivated
norm in methods based on convex optimization by formulat-
ing the problem of finding sparse representations of audio sig-
nals as constrained optimization problems. More specifically,
we adopt and adapt the reweighted 1-norm scheme recently
proposed in [14] for our purposes and demonstrate its appli-
cation to audio modeling and coding. Moreover, we use com-
pressed sensing to obtain an efficient implementation, i.e., as
a computational tool rather than as part of the signal acquisi-
tion.

The remainder of the paper is organized as follows: In
Section 2, the problem of interest is defined mathematically
and the proposed method is presented. Then, In Section 3,
we present some results obtained using the proposed method
before concluding on the work in Section 4.



2. PROPOSED METHOD

2.1. Background

We will now introduce some basic notation and the funda-
mentals of sparse representations. The problem can be de-
fined as follows. Given a segment of a signal x ∈ RN , in our
case and audio signal, and a matrix Z ∈ CN×F with F � N
known as the dictionary, we seek to find a sparse coefficient
vector c ∈ CF that recovers x, i.e., x = Zc with a sparse c,
or approximately so. To this end, we require two things: 1) a
sparsity metric on c and 2) a reconstruction quality measure.
A common way of measuring the sparsity is the 1-norm while
the reconstruction quality is most typically measured using
the 2-norm. Using these norms, the problem of reconstruct-
ing x with fidelity ψ can be stated as

minimize ‖c‖1
s. t. ‖x− Zc‖2 ≤ ψ.

(1)

In a similar fashion, the problem of minimizing the recon-
struction error for a certainty sparsity level can be sated as

minimize ‖x− Zc‖2
s. t. ‖c‖1 ≤ ψ,

(2)

where ψ here is the desired level of sparsity, as measured us-
ing the 1-norm. We the solution for any of the considered
problems as ĉ. There are (at least) two problems with these
approaches. Firstly, the 1-norm is not always an accurate
measure of sparsity. This can be understood by observing that
a vector containing a number of large coefficients is penalized
more than a similar vector with small ones. Similarly, a large
number of non-zero but small coefficients will not be penal-
ized sufficiently. The second problem is that, as mentioned,
the 2-norm is not an accurate measure of the perceived quality
of audio reconstructed as Zc.

2.2. Modifications

To mitigate the problems mentioned above, our solution is
twofold: Firstly, we use the re-weighted 1-norm of [14] to
measure sparsity. This is based on the principle that if we have
an estimate of the coefficient vector, we can form a weighted
norm on the coefficient vector in subsequent optimizations
such that we have something that is closer to measure sparsity
than the 1-norm. Secondly, we use the perceptually weighted
2-norm of [8] as a fidelity measure. The measure of [8] is
induced by a perceptual weighting matrix H ∈ RN×N ex-
hibiting the following circulant structure:

H =


h1 hN hN−1 · · · h2
h2 h1 hN · · · h3
...

...
...

. . .
...

hN−1 hN−2
...

. . . hN
hN hN−1 hN−2 · · · h1

 , (3)

which is diagonalized by the Fourier transform and has the re-
ciprocal of the square root of the masking curve as eigenval-
ues [11]. We note that the resulting matrix is also symmetric,
i.e., hN+2−i = hi for i > 1. The perceptual distortion is then
measured as ‖H (x− Zc) ‖2. An interesting and important
questions is then what signal to compute H from. Tradition-
ally, masking curves are computed from the observed signal
x, but as argued in [9, 13] it is the masking capabilities of the
reconstructed signal Zĉ that matters. Consequently, this mea-
sure is used in adaptive fashion as in [9, 13]. By computing it
from a reconstructed signal in an iterative way, we essentially
get a re-weighted 2-norm, and this is what we propose here. It
should be noted that this would not be possible with methods
like the Lasso since there would be no signal from which to
compute H.

The size of the problems generally encountered in audio
applications is such that the complexity associated with solv-
ing the convex optimization problems is prohibitive. One way
to reduce the size of the problems is via compressed sensing
with coherent dictionaries [15]. This is done in the following
manner. The observed signal x, which contains N samples,
is mapped to an M dimensional signal with M < N using
random sampling implemented as a so-called measurement
matrix Φ ∈ RM×N . However, since we here apply also a
perceptual weighting matrix, which applies to the signal x,
this must be done as

y = ΦHx, (4)

i.e., the perceptual weighting matrix must be applied before
the random sampling. Similarly, the signal model Zc must be
modified as ΦHZc.

Regarding how to design Φ there is a number of issues
to consider. Firstly, we are here dealing with an overcom-
plete dictionary corresponding to the case of coherent dictio-
naries for which conditions for reconstruction and recovery
have been described in [15]. In this case, the measurement
matrix Φ must satisfy the so-called D-RIP property, which is
the case for a Gaussian matrix with M chosen on the order of
C log (F/C) with C being the number of non-zero entries in
c. This brings us to the second issue, which is that the mea-
surement matrix must be designed a priori without knowledge
of C as the number of partials in the signal varies over time.
Here, we adopt the principle of simply using an estimate of
C, and, as long as the resulting M is lower than N , this will
still result in a reduction of the computation time.

For a general discussion of the applications of compressed
sensing to speech and audio signals and the associated chal-
lenges and implications, we refer the interested reader to [16].

2.3. The Algorithm

Finally, we will now present the actual algorithm. Let c(i)k

denote the kth element of the vector c(i) at the ith iteration



and similarly for other quantities. The algorithm performs
the following steps for i = 1, 2, . . .:

1. Find the set of coefficients as the solution to the convex
optimization problem

ĉ(i) = argmin
c
‖W(i)c‖1

s. t. ‖ΦH(i) (x− Zc) ‖2 ≤ ψ.
(5)

2. Update the weights from ĉ(i) as

W(i+1) = diag

 1∣∣∣c(i)1

∣∣∣+ ε
, . . . ,

1∣∣∣c(i)F

∣∣∣+ ε

 . (6)

3. Update the perceptual weighting matrix to obtain
H(i+1) from Zĉ(i) using [8].

4. Check convergence. Terminate if converged, otherwise
go to step 1.

The algorithm is then terminated when convergence has been
achieved, for example when the difference between ĉ(i) and
ĉ(i+1) become sufficiently small as measured using a norm.
We note that the actual computation of H(i) requires a rather
lengthy description for which reason we do not go into details
here but rather simply refer to [8]. The quantity ε is a small
and positive constant that also can be chosen adaptively [14].

Regarding initialization of W(1) and H(1), we initialize
W(1) to an identity matrix while H(1) is initialized accord-
ing to the absolute threshold of hearing, corresponding to the
masking conditions when no reconstructed signal is avail-
able. In relation to the problem stated in (2), we remark
that it is straightforward to modify the algorithm accordingly
by interchanging the roles of the objective function and the
constraints. An interesting aspect of the proposed method is
that the constraint ψ is placed on the perceptually weighted
error—this means that the constraint reflects a desired qual-
ity level rather than the level of the observation noise as is
normally the case (see, e.g., [15]). Regarding how to choose
ψ, an appealing choice is to use ψ = β‖ΦH(i)x‖2 with
0 < β < 1, meaning that the reconstructed signal should
capture at least 1−β2 of the original signal in terms of percep-
tually weighted energy, or, equivalently, that the perceptually
weighted signal-to-noise ratio should be at least −20 log10 β.

3. RESULTS

We will now report some results illustrating the effectiveness
of the proposed method on real signals. The following exper-
iment aims at demonstrating that the proposed method solves
a problem that is more meaningful than a direct application of
the original reweighted method of [14]. For this purpose, we

Fig. 1. Spectrogram of the original signal, a piano signal.

Fig. 2. Spectrogram of the signal in Fig. 1 reconstructed using
the reweighted method of [14].

use an audio signal containing some notes played by a piano.
The signal is from the EBU SQAM discs commonly used for
assessment of audio coders. The spectrogram of the signal is
shown in Figure 1. For visual clarity, we shown only the lower
parts of the spectra in the figures. In applying the proposed
method, we use a dictionary comprised of windowed complex
exponential atoms having uniformly distributed frequencies,
segments of 30 ms and a measurement matrix whose entries
are realizations of a Gaussian process. Moreover, we have as-
sumed C = 50 for each segment and have used M = 200.
The signal is reconstructed using overlap-add with 50 % over-
lap, as is commonly done in audio modeling and coding with
the signal being windowed similarly to the atoms of the dic-
tionary. The proposed method is implemented in MATLAB
using SeDuMi.

The results obtained with the original reweighted method
of [14] is shown in Figure 2. Note that his is method is ob-



Fig. 3. Spectrogram of the signal in Fig. 1 reconstructed using
the proposed method.

tained by using H(i) = I,∀i in the algorithm described in
Section 2. Both the original and the proposed reweighted
methods were run with β = 0.1 such that they result in the
same reconstruction quality, as measured using their respec-
tive quality measures. Moreover, at most 10 iterations were
used for both methods with the iterations being terminated if
‖ĉ(i) − ĉ(i−1)‖∞ < 10−3, as done in [14]. The spectrogram
of the signal reconstructed using the proposed method is de-
picted in Figure 3. Comparing Figures 1, 2, and 3 a number of
observations can be made. It can be seen that the perceptual
weighting results in more high frequency components being
reconstructed well. Moreover, the reconstruction obtained us-
ing the proposed can be seen to be much cleaner in the sense
that it results in more distinct and more well-separated si-
nusoidal components in the reconstruction, while the origi-
nal method tends to cluster components, essentially model-
ing parts of the signal that are not well-represented using the
dictionary (e.g., modulations, onsets, noise), something that
leads to artifacts similar to musical noise. These findings were
also confirmed by informal listening tests that revealed that
the signal reconstructed using the proposed method suffers
from much less artifacts than that obtained using the orig-
inal method. This has also been confirmed to be the case
for a large class of signals from the EBU SQAM discs. We
note in passing that the comparably poor performance of the
method [14] for this signal cannot simply be explained by the
use of compressed sensing as the same measurement matrix
is used in both cases. Also, it should be noted that in terms of
signal-to-noise ratio (measured using the 2-norm), the origi-
nal reweighted is in fact best achieving the highest score as
expected.

To provide some additional insights into the inner work-
ings of the proposed method, the obtained coefficient vector
(top panels) order according to the frequency of the atoms
along with the perceptual weighting (bottom panels) are

Fig. 4. Entries in the coefficient vector order by frequency
(top panel) and perceptual weighting (bottom panel) obtained
in iteration 1 using the proposed method applied to a segment
of audio.

shown (both in dB) for a 30 ms segment of an audio signal
(in this case a note played by a trumpet) for iterations 1 and
10 in Figures 4 and 5, respectively. The difference, both in
terms of the obtained coefficients and the perceptual weight-
ing, is evident. It can be seen that the weighting curve starts
out being the reciprocal of the absolute threshold of hearing
and the evolves into something more refined where the si-
nusoidal nature of the signal and the dictionary can be seen.
Furthermore, the effectiveness of the reweighted scheme on
the sparsity of the coefficients can also clearly be seen as the
small coefficients (i.e., the noise floor) are much lower in
iteration 10 compared to iteration 1. The effect that the per-
ceptual weighting leads to components being spread more out
across frequency can also be seen from these figures. Indeed,
it can be seen from Figure 4 that the algorithm at first tends to
select clusters of components while this phenomenon cannot
be observed in Figure 5.

4. CONCLUSION

In this paper, a new method has been proposed for the pur-
poses of sparse approximation of audio signals. For such sig-
nals, it is not only important that a sparse approximation is
found but also that it leads to a reconstruction having a high
perceived quality. The method employs a 1-norm based mea-
sure of sparsity of the coefficient vector and a 2-norm based
perceptually motivated measure on the reconstruction fidelity.
The method builds on the idea of applying an adaptive weight-
ing of the 1-norm on the coefficient vector in each iteration,
where the weighting is chosen as the reciprocal of the vector
from the previous iteration. In this manner, the sparsity is en-
hanced in successive iterations. Similarly, the new algorithm



0 2 4 6 8 10
−200

−100

0

100

Frequency [kHz]

P
o

w
e

r 
[d

B
]

0 2 4 6 8 10
−50

0

50

Frequency [kHz]

P
o

w
e

r 
[d

B
]

Fig. 5. Entries in the coefficient vector order by frequency
(top panel) and perceptual weighting (bottom panel) obtained
in iteration 10 using the proposed method applied to a seg-
ment of audio.

employs an adaptive weighting in the 2-norm used for mea-
suring the quality of the reconstructed signal. This is done
using a perceptual distortion measure such that the masking
capabilities of the reconstructed signal is taken into account
rather than those of the original signal. This is only possi-
ble in the present framework due to the iterative nature of the
algorithm. Experiments have confirmed that this leads recon-
structions having a higher perceived quality than without the
perceptual weighting.
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