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CHAPTER 124 

Reliability based optimal design of vertical breakwaters 
modelled as a series system of failure 

E. Christianil H.F. Burcharth 2 J. Dalsgaard S0rensen 3 

Abstract 

Reliability based design of monolithic vertical breakwaters is considered. Probabilistic 
models of important failure modes such as sliding and rupture failure in the rubble 
mound and the subsoil are described. Characterisation of the relevant stochastic para- 
meters are presented, and relevant design variables are identified and an optimal system 
reliability formulation is presented. An illustrative example is given. 

Keywords: Vertical wall breakwaters, sliding failure, rupture failure, design optimisa- 
tion, reliability 

Introduction 

A number of breakwater failures have been reported during the last 20 years for rubble 
mound breakwaters as well as for vertical breakwaters e.g. Sines (Portugal), Arzew 
(Algier), Mutsu-Ogawara Port (Japan), Gela (Italy) and Algeciras Port (Spain). This 
has resulted in new ways of approaching the design problems related to breakwaters. 
Probabilistic methods have been introduced to solve breakwater design problems in the 
early stage of planning. Reliability based design of breakwaters has been discussed by 
Nielsen et. al. (1983), Burcharth (1991), (1992a), (1992b), Burcharth et al. (1994) and 
(1995) and by Takayama (1994). 

In the following a caisson vertical breakwater is analysed with respect to probability of 
failure for single failure modes. Emphasis is put on the foundation failure modes and 
their relative importance. 

Identification of the failure modes 

Sliding and rupture failure in the rubble mound foundation and in the subsoil are 
usually the most critical failure modes for vertical breakwaters. Other failure modes 
exist e.g. settlement of the caisson, seaward sliding, scour at the toe (subsoil and/or 
rubble mound), instability of the armour stones in the foundation, and structural failure 
of the caisson. 
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Nine foundation failure mechanisms including sliding are identified cf. Figure 1. Over- 
turning is a relevant failure mode only in the cases of monolithic structures placed on 
very strong foundation soils or rock. The designs considered cover vertical breakwaters 
placed on low or high rubble mounds and sand or clay subsoils. 

(T)   Sliding failure (2) Failure in the rubble    (3) Failure in the rubble mound 
mound sliding in clay or sand subsoil 

Slip failure 
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Figure 1: Nine foundation rupture failure mechanisms 

Sliding 

Sliding, i.e. horizontal displacement of the caisson, can occur as a slip either at the 
interface between the caisson concrete base plate and the rubble material, or entirely 
in the rubble material. 

Corresponding to the first mentioned case stability against sliding exists when the ratio 
of the resultant horizontal force, Fg, to the resultant vertical force is equal to or less 
than tan /i, i.e. 

FH <{FG-Fv) taxin (1) 
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where FQ is the weight of the caisson reduced for buoyancy, Fu is the wave induced 
uplift force on the base plate, and /i is the angle of friction between the concrete base 
plate and the rubble mound or the bedding layer. Reference is given to Takayama 
(1992) for values of tan fi. 

If the sliding failure takes place entirely in the rubble material, e.g. in the bedding 
layer, then (j, must be substituted by the effective angle of friction ip' of the material. 
The most critical of the two cases should be considered in the design. 

FH and Fu are in this paper calculated by using the wave load formulation by Goda et 
al. (1972) and (1974) extended to include impulsive pressure, Takahashi (1994). The 
design wave height is adjusted in the surf zone as described by Goda (1975). 

The resultant of the forces FH, FQ and Fu is indicated in Figure 2 as FR. 

Rupture failure in rubble, sand and clay subsoil - cases 1-9 

To evaluate the stability of the foundation, consisting of the rubble mound, sand or clay 
subsoil, the upper bound theorem of general plasticity theory is used. This theorem 
can also be applied in a probabilistic approach of design. 

Application of the upper bound theorem requires that the normality condition is ful- 
filled. Experience shows that good estimates of the bearing capacity can be obtained 
by introduction of a reduced effective angle of friction %, Hansen (1979) defined by 

sin ip' cos ib .„. 
tan<pd=- T   , 7 . (2) 

1 — sin iff sin ip 

Both <p' and ip are dependent on the stress level for which reason either reasonable 
mean values must be used, or calculations must be performed on increments. 

Three dimensional effects are not included in the derivation of the zone rupture mech- 
anism. The plane failure mode corresponding to case 8 is shown in Figure 2, where the 
line AB is approximately assumed to be a straight line. Note that it is assumed that 
tensile stresses cannot occur under the caisson base plate. Also note that because the 
caisson is a stiff body, the failure mechanism shown is not fully kinematic admissible. 
Actually, the intersection point A should be at the corner of the caisson, and the slip 
surface A-B is not necessarily a straight line. However, the rupture configuration is a 
close approximation as to the exact rupture mode can be demonstrated by comparison 
with results of finite element analyses. 

Since the derivation of the mathematical formulation of the rupture failure modes 1 - 
9 is rather lengthly, only rupture failure failure mode 8 will be discussed. Reference is 
given to Christiani (1996) for the rest of the failure modes. 

Foundation in rubble and clay (rotation mechanism) 

Case 8 in Figure 1 is considered. 

The slip line AB is theoretically a logarithmic spiral. The areas, 1 and 2 move as stiff 
zones and interact with the clay subsoil, where a circular rupture zone evolves. The 
kinematic admissible rupture figure is described by a rotation mechanism about point 
D. 
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Figure 2: Rupture in the rubble mound and clay subsoil. 

The geometrical lengths and the radius for the kinematically admissible rupture figure 
are cf. Figure 2. 

he = Bz + Brm + 2/i/j 
hn 

ta,n(ipdl + 62) 
(3) 

As noted above, the slip line AB is approximated by a straight line.  The radius R2 

then becomes 

#2 = g 1BCI sin 02 

Further I AD becomes 

IAD + xhc ta,n(ipdl + 02)     2 

The centre of gravity for zone 1 and 2 is defined by the length IQ, cf. Figure 2 

(IAD - \IBC){\IAD + \IBC - hn) + \{lBc ~ 2hn)lBC + \h2
u 

(4) 

(5) 

h 

External work done 

MAD + jhc - hn 

(6) 

The external work WE done by the wave loads, the pore pressure along the rupture 
boundary line and the weight of the vertical breakwater is for an infinitesimal rotation 
5 around point D 

WE = SM0 (7) 

where M0 is the moment around D of the wave loads, the pore pressure and the weight 
of the caisson. 

The work done due to the weight of zones 1 and 2 is a rotation around D 

wh2  = s(ys--rw)(iAD-iG)(a1+n2) (8) 
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where fli and S^2 are the areas of zone 1 and 2, and I AD — 'G is the perpendicular length 
between the point of rotation and the center of gravity for zone 1 and 2. 

The work done by the weight of zone 3 is zero as the resultant displacement of the 
centre of gravity is horizontal. 

The internal work done in zone 3 along the rim of the rupture boundary BC is 

z-202 

W3   =   6B% /     Cu(0)d0 (9) 
Jo 

where c^ is the undrained shear strength of the clay. 

The limit state equation for the rupture mechanism in Figure 2 is then: 

W3 - Wh2 - WE = 0 (10) 

02 is the unknown angle to be determined by minimising the ratio between the stabil- 
ising work and driving work. 

System model of failure modes for rupture failure and overturning 

In design of vertical breakwaters, the main concern is sliding, overturning, and rupture 
failures in the rubble mound and in the subsoil. These failure modes can be modelled 
by a series systems cf. Figure 3. 

9 Rubble mound and sand subsoil 

| Sliding failure^Overturning [| ft^f""5 °[ [f 
Rupture failure of II Rupture failure of 

I the rabble   2Jq the rabble 4, 

Rupture of the rabble 
and sand subsoil     3. u Rupture of the rabble 

and sand subsoil      5. II Rupture of the rabble 
and sand subsoil      g, 

i Rupture of the rabble 
and sand subsoil (rotation) 7. 

b) Rubble mound and clay subsoil 

-fsiidingfailure Lf|ZZTJBT^ Rupture failure of 
I the rabble        4, 

I 3 
Rupture of the rubble 
and clay subsoil      3, u Rupture of the rubble 

and clay subsoil (rotation) 8. n Rupture of the rubble 
and clay subsoil     9. 

Figure 3: Series system of failure modes for rupture failure of the sand and clay subsoil. 

Characterisation of the stochastic variables 

All variables are in principle stochastic variables in a limit state formulation. Some 
parameters e.g. geometrical parameters have small coefficient of variation and might 
be regarded as deterministic variables. The parameters which have a significant degree 
of uncertainty in breakwater design will be discussed in the following. It is assumed 
that all stochastic variables are independent, unless otherwise stated in the text. 
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The wave induced horizontal force and the uplift force can be calculated from equations 
given by Goda et. al. (1974) and Takahashi (1994). The model uncertainty related to 
the Goda wave load is modelled by a normal distribution. This has been clarified by 
Bruining (1994) who compared a number of laboratory tests results with the Goda for- 
mula in order to evaluate the uncertainty related to the horizontal wave load, the wave 
induced uplift force, the horizontal moment and the wave induced uplift moment. The 
model uncertainties are represented by variables UpH, UFU , UMH and UMV • Expected 
values (bias) and standard deviations are given in Table 2. 

The deep water wave climate characterised by the significant wave height Hso is assumed 
to follow a Weibull distribution. The distribution function of the maximum significant 
wave height within T years is given by 

FBT (H„) = • exp 
IHso — Bw\   \ 
\      A      ) ) 

XT 

(11) 

where A is the average number of Hso data values per year. Bw — 2.69 is usually 
regarded as a deterministic parameter. 

Due to the limited number of data A and k are subject to statistical uncertainty. A and 
k values are modelled as normal distributed stochastic variables with a variance based 
on the maximum likelihood estimates. The expected value and the standard deviation 
of A and k are presented in Table 1. 

standard deviation, a 

(approximation) 

pA* (T(l + 2/pk) 

N  Vr2(i + i/w0 •PA 
(")' 

Table 1: Mean and standard deviation of A and k values in the Weibull distribution. 

In Table 1 N is the number of available -ffso-values and T is the gamma function. 
PA = 0-58 and p^ = 1.14 and N = 30 will be used in the illustrative example, cf. Table 
2. 

As the water depth decreases from deep water to shallow water, wave transformation 
will result in refraction (when waves are not head on), shoaling and finally wave break- 
ing. Therefore the uncertainty of the breaker heights should be considered in design in 
depth limited cases. 

The design wave height Hdesign = #1/250 to De applied in the Goda formula is in case 
of no surf zone in front of the structure taken as 1.8 • Hs0. 
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In case of a surf zone in front of the structure the breaker height is taken as (Goda, 
1994) 

Hb = L00.17 (l - exp (-1-5^ (l + 15tan4/36>))) (12) 

where h/, is the water depth at a distance 5HS seaward of the structure, and -Lo = 
HSO/0.035 is the deepwater wavelength. Consequently, Hdesign = min[HS0, Hi,]. 

Tidal elevation £ is assumed to follow a cosine distribution function, see Takayama 
(1992). 

*C(0 = --arccos (f - l) - 1 (13) 

where ( varies between ±£Q = 0.75 m. 

Storm surge % should be considered when the structure is in shallow water, due to 
possible change in breaker wave heights and buoyancy of the structure. For simplicity 
the storm surge is not taken into account. 

The total water depth in front the structure is htot — hs + £, where hs is the mean sea 
water level at the foot of the structure, without influence from the storm surge or tidal 
level. 

The average mass density of a conventional vertical breakwater including sand ballast, 
reinforced concrete walls and concrete cap can be assumed to be normal distributed 
with a mean value in the range pc = 2.15 - 2.3 t/m3 and a coefficient of variation of 
5%, Burcharth (1992). 

It is generally accepted that the variability of the effective friction angle of a well known 
soil sample is small, but authors such as Nadim et al. (1994) and Cherubini (1992) 
have encountered variation coefficients in the range 3% to 15%. It is assumed in this 
paper that the angle of dilation and effective friction angle have a variation coefficient 
corresponding to 10 %. 

The friction coefficient between the base plate and rubble is assumed normal distributed 
with a mean value tan^i = 0.636 and a coefficient of variation of 15 %, Takayama (1992). 

Even homogeneous soil layers exhibit change in strength from point to point. The 
undrained shear strength of clay is an example where spatial variability exists. It is 
assumed to be modelled by a log-Gaussian stochastic field {cu(x, z)} where x is the 
horizontal coordinate and z the vertical coordinate, see e.g. Andersen et al. (1992). 
The mean value function and covariance function are in this paper assumed to be 

E[cu(x,z)]    =   (J,Cu+az (14) 

Cov[cu(xi,zi),cu(x2,z2)]   = (15) 

^exP(-|^^|)exp(-(-10-)) 
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where Cu is in kPa and x, z are taken in metres with origo (a;, z) = (0,0) equal to point 
B, see cf. Figure 2, )iCu is the expected value of the undrained shear strength, aCu is 
the standard deviation of the undrained shear strength and a = 3 kPa/m is a constant 
signifying the linear increase of the undrained shear strength of the clay subsoil. 

Method of reliability analysis 

The uncertainties (physical, statistical and model) related to the above failure modes 
cf. Figure 1 are modelled as stochastic variables, and limit state functions for the 
failure modes are formulated as described above. The wave loads are estimated using 
the Goda formula, (including impulsive pressure modification) with model uncertainty 
included. For the foundation failure modes the strength of the clay subsoil is modelled 
as a stochastic field and a probabilistic limit state function is then formulated using 
kinematically admissible failure mechanisms, Christiani (1996). 

The probability of failure of the failure modes are estimated using First Order Reliabil- 
ity Methods. System failure is modelled by a series system and the system probability 
of failure can be evaluated on the basis of the FORM analysis of the single failure 
modes, see Madsen et al. (1986) and Burcharth (1992). 

Limit state functions 

Sliding failure. 

Failure corresponding to sliding can be modelled by the limit state function, cf eq. (1): 

(<   0   failure 
=   0   limit state (16) 
>   0   no failure 

Foundation failure in the rubble and clay subsoil 

As mentioned above the undrained shear strength of the clay is modelled as a log- 
Gaussian stochastic field {cu{x, z)}. The correlation lengths for {cu(x,z)} are small 
compared to the integration intervals and it follows from the central limit theorem that 
the total internal work in the clay subsoil can be approximated by a normal distributed 
stochastic variable W3 with mean value (j,w3 and standard deviation aw3- The limit 
state function is written, see eq. (10) 

Qday = E[W3] + uwaW3 - Wh2 - WE (17) 

where u\y is a realization of a normal distributed stochastic variable Uw with mean 0 
and unit standard deviation. 

The expected value of W3 is 

E[Wz]=8Rl E[cu(e)]d0 (18) 
Jo 
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where E[cu(6)] is the expected value of c„ at the position described by the angle 9 along 
the circular rupture line BC. 

The variance of Wz is 

Var[W3] = <7JL = <^2 /       /      CouMflJ.c^OldBi de (19) 
7o     Jo 

where Cov[cu(6), cu(0i)\ is the covariance function of cu at the positions corresponding 
to 0 and 0\. 

Systems reliability of the series systems involving sand and clay subsoils 

The single failure modes in Figure 1 are regarded as m failure components. It is 
clear from a deterministic design of a monolithic structure that if one of the failure 
components fail then the system fails, i.e. the breakwater has no load carrying capacity 
after the failure of one component. The system probability of failure Pf can be written 
as a probability of unions. 

/ m 

Pf=P\\J *(*) ^ ° 1 = / .„ /*(*)<** (2°) = p([j9i(x)<o)= I /xW& 
\t=l / •'Ui=l  Si(x<0) 

where gi(x) is the failure function corresponding to components i = 1,2..m. The FORM 
approximation of the generalised systems reliability index 0s can be estimated as: 

f = _$-i(i _ $m(^ci p));   or  ps = 1 _ $m(/3C) p) (21) 

where $m is the m-dimensional standardised normal distribution function, /3C is the 
vector of the reliability indices of the individual failure modes (3C —{f3l,l32---Pm) and P 
is the correlation coefficient. 

If the failure modes are fully correlated then Pj = max P,, where Pi = $(/?£) is the 

probability of failure for component i. If only failure modes involving foundation failure 
are considered the correlation coefficients are fairly close to 1. Taking Pf = max Pi is 

then a good approximation, although it is on the unsafe side. 

Reliability based optimisation 

In design of breakwaters the main objectives are usually to obtain an inexpensive 
structure and to have a satisfactory structural reliability. 

Cost optimal design of a breakwater for construction or rehabilitation is always of 
interest to the design engineer. An example is presented in the following where the 
minimum reliability index is fixed and the decision variables are the geometrical values 
from a cross section of a vertical breakwater cf. Figure 4. 

The design (decision) variables are denoted b = (6j,..., &AT), i.e. the number of design 
variables is N. 
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S.WX 

bo = Rubble mound block size 

Harbour side 

Figure 4: Definition of the design variables for optimal reliability design. 

If the objective function is chosen as the total expected costs CT of the structure during 
the lifetime, the optimal design can be found as the solution to the optimisation problem 

min       CT(b) = C/(b) + CFPf{b) 

b\<bi< b? i = l,...,N 

(22) 

(23) 

where b\ and bf are lower and upper bounds to &,. Ci is the initial/construction costs, 
CF is the costs of failure, and Pf is the probability of failure during the expected 
lifetime of the breakwater. 

Alternatively an element reliability-index based optimisation problem can be formu- 
lated 

mm 
b 

C,{h) 

s.t.       A(b)>/?rn     ,t = l,...,ro 

b\<bi<b?       ,i = l,...,N 

(24) 

(25) 

(26) 

where # is the reliability index for failure mode i and /3f *" is the corresponding lower 
bound on the reliability index. Equivalent solutions from (22)-(23) and (24)-(25) can be 
obtained by suitable choices of /3•" i — 1, ...m The above optimisation problems are 
usually non-linear and non-convex. The optimisation problems can be solved effectively 
using non-linear optimisation algorithms and FORM. 

The reliability indices in (25) are determined on the basis of limit state functions 
written as <7i(x(b), b) = 0, i = 1,..., m. In a traditional deterministic design the design 
(optimisation) problem the constraint (25) is exchanged by the deterministic constraint 

J3i(b)=5i(x
D(b,7),b)>0 . ,m (27) 
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where xD are design values calculated using the statistical parameters for the stochastic 
variables X and 7 are partial safety factors. 

Evaluation of the failure modes 

Reliability analysis of an engineering example is performed to show the significance of 
the failure modes in two series systems involving sand and clay subsoils. 

The deterministic design of the vertical breakwater is designed according to Goda's 
pressure formulation (1974), considering recommended Japanese design guidelines for 
sliding (safety factor 1.2), overturning (safety factor 1.2) and max heel pressure (400 - 
600 kN/m2), the tidal elevation ( = 0 and friction coefficient between base plate and 
rubble is taken as 0.6 cf. Figure 5. 

B=11.2m 

M.S.L. 

h =14 m 

0^=80 KN/irf, or %2 =0.57 

(clay) (sand) 

Figure 5: Illustration of a monolithic vertical breakwater. 

The sensitivity of the caisson width on the probability of failure considering shoaling 
and breaker heights in the surf zone is shown in Figure 6 

8      10     12     14     16     18 

B(m) B(m) 

Figure 6: Effect of the width B of the caisson on the probability of failure Pi within 50 
year structure lifetime, considering shoaling and breaker heights. 

Numbers in the graphs refer to type of foundation failure mechanisms cf.   Figure 1. 
From Figure 6 it is seen that the failure modes (4) and (2) are the most critical fail- 
ure modes.   It is also seen that the probability of failures for the deterministically 
determined caisson width of 11.2 m are very high. 

Optimal design 
Optimal design of the example cf. Figure 5 is determined on the basis of the formulation 
in equations (24) - (26) i.e. the cost of failure is neglected. The initial costs are divided 
into weight contributions from the rubble mound and the caisson. As design (decision) 
variables the width (B) and the height (hjr) of the rubble mound are chosen. 
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Cj{B,hu) = Ch • Wcaisson(B) + C/2 • Wrubble{hll) (28) 

where Wcaiss<m is the weight of the caisson and Wrubbie is the corresponding weight of 
the rubble. The difference in price per unit weight between the weight of the rubble 
and caisson is chosen as TP- = 2. The cost of construction is minimised with upper 
bounds on the probability of failure of the significant failure modes. 

Optimal designs for different levels of the acceptable probability of failure Pf without 
considering wave height reduction in the surf zone is presented in Table 3: 

Applying Japanese design guidelines Pi B (sand & clay) , hn B (sand k clay), hn 
H• = 5.56m, B = 17.8m, hn = 6m 
waterdepth at the toe h, = 14m 
waterdepth, foot of the caisson d = 8m 

0.1 
0.2 
0.3 

24.7 (m), 5.0 (m) 
20.6 (m), 5.0 (m) 
18.2 (m), 5.0 (m) 

26.5 (m), 6.0 (m) 
21.6 (m), 6.0 (m) 
19.0 (m), 6.0 (m) 

Table 3: Optimal design for different levels of acceptable probability without consider- 
ing shoaling and breaker heights in the surf zone. 

Conclusions 

Foundation failure modes for vertical breakwaters are formulated such that reliability 
analyses can be performed. The failure modes include sliding failure and failure modes 
involving sand and clay subsoils. Stochastic models for uncertain parameters are de- 
scribed using the information from experimental tests and from the literature. Further 
it is mentioned that foundation failure modes can be modelled as components in a series 
system. 

Reliability based optimisation formulations for rational design of vertical wall break- 
waters are given. Finally an illustrative example is presented, where the reliability of a 
breakwater on a high rubble mound is investigated and optimal designs are determined. 
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