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Abstract We present a practical implementation of an optimal first-order method,
due to Nesterov, for large-scale total variation regularization in tomographic recon-
struction, image deblurring, etc. The algorithm applies to μ-strongly convex objective
functions with L-Lipschitz continuous gradient. In the framework of Nesterov both
μ and L are assumed known—an assumption that is seldom satisfied in practice.
We propose to incorporate mechanisms to estimate locally sufficient μ and L during
the iterations. The mechanisms also allow for the application to non-strongly con-
vex functions. We discuss the convergence rate and iteration complexity of several
first-order methods, including the proposed algorithm, and we use a 3D tomography
problem to compare the performance of these methods. In numerical simulations we
demonstrate the advantage in terms of faster convergence when estimating the strong
convexity parameter μ for solving ill-conditioned problems to high accuracy, in com-
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parison with an optimal method for non-strongly convex problems and a first-order
method with Barzilai-Borwein step size selection.

Keywords Optimal first-order optimization methods · Strong convexity · Total
variation regularization · Tomography

Mathematics Subject Classification (2000) 65K10 · 65R32

1 Introduction

Large-scale discretizations of inverse problems [22] arise in a variety of applications
such as medical imaging, non-destructive testing, and geoscience. Due to the inher-
ent instability of these problems, it is necessary to apply regularization in order to
compute meaningful reconstructions, and this work focuses on the use of total varia-
tion which is a powerful technique when the sought solution is required to have sharp
edges (see, e.g., [14, 36] for applications in image reconstruction).

Many total variation algorithms have already been developed, including time
marching [36], fixed-point iteration [40], and various minimization-based methods
such as sub-gradient methods [1, 15], interior-point methods for second-order cone
programming (SOCP) [20], methods exploiting duality [10, 13, 24], and graph-cut
methods [11, 18].

The numerical difficulty of a problem depends on the linear forward operator.
Most methods are dedicated either to denoising, where the operator is simply the
identity, or to deblurring where the operator is represented by a fast transform. For
general linear operators with no exploitable matrix structure, such as in tomographic
reconstruction, the selection of algorithms is not as large. Furthermore, the systems
that arise in real-world tomography applications, especially in 3D, are so large that
memory-requirements preclude the use of second-order methods with quadratic con-
vergence.

Recently, Nesterov’s optimal first-order method [30, 31] has been adapted to, and
analyzed for, a number of imaging problems [16, 41]. In [41] it is shown that Nes-
terov’s method outperforms standard first-order methods by an order of magnitude,
but this analysis does not cover tomography problems. A drawback of Nesterov’s al-
gorithm (see, e.g., [12]) is the explicit need for the strong convexity parameter and the
Lipschitz constant of the objective function, both of which are generally not available
in practice.

This paper describes a practical implementation of Nesterov’s algorithm, aug-
mented with efficient heuristic methods to estimate the unknown Lipschitz constant
and strong convexity parameter. The Lipschitz constant is handled using backtrack-
ing, similar to the technique used in [4]. To estimate the unknown strong convexity
parameter—which is more difficult—we propose a heuristic based on adjusting an
estimate of the strong convexity parameter using a local strong convexity inequality.
Furthermore, we equip the heuristic with a restart procedure to ensure convergence
in case of an inadequate estimate.

We call the algorithm UPN (Unknown Parameter Nesterov) and compare it with
two versions of the well-known gradient projection algorithm; GP: a simple version
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using a backtracking line search for the stepsize and GPBB: a more advanced version
using Barzilai-Borwein stepsize selection [2] and the nonmonotone backtracking pro-
cedure from [21].

We also compare with a variant of the proposed algorithm, UPN0, where the strong
convexity information is not enforced. UPN0 is optimal among first-order methods
for the class of Lipschitz smooth, convex (but not strongly convex) functions. There
are several other variants of optimal first-order methods for Lipschitz smooth prob-
lems, see, e.g., [4, 7, 27, 29–32, 38] and the overview in [6, 38], but they all share
similar practical convergence [6, §6.1]. We therefore consider UPN0 to represent this
class of methods. We have implemented the four algorithms in C with a MEX inter-
face to MATLAB, and the software is available from www.imm.dtu.dk/~pch/TVReg/.

Our numerical tests demonstrate that the proposed method UPN is significantly
faster than GP, as fast as GPBB for moderately ill-conditioned problems, and signif-
icantly faster for ill-conditioned problems. Compared to UPN0, UPN is consistently
faster, when solving to high accuracy.

We start with introductions to the discrete total variation problem, to smooth and
strongly convex functions, and to some basic first-order methods in Sects. 2, 3, and 4,
respectively. Section 5 introduces important inequalities while the new algorithm is
described in Sect. 6. Finally, in Sect. 7 we report our numerical experiments with
the proposed method applied to an image deblurring problem and a tomographic
reconstruction problem.

Throughout the paper we use the following notation. The smallest singular value
of a matrix A is denoted σmin(A). The smallest and largest eigenvalues of a symmetric
semi-definite matrix M are denoted by λmin(M) and λmax(M). For an optimization
problem, f is the objective function, x� denotes a minimizer, f � = f (x�) is the
optimum objective, and x is called an ε-suboptimal solution if f (x) − f � ≤ ε.

2 The discrete total variation reconstruction problem

The Total Variation (TV) of a real function X (t) with t ∈ � ⊂ R
p is defined as

T (X ) =
∫

�

‖∇X (t)‖2 dt. (2.1)

Note that the Euclidean norm is not squared, which means that T (X ) is non-differen-
tiable. In order to handle this we consider a smoothed version of the TV functional.
Two common choices are to replace the Euclidean norm of the vector z by either
(‖z‖2

2 + β2)1/2 or the Huber function

Φτ (z) =
{‖z‖2 − 1

2τ, if ‖z‖2 ≥ τ,

1
2τ

‖z‖2
2, else.

(2.2)

In this work we use the latter, which can be considered a prox-function smoothing
[31] of the TV functional [5]; thus, the approximated TV functional is given by

Tτ (X ) =
∫

�

Φτ (∇X ) dt. (2.3)

http://www.imm.dtu.dk/~pch/TVReg/
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In this work we consider the case t ∈ R
3. To obtain a discrete version of the TV

reconstruction problem, we represent X (t) by an N = m × n × l array X, and we let
x = vec(X). Each element or voxel of the array X, with index j , has an associated
matrix (a discrete differential operator) Dj ∈ R

3×N such that the vector Dj x ∈ R
3

is the forward difference approximation to the gradient at xj . By stacking all Dj we
obtain the matrix D of dimensions 3N × N :

D =
⎛
⎜⎝

D1
...

DN

⎞
⎟⎠ . (2.4)

We use periodic boundary conditions in D, which ensures that only a constant x has
a TV of 0. Other choices of boundary conditions could easily be implemented.

When the discrete approximation to the gradient is used and the integration in
(2.3) is replaced by summations, the discrete and smoothed TV function is given by

Tτ (x) =
N∑

j=1

Φτ (Djx). (2.5)

The gradient ∇Tτ (x) ∈ R
N of this function is given by

∇Tτ (x) =
N∑

j=1

DT
j Dj x/max{τ,‖Djx‖2}. (2.6)

We assume that the sought reconstruction has voxel values in the range [0,1],
so we wish to solve a bound-constrained problem, i.e., having the feasible region

Q = {x ∈ R
N | 0 ≤ xj ≤ 1,∀j}. Given a linear system Ax ≈ b where A ∈ R

M×N

and N = mnl, we define the associated discrete TV regularization problem as

x� = argmin
x∈Q

φ(x), φ(x) = 1

2
‖Ax − b‖2

2 + α Tτ (x), (2.7)

where α > 0 is the TV regularization parameter. This is the problem we want to
solve, for the case where the linear system of equations arises from discretization of
an inverse problem.

3 Smooth and strongly convex functions

To set the stage for the algorithm development in this paper, we consider the convex
optimization problem minx∈Q f (x) where f is a convex function and Q is a convex
set. We recall that a continuously differentiable function f is convex if

f (x) ≥ f (y) + ∇f (y)T (x − y), ∀x, y ∈ R
N. (3.1)
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Definition 3.1 A continuously differentiable convex function f is said to be strongly
convex with strong convexity parameter μ if there exists a μ > 0 such that

f (x) ≥ f (y) + ∇f (y)T (x − y) + 1

2
μ‖x − y‖2

2, ∀x, y ∈ R
N. (3.2)

Definition 3.2 A continuously differentiable convex function f has Lipschitz con-
tinuous gradient with Lipschitz constant L, if

f (x) ≤ f (y) + ∇f (y)T (x − y) + 1

2
L‖x − y‖2

2, ∀x, y ∈ R
N. (3.3)

Remark 3.1 The condition (3.3) is equivalent [30, Theorem 2.1.5] to the more stan-
dard way of defining Lipschitz continuity of the gradient, namely, through convexity
and the condition ‖∇f (x) − ∇f (y)‖2 ≤ L‖x − y‖2,∀x, y ∈ R

N .

Remark 3.2 Lipschitz continuity of the gradient is a smoothness requirement on f .
A function f that satisfies (3.3) is said to be smooth, and L is also known as the
smoothness constant.

The set of functions that satisfy (3.2) and (3.3) is denoted Fμ,L. It is clear that
μ ≤ L and also that if μ1 ≥ μ0 and L1 ≤ L0 then f ∈ Fμ1,L1 ⇒ f ∈ Fμ0,L0 . Given
fixed choices of μ and L, we introduce the ratio Q = L/μ (sometimes referred to as
the “modulus of strong convexity” [28] or the “condition number for f ” [30]) which
is an upper bound for the condition number of the Hessian matrix. The number Q

plays a major role for the convergence rate of the methods we will consider.

Lemma 3.1 For the quadratic function f (x) = 1
2‖Ax − b‖2

2 with A ∈ R
M×N we

have

L = ‖A‖2
2, μ = λmin

(
AT A

) =
{

σmin(A)2, if rank(A) = N,

0, else,
(3.4)

and if rank(A) = N then Q = κ(A)2, the square of the condition number of A.

Proof Follows from f (x) = f (y)+(Ay−b)T A(x−y)+ 1
2 (x−y)T AT A(x−y), the

second order Taylor expansion of f about y, where equality holds for quadratic f . �

Lemma 3.2 For the smoothed TV function (2.5) we have

L = ‖D‖2
2/τ, μ = 0, (3.5)

where ‖D‖2
2 ≤ 12 in the 3D case.

Proof The result for L follows from [31, Theorem 1] since the smoothed TV func-
tional can be written as [5, 16]

Tτ (x) = max
u

{
uT Dx − τ

2
‖u‖2

2 : ‖ui‖2 ≤ 1, ∀i = 1, . . . ,N

}
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with u = (uT
1 , . . . , uT

N)T stacked according to D. The inequality ‖D‖2
2 ≤ 12 follows

from a straightforward extension of the proof in the Appendix of [16]. For μ pick
y = αe ∈ R

N and x = βe ∈ R
N , where e = (1, . . . ,1)T , and α �= β ∈ R. Then we get

Tτ (x) = Tτ (y) = 0, ∇Tτ (y) = 0 and obtain

1

2
μ‖x − y‖2

2 ≤ Tτ (x) − Tτ (y) − ∇Tτ (y)T (x − y) = 0,

and hence μ = 0. �

Theorem 3.1 For the function φ(x) defined in (2.7) we have a strong convex-
ity parameter μ = λmin(A

T A) and Lipschitz constant L = ‖A‖2
2 + α ‖D‖2

2/τ . If
rank(A) < N then μ = 0, otherwise μ = σmin(A)2 > 0 and

Q = κ(A)2 + α

τ

‖D‖2
2

σmin(A)2
, (3.6)

where κ(A) = ‖A‖2/σmin(A) is the condition number of A.

Proof Assume rank(A) = N and consider f (x) = g(x) + h(x) with g ∈ Fμg,Lg and
h ∈ Fμh,Lh

. Then f ∈ Fμf ,Lf
, where μf = μg + μh and Lf = Lg + Lh. From μf

and Lf and using Lemmas 3.1 and 3.2 with g(x) = 1
2‖Ax − b‖2

2 and h(x) = αTτ (x)

we obtain the condition number for φ given in (3.6). If rank(A) < N then the matrix
AT A has at least one zero eigenvalue, and thus μ = 0. �

Remark 3.3 Due to the inequalities used to derive (3.6), there is no guarantee that the
given μ and L are the tightest possible for φ.

4 Some basic first-order methods

A basic first-order method is the gradient projection method of the form

x(k+1) = PQ
(
x(k) − pk∇f

(
x(k)

))
, k = 0,1,2, . . . , (4.1)

where PQ is the Euclidean projection onto the convex set Q [30]. The following
theorem summarizes the convergence properties.

Theorem 4.1 Let f ∈ Fμ,L, pk = 1/L and x� ∈ Q be the constrained minimizer
of f , then for the gradient projection method (4.1) we have

f
(
x(k)

)− f � ≤ L

2k
‖x(0) − x�‖2

2. (4.2)

Moreover, if μ �= 0 then

f
(
x(k)

)− f � ≤
(

1 − μ

L

)k(
f
(
x(0)

)− f �
)
. (4.3)
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Proof The two bounds follow from [39] and [28, §7.1.4], respectively. �

To improve the convergence of the gradient (projection) method, Barzilai and Bor-
wein [2] suggested a scheme in which the step pk∇f (x(k)) provides a simple and
computationally cheap approximation to the Newton step (∇2f (x(k)))−1∇f (x(k)).
For general unconstrained problems with f ∈ Fμ,L, possibly with μ = 0, non-
monotone line search combined with the Barzilai-Borwein (BB) strategy produces
algorithms that converge [35]; but it is difficult to give a precise iteration complexity
for such algorithms. For strictly quadratic unconstrained problems the BB strategy re-
quires O(Q log ε−1) iterations to obtain an ε-suboptimal solution [17]. In [19] it was
argued that, in practice, O(Q log ε−1) iterations “is the best that could be expected”.
This comment is also supported by the statement in [30, p. 69] that all “reasonable
step-size rules” have the same iteration complexity as the standard gradient method.
Note that the classic gradient method (4.1) has O(L/ε) complexity for f ∈ F0,L. To
summarize, when using the BB strategy we should not expect better complexity than
O(L/ε) for f ∈ F0,L, and O(Q log ε−1) for f ∈ Fμ,L.

In Algorithm 1 we give the (conceptual) algorithm GPBB, which implements the
BB strategy with non-monotone line search [8, 42] using the backtracking proce-
dure from [21] (initially combined in [35]). The algorithm needs the real parameter
σ ∈ [0,1] and the nonnegative integer K , the latter specifies the number of iterations
over which an objective decrease is guaranteed.

An alternative approach is to consider first-order methods with optimal complex-
ity. The optimal complexity is defined as the worst-case complexity for a first-order
method applied to any problem in a certain class [28, 30] (there are also more tech-
nical aspects involving the problem dimensions and a black-box assumption). In this
paper we focus on the classes F0,L and Fμ,L.

Algorithm 1: GPBB

input : x(0), K

output: x(k+1)

p0 = 1;1

for k = 0,1,2, . . . do2

// BB strategy3

if k > 0 then4

pk ← ‖x(k)−x(k−1)‖2
2

(x(k)−x(k−1))T (∇f (x(k))−∇f (x(k−1)))
;5

β ← 0.95;6

x̄ ← PQ(x(k) − βpk∇f (x(k)));7

f̂ ← max{f (x(k)), f (x(k−1)), . . . , f (x(k−K))};8

while f (x̄) ≥ f̂ − σ ∇f (x(k))T (x(k) − x̄) do9

β ← β2;10

x̄ ← PQ(x(k) − βpk∇f (x(k)));11

x(k+1) ← x̄;12
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Recently there has been a great deal of interest in optimal first-order methods for
convex optimization problems with f ∈ F0,L [3, 38]. For this class it is possible
to reach an ε-suboptimal solution within O(

√
L/ε) iterations. Nesterov’s methods

can be used as stand-alone optimization algorithm, or in a composite objective setup
[4, 32, 38], in which case they are called accelerated methods (because the designer
violates the black-box assumption). Another option is to apply optimal first-order
methods to a smooth approximation of a non-smooth function leading to an algorithm
with O(1/ε) complexity [31]; for practical considerations, see [5, 16].

Optimal methods specific for the function class Fμ,L with μ > 0 are also known
[29, 30]; see also [32] for the composite objective version. However, these meth-
ods have gained little practical consideration; for example in [32] all the simulations
are conducted with μ = 0. Optimal methods require O(

√
Q log ε−1) iterations while

the classic gradient method requires O(Q log ε−1) iterations [28, 30]. For quadratic
problems, the conjugate gradient method achieves the same iteration complexity as
the optimal first-order method [28].

In Algorithm 2 we state the basic optimal method Nesterov [30] with known μ

and L; it requires an initial θ0 ≥ √
μ/L. Note that it uses two sequences of vectors,

x(k) and y(k). The convergence rate is provided by the following theorem.

Theorem 4.2 If f ∈ Fμ,L, 1 > θ0 ≥ √
μ/L, and γ0 = θ0(θ0L−μ)

1−θ0
, then for algorithm

Nesterov we have

f
(
x(k)

)− f � ≤ 4L

(2
√

L + k
√

γ0)2

(
f
(
x(0)

)− f � + γ0

2
‖x(0) − x�‖2

2

)
. (4.4)

Moreover, if μ �= 0 then

f
(
x(k)

)− f � ≤
(

1 −
√

μ

L

)k(
f
(
x(0)

)− f � + γ0

2
‖x(0) − x�‖2

2

)
. (4.5)

Proof See [30, (2.2.19), Theorem 2.2.3] and Appendix A for an alternative proof. �

Except for different constants Theorem 4.2 mimics the result in Theorem 4.1, with
the crucial differences that the denominator in (4.4) is squared and μ/L in (4.5) has

Algorithm 2: Nesterov

input : x(0), μ, L, θ0
output: x(k+1)

y(0) ← x(0);1

for k = 0,1,2, . . . do2

x(k+1) ← PQ(y(k) − L−1∇f (y(k)));3

θk+1 ← positive root of θ2 = (1 − θ)θ2
k + μ

L
θ ;4

βk ← θk(1 − θk)/(θ
2
k + θk+1);5

y(k+1) ← x(k+1) + βk(x
(k+1) − x(k));6
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a square root. Comparing the convergence rates in Theorems 4.1 and 4.2, we see that
the rates are linear but differ in the linear rate, Q−1 and

√
Q−1, respectively. For

ill-conditioned problems, it is important whether the complexity is a function of Q

or
√

Q, see, e.g., [28, §7.2.8], [7]. This motivates the interest in specialized optimal
first-order methods for solving ill-conditioned problems.

5 First-order inequalities for the gradient map

For unconstrained convex problems the (norm of the) gradient is a measure of how
close we are to the minimum, through the first-order optimality condition, cf. [9]. For
constrained convex problems minx∈Q f (x) there is a similar quantity, namely, the
gradient map defined by

Gν(x) = ν(x − PQ(x − ν−1∇f (x))). (5.1)

Here ν > 0 is a parameter and ν−1 can be interpreted as the step size of a gradient
step. The gradient map is a generalization of the gradient to constrained problems in
the sense that if Q = R

N then Gν(x) = ∇f (x), and the equality Gν(x
�) = 0 is a nec-

essary and sufficient optimality condition [39]. In what follows we review and derive
some important first-order inequalities which will be used to analyze the proposed
algorithm. We start with a rather technical result.

Lemma 5.1 Let f ∈ Fμ,L, fix x ∈ Q, y ∈ R
N , and set x+ = PQ(y − L̄−1∇f (y)),

where μ̄ and L̄ are related to x, y and x+ by the inequalities

f (x) ≥ f (y) + ∇f (y)T (x − y) + 1

2
μ̄‖x − y‖2

2, (5.2)

f (x+) ≤ f (y) + ∇f (y)T (x+ − y) + 1

2
L̄‖x+ − y‖2

2. (5.3)

Then

f
(
x+) ≤ f (x) + GL̄(y)T (y − x) − 1

2
L̄−1‖GL̄(y)‖2

2 − 1

2
μ̄‖y − x‖2

2. (5.4)

Proof Follows directly from [30, Theorem 2.2.7]. �

Note that if f ∈ Fμ,L, then in Lemma 5.1 we can always select μ̄ = μ and L̄ = L

to ensure that the inequalities (5.2) and (5.3) are satisfied. However, for specific x, y

and x+, there can exist μ̄ ≥ μ and L̄ ≤ L such that (5.2) and (5.3) hold. We will use
these results to design an algorithm for unknown parameters μ and L.

The lemma can be used to obtain the following lemma. The derivation of the
bounds is inspired by similar results for composite objective functions in [32], and
the second result is similar to [30, Corollary 2.2.1].
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Lemma 5.2 Let f ∈ Fμ,L, fix y ∈ R
N , and set x+ = PQ(y − L̄−1∇f (y)). Let μ̄ and

L̄ be selected in accordance with (5.2) and (5.3) respectively. Then

1

2
μ̄‖y − x�‖2 ≤ ‖GL̄(y)‖2. (5.5)

If y ∈ Q then

1

2
L̄−1‖GL̄(y)‖2

2 ≤ f (y) − f
(
x+) ≤ f (y) − f �. (5.6)

Proof From Lemma 5.1 with x = x� we use f (x+) ≥ f � and obtain

1

2
μ̄‖y − x�‖2

2 ≤ GL̄(y)T
(
y − x�

)− 1

2
L̄−1‖GL̄(y)‖2

2 ≤ ‖GL̄(y)‖2‖y − x�‖2,

and (5.5) follows; (5.6) follows from Lemma 5.1 using y = x and f � ≤ f (x+). �

As mentioned in the beginning of the section, the results of the corollary say that
we can relate the norm of the gradient map at y to the error ‖y − x∗‖2 as well as to
f (y) − f ∗. This motivates the use of the gradient map in a stopping criterion:

‖GL̄(y)‖2 ≤ ε̄, (5.7)

where y is the current iterate, and L̄ is linked to this iterate using (5.3). The parameter
ε̄ is a user-specified tolerance based on the requested accuracy. Lemma 5.2 is also
used in the following section to develop a restart criterion to ensure convergence.

6 Nesterov’s method with parameter estimation

The parameters μ and L are explicitly needed in Nesterov. In case of an unregularized
least-squares problem we can in principle compute μ and L as the smallest and largest
squared singular value of A, though it might be computational expensive. When a
regularization term is present it is unclear whether the tight μ and L can be computed
at all. Bounds can be obtained using the result in Theorem 3.1.

A practical approach is to estimate μ and L during the iterations. To this end, we
introduce the estimates μk and Lk of μ and L in each iteration k. We discuss first
how to choose Lk , then μk , and finally we state the complete algorithm UPN and its
convergence properties.

To ensure convergence, the main inequalities (A.6) and (A.7) must be satisfied.
Hence, according to Lemma 5.1 we need to choose Lk such that

f (x(k+1)) ≤ f (y(k)) + ∇f (y(k))T (x(k+1) − y(k)) + 1

2
Lk‖x(k+1) − y(k)‖2

2. (6.1)

This is easily accomplished using backtracking on Lk [4]. The scheme, BT, takes the
form given in Algorithm 3, where ρL > 1 is an adjustment parameter. If the loop
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Algorithm 3: BT

input : y, L̄

output: x, L̃

L̃ ← L̄;1

x ← PQ(y − L̃−1∇f (y));2

while f (x) > f (y) + ∇f (y)T (x − y) + 1
2 L̃‖x − y‖2

2 do3

L̃ ← ρLL̃;4

x ← PQ(y − L̃−1∇f (y));5

is executed nBT times, the dominant computational cost of BT is nBT + 2 function
evaluations and 1 gradient evaluation.

For choosing the estimate μk we introduce the auxiliary variable μ�
k as the value

that causes Definition 3.1 (of strong convexity) for x� and y(k) to hold with equality

f (x�) = f (y(k)) + ∇f (y(k))T (x� − y(k)) + 1

2
μ�

k‖x� − y(k)‖2
2. (6.2)

From (A.7) with Lemma 5.1 and (A.8) we find that we must choose μk ≤ μ�
k to

obtain a convergent algorithm. However, as x� is, of course, unknown, this task is not
straightforward, if at all possible. Instead, we propose a heuristic where we select μk

such that

f (x(k)) ≥ f (y(k)) + ∇f (y(k))T (x(k) − y(k)) + 1

2
μk‖x(k) − y(k)‖2

2. (6.3)

This is indeed possible since x(k) and y(k) are known iterates. Furthermore, we want
the estimate μk to be decreasing in order to approach a better estimate of μ. This can
be achieved by the choice

μk = min{μk−1,M(x(k), y(k))}, (6.4)

where we have defined the function

M(x,y) =
{

f (x)−f (y)−∇f (y)T (x−y)
1
2 ‖x−y‖2

2
, if x �= y,

∞, else.
(6.5)

In words, the heuristic chooses the largest μk that satisfies (3.2) for x(k) and y(k),
as long as μk is not larger than μk−1. The heuristic is simple and computationally
inexpensive and we have found that it is effective for determining a useful estimate.
Unfortunately, convergence of Nesterov equipped with this heuristic is not guaran-
teed, since the estimate can be too large. To ensure convergence we include a restart
procedure RUPN that detects if μk is too large, inspired by the approach in [32, §5.3]
for composite objectives. RUPN is given in Algorithm 4.
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Algorithm 4: RUPN

γ1 = θ1(θ1L1 − μ1)/(1 − θ1);1

if μk �= 0 and inequality (6.9) not satisfied then2

abort execution of UPN;3

restart UPN with input (x(k+1), ρμμk, Lk, ε̄);4

To analyze the restart strategy, assume that μi for all i = 1, . . . , k are small
enough, i.e., they satisfy μi ≤ μ�

i for i = 1, . . . , k, and μk satisfies

f (x�) ≥ f (x(0)) + ∇f (x(0))T (x� − x(0)) + 1

2
μk‖x� − x(0)‖2

2. (6.6)

When this holds we have the convergence result (using (A.9))

f (x(k+1)) − f � ≤
k∏

i=1

(1 −√
μi/Li)

(
f (x(1)) − f � + 1

2
γ1‖x(1) − x�‖2

2

)
. (6.7)

We start from iteration k = 1 for reasons which will presented shortly (see Ap-
pendix A for details and definitions). If the algorithm uses a projected gradient step
from the initial x(0) to obtain x(1), the rightmost factor of (6.7) can be bounded as

f
(
x(1)

)− f � + 1

2
γ1‖x(1) − x�‖2

2

≤ GL0

(
x(0)

)T (
x(0) − x�

)− 1

2
L−1

0

∥∥GL0

(
x(0)

)∥∥2
2 + 1

2
γ1‖x(1) − x�‖2

2

≤ ∥∥GL0

(
x(0)

)∥∥
2‖x(0) − x�‖2 − 1

2
L−1

0

∥∥GL0

(
x(0)

)∥∥2
2 + 1

2
γ1‖x(0) − x�‖2

2

≤
(

2

μk

− 1

2L0
+ 2γ1

μ2
k

)∥∥GL0

(
x(0)

)∥∥2
2. (6.8)

Here we used Lemma 5.1, and the fact that a projected gradient step reduces the
Euclidean distance to the solution [30, Theorem 2.2.8]. Using Lemma 5.2 we arrive
at the bound, where L̃k+1 is defined in Algorithm UPN:

1

2
L̃−1

k+1

∥∥G
L̃k+1

(
x(k+1)

)∥∥2
2 ≤

k∏
i=1

(
1 −

√
μi

Li

)(
2

μk

− 1

2L0
+ 2γ1

μ2
k

)∥∥GL0

(
x(0)

)∥∥2
2.

(6.9)
If the algorithm detects that (6.9) is not satisfied, it can only be because there was
at least one μi for i = 1, . . . , k which was not small enough. If this is the case, we
restart the algorithm with a new μ̄ ← ρμμk , where 0 < ρμ < 1 is a parameter, using
the current iterate x(k+1) as initial vector.

The complete algorithm UPN (Unknown-Parameter Nesterov) is given in Algo-
rithm 5. UPN is based on Nesterov’s optimal method where we have included back-
tracking on Lk and the heuristic (6.4). An initial vector x(0) and initial parameters
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Algorithm 5: UPN

input : x(0), μ̄, L̄, ε̄

output: x(k+1) or x̃(k+1)

[x(1),L0] ← BT(x(0), L̄);1

μ0 = μ̄, y(1) ← x(1), θ1 ← √
μ0/L0;2

for k = 1,2, . . . do3

[x(k+1),Lk] ← BT(y(k),Lk−1);4

[x̃(k+1), L̃k+1] ← BT(x(k+1),Lk);5

if ‖G
L̃k+1

(x(k+1))‖2 ≤ ε̄ then abort, return x̃(k+1);6

if ‖GLk
(y(k))‖2 ≤ ε̄ then abort, return x(k+1);7

μk ← min{μk−1,M(x(k), y(k))};8

RUPN;9

θk+1 ← positive root of θ2 = (1 − θ)θ2
k + (μk/Lk) θ ;10

βk ← θk(1 − θk)/(θ
2
k + θk+1);11

y(k+1) ← x(k+1) + βk(x
(k+1) − x(k));12

μ̄ ≥ μ and L̄ ≤ L must be specified along with the requested accuracy ε̄. The
changes from Nesterov to UPN are at the following lines:

1: Initial projected gradient step to obtain the bound (6.8) and thereby the bound
(6.9) used for the restart criterion.

5: Extra projected gradient step explicitly applied to obtain the stopping criterion
‖G

L̃k+1
(x(k+1))‖2 ≤ ε̄.

6,7: Used to relate the stopping criterion in terms of ε̄ to ε, see Appendix B.3.
8: The heuristic choice of μk in (6.4).
9: The restart procedure for inadequate estimates of μ.

We note that in a practical implementation, the computational work involved in
one iteration step of UPN may—in the worst case situation—be twice that of one
iteration of GPBB, due to the two calls to BT. However, it may be possible to imple-
ment these two calls more efficiently than naively calling BT twice. We will instead
focus on the iteration complexity of UPN given in the following theorem.

Theorem 6.1 Algorithm UPN, applied to f ∈ Fμ,L under conditions μ̄ ≥ μ, L̄ ≤ L,
ε̄ = √

(μ/2) ε, stops using the gradient map magnitude measure and returns an ε-
suboptimal solution with iteration complexity

O
(√

Q logQ
)+ O

(√
Q log ε−1). (6.10)

Proof See Appendix B. �

The term O(
√

Q logQ) in (6.10) follows from application of several inequalities
involving the problem dependent parameters μ and L to obtain the overall bound
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(6.9). Algorithm UPN is suboptimal since the optimal complexity is O(
√

Q log ε−1)

but it has the advantage that it can be applied to problems with unknown μ and L.

7 Numerical experiments

7.1 An image deblurring example

We exemplify the use of the algorithm UPN to solve a total variation regularized
image deblurring problem, where the goal is to determine a sharp image x from a
blurred and noisy one b = Ax + e. The matrix A models linear motion blur, which
renders A sparse, and we use reflexive boundary conditions. For this type of blur
no fast transform can be exploited. We add Gaussian noise e with relative noise
level ‖e‖2/‖b‖2 = 0.01 and reconstruct using α = 5.0 and the default setting of
τ = 10−4 · 255, where [0,255] is the dynamic pixel intensity range. The result is
shown in Fig. 1. We recognize well-known features of TV-regularized reconstruc-
tions: Sharp edges are well-preserved, while fine texture has been over-regularized
and has a “patchy” appearance.

To investigate the convergence of the methods, we need the true minimizer x�

with φ(x�) = φ�, which is unknown for the test problem. However, for comparison
it is enough to use a reference solution much closer to the true minimizer than the
iterates. Thus, to compare the accuracy of the solutions obtained with the accuracy
parameter ε̄, we use a reference solution computed with accuracy (ε̄ ·10−2), and with
abuse of notation we use x� to denote this reference solution.

In Fig. 1 both UPN and UPN0 are seen to be faster than GP and GPBB, and for
a high-accuracy solution UPN also outperforms UPN0. For UPN, GP and GPBB we
observe linear rates of convergence, but UPN converges much faster. UPN0 shows
a sublinear convergence rate, however the initial phase is steep enough that it takes
UPN almost 1000 iterations to catch up. We note that the potential of UPN seems to
be in the case where a high-accuracy solution is needed.

Having demonstrated the performance of the proposed algorithm in an image de-
blurring problem, we focus in the remainder on a 3D tomography test problem, for
which we further study the convergence behavior including the influence of the reg-
ularization and smoothing parameters.

7.2 Experiments with 3D tomographic reconstruction

Tomography problems arise in numerous areas, such as medical imaging, non-
destructive testing, materials science, and geophysics [23, 26, 33]. These problems
amount to reconstructing an object from its projections along a number of specified
directions, and these projections are produced by X-rays, seismic waves, or other
“rays” penetrating the object in such a way that their intensity is partially absorbed
by the object. The absorption thus gives information about the object.

The following generic model accounts for several applications of tomography. We
consider an object in 3D with linear attenuation coefficient X (t), with t ∈ � ⊂ R

3.
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Fig. 1 Example of total variation deblurring for motion blur with reflexive boundary conditions. Methods
are Gradient Projection (GP), Gradient Projection Barzilai-Borwein (GPBB), Unknown Parameter Nes-
terov (UPN), and UPN with μk = 0 (UPN0). Both UPN and UPN0 are much faster than GP and GPBB,
and for a high-accuracy solution UPN also outperforms UPN0

The intensity decay bi of a ray along the line �i through � is governed by a line
integral,

bi = log(I0/Ii) =
∫

�i

X (t) d� = bi, (7.1)

where I0 and Ii are the intensities of the ray before and after passing through the
object. When a large number of these line integrals are recorded, then we are able to
reconstruct an approximation of the function X (t).

We discretize the problem as described in Sect. 2, such that X is approximated by
a piecewise constant function in each voxel in the domain � = [0,1]× [0,1]× [0,1].
Then the line integral along �i is computed by summing the contributions from all
the voxels penetrated by �i . If the path length of the ith ray through the j th voxel is
denoted by aij , then we obtain the linear equations

N∑
j=1

aij xj = bi, i = 1, . . . ,M, (7.2)
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Fig. 2 Left: Two orthogonal slices through the 3D Shepp-Logan phantom discretized on a 433 grid used
in our test problems. Middle: Central horizontal slice. Right: Example of solution for α = 1 and τ = 10−4.
A less smooth solution can be obtained using a smaller α. Original voxel/pixel values are 0.0, 0.2, 0.3 and
1.0. Color range in display is set to [0.1,0.4] for better contrast

Table 1 Specifications of the two test problems; the object domain consists of m × n × l voxels and each
projection is a p × p image. Any zero rows have been purged from A

Problem m = n = l p Projections Dimensions of A Rank

T1 43 63 37 99361 × 79507 =79507

T2 43 63 13 33937 × 79507 <79507

where M is the number of rays or measurements and N is the number of voxels. This
is a linear system of equations Ax = b with a sparse coefficient matrix A ∈ R

M×N .
A widely used test image in medical tomography is the “Shepp-Logan phan-

tom,” which consists of a number superimposed ellipses. In the MATLAB function
shepplogan3d [37] this 2D image is generalized to 3D by superimposing ellip-
soids instead. The voxels are in the range [0,1], and Fig. 2 shows an example with
43 × 43 × 43 voxels.

We construct the matrix A for a parallel-beam geometry with orthogonal projec-
tions of the object along directions well distributed over the unit sphere. The projec-
tion directions are the direction vectors of so-called Lebedev quadrature points on
the unit sphere, and the directions are evenly distributed over the sphere; we use the
MATLAB implementation getLebedevSphere [34]. For setting up the tomogra-
phy system matrix for a parallel beam geometry, we use the Matlab implementation
tomobox [25].

This section describes our numerical experiments with the four methods UPN,
UPN0, GP and GPBB applied to the TV regularization problem (2.7). We use the
two test problems listed in Table 1, which are representative across a larger class of
problems (other directions, number of projections, noise levels, etc.) that we have run
simulations with. The smallest eigenvalue of AT A for T1 is 2.19 · 10−5 (as computed
by MATLAB’s eigs), confirming that rank(A) = N for T1. We emphasize that this
computation is only conducted to support the analysis of the considered problems
since—as we have argued in the introduction—it carries a considerable computa-
tional burden to compute. In all simulations we create noisy data from an exact ob-
ject xexact through the forward mapping b = Axexact + e, subject to additive Gaussian
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Fig. 3 Convergence histories (φ(x(k)) − φ�)/φ� vs. k for T1 with α = 0.01, 0.1 and 1 and τ = 10−2,
10−4 and 10−6. Methods are Gradient Projection (GP), Gradient Projection Barzilai-Borwein (GPBB),
Unknown Parameter Nesterov (UPN), and UPN with μk = 0 (UPN0). As the ratio α/τ increases, which
implies an increased Q and a computationally more difficult problem, UPN and UPN0 scale significantly
better. For high accuracy solutions UPN is always competitive

white noise of relative noise level ‖e‖2/‖b‖2 = 0.01. As initial point of the optimiza-
tion algorithm we use the fifth iteration of the conjugate gradient method applied to
the least squares problem.

We compare the algorithm UPN with GP (the gradient projection method (4.1)
with backtracking line search on the step size), GPBB and UPN0. The latter is UPN
with μi = 0 for all i = 0, . . . , k and θ1 = 1 and is optimal for the class F0,L.

7.3 Influence of α and τ on the convergence

For a given A the theoretical modulus of strong convexity given in (3.6) varies only
with α and τ . We therefore expect better convergence rates (4.3) and (4.5) for smaller
α and larger τ . In Fig. 3 we show the convergence histories for T1 with all combina-
tions of α = 0.01, 0.1, 1 and τ = 10−2, 10−4, 10−6.

For low α/τ ratios, i.e., small condition number of the Hessian, GPBB and GP
requires a comparable or smaller number of iterations than UPN and UPN0. As α/τ

increases, both GPBB and GP exhibit slower convergence, while UPN is less affected.
In all cases UPN shows linear convergence, at least in the final stage, while UPN0
shows sublinear convergence. Due to these observations, we consistently observe that
for sufficiently high accuracy, UPN requires the lowest number of iterations. This also
follows from the theory since UPN scales as O(log ε−1), whereas UPN0 scales at a
higher complexity of O(

√
ε−1).

We conclude that for small condition numbers there is no gain in using UPN com-
pared to GPBB. For larger condition numbers, and in particular if a high-accuracy
solution is required, UPN converges significantly faster. Assume that we were to
choose only one of the four algorithms to use for reconstruction across the condition



346 T.L. Jensen et al.

Fig. 4 The μk , Lk histories for
T1. Left: α = 100 and τ = 10−4.
Right: α = 1 and τ = 10−4

number range. When UPN requires the lowest number of iterations, it requires signi-
ficantly fewer, and when not, UPN only requires slightly more iterations than the best
of the other algorithms. Therefore, UPN appears to be the best choice. Obviously, the
choice of algorithm also depends on the demanded accuracy of the solution. If only a
low accuracy, say (φ(k) −φ�)/φ� = 10−2 is sufficient, all four methods perform more
or less equally well.

7.4 Restarts and μk and Lk histories

To ensure convergence of UPN we introduced the restart functionality RUPN. In prac-
tice, we almost never observe a restart, e.g., in none of the experiments reported so
far a restart occurred. An example where restarts do occur is obtained if we increase
α to 100 for T1 (still τ = 10−4). Restarts occur in the first 8 iterations, and each time
μk is reduced by a constant factor of ρμ = 0.7. In Fig. 4, left, the μk and Lk histories
are plotted vs. k and the restarts are seen in the zoomed inset as the rapid, constant
decrease in μk . From the plot we also note that after the decrease in μk and an initial
increase in Lk , both estimates are constant for the remaining iterations, indicating
that the heuristics determine sufficient values.

For comparison the μk and Lk histories for T1 with α = 1 and τ = 10−4 are seen
in Fig. 4, right. No restarts occurred here, and μk decays gradually, except for one
final jump, while Lk remains almost constant.

7.5 A non-strongly convex example

Test problem T2 corresponds to only 13 projections, which causes A to not have full
column rank. This leads to λmin(A

T A) = 0, and hence φ(x) is not strongly convex.
The optimal convergence rate is therefore given by (4.4); but how does the lack of
strong convexity affect UPN, which was specifically constructed for strongly convex
problems? UPN does not recognize that the problem is not strongly convex but simply
relies on the heuristic (6.4) at the kth iteration. We investigate the convergence by
solving T2 with α = 1 and τ = 10−4. Convergence histories are given in Fig. 5, left.
The algorithm UPN still converges linearly, although slightly slower than in the T1
experiment (α = 1, τ = 10−4) in Fig. 3. The algorithms GP and GPBB converge
much more slowly, while at low accuracies UPN0 is comparable to UPN. But the
linear convergence makes UPN converge faster for high accuracy solutions.
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Fig. 5 Left: Convergence histories of GP, GPBB, UPN and UPN0 on T2 with α = 1 and τ = 10−4. Right:
Convergence histories of UPN and UPN using true μ and L on T1 with α = 1 and τ = 10−4

7.6 Influence of the heuristic

An obvious question is how the use of the heuristic for estimating μ affects UPN com-
pared to Nesterov, where μ (and L) are assumed known. From Theorem 3.1 we can
compute a strong convexity parameter and a Lipschitz parameter for φ(x) assuming
we know the largest and smallest magnitude eigenvalues of AT A. Recall that these μ

and L are not necessarily the tightest possible, according to Remark 3.3. For T1 we
have computed λmax(A

T A) = 1.52 · 103 and λmin(A
T A) = 2.19 · 10−5 (by means of

eigs in MATLAB). Using α = 1, τ = 10−4 and ‖D‖2
2 ≤ 12 from Lemma 3.2 we fix

μk = λmin(A
T A) = 2.19 · 10−5, Lk = λmax(A

T A) + 12
α

τ
= 1.22 · 105,

for all k, and solve test problem T1 using UPN with the heuristics switched off in
favor of these true strong convexity and Lipschitz parameters. Convergence histories
are plotted in Fig. 5, right.

The convergence is much slower than using UPN with the heuristics switched on.
We ascribe this behavior to the very large modulus of strong convexity that arise
from the true μ and L. It appears that UPN works better than the actual degree of
strong convexity as measured by μ, by heuristically choosing in each step a μk that
is sufficient locally instead of being restricted to using a globally valid μ.

Another question is how much is actually gained in using the heuristic for μ in
UPN compared to simply using a fixed “guess” throughout the iterations. To answer
that question we investigate the number iterations required to obtain ε̄ = 10−4, 10−6

and 10−8 solutions for T1 and T2 using only the backtracking procedure on L and
simply a fixed value μk ∈ [10−4,104] for all iterations k, see Fig. 6.

The choice of fixed μk has a large impact on the required number of iterations,
and there is a distinct optimal choice between 1 and 10. Choosing a fixed μk away
from the optimal one leads to more iterations and the number of additional iterations
grows faster for more accurate solutions. For comparison the figure also shows the
corresponding number of iterations required by UPN plotted as function of the final
UPN-estimate for μ. For all three T1 cases UPN comes very close to the optimal
number of iterations, without demanding an accurate guess of μ by the user. For T2
we observe similar trends, although UPN requires slightly more iterations than with
the optimal choice of fixed μk .
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Fig. 6 Number of iterations needed to obtain TV-solutions (α = 0.01) to tolerances ε̄ = 10−4, 10−6 and
10−8 using fixed μk , left T1, right T2. Also shown are the number iterations needed by UPN as function of
the final estimate of μ. Choices of μk not equal to the unknown optimal value lead to many more iterations.
UPN needs a near-optimal number of iterations without requiring the user to choose a value for μ

We conclude that there exists a choice of fixed μk that gives good performance;
however, for an inaccurate guess of this value, the number of iterations will be much
higher, in particular if an accurate solution is required. UPN avoids the need for such
a guess and provides the solution using a near-optimal number of iterations. We em-
phasize that obtaining a true strong convexity parameter μ is not of particular interest
here, nor is the final UPN-estimate for μ, as the goal is simply to obtain fast conver-
gence.

8 Conclusion

We presented an implementation of an optimal first-order optimization algorithm for
large-scale problems, suited for functions that are smooth and strongly convex. While
the underlying algorithm by Nesterov depends on knowledge of two parameters that
characterize the smoothness and strong convexity, we have implemented methods
that estimate these parameters during the iterations, thus making the algorithm of
practical use.

We tested the performance of the algorithm and compared it with two variants of
the gradient projection algorithm and a variant of the FISTA algorithm. We applied
the algorithms to total variation regularized tomographic reconstruction of a generic
threedimensional test problem. The tests show that, with regards to the number of
iterations, the proposed algorithm is competitive with other first-order algorithms,
and superior for difficult problems, i.e., ill-conditioned problems solved to high ac-
curacy. Simulations also show that even for problems that are not strongly convex, in
practice we achieve the favorable convergence rate associated with strong convexity.
The software is available as a C-implementation with an interface to MATLAB from
www.imm.dtu.dk/~pch/TVReg/.
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Appendix A: The optimal convergence rate

Here we provide an analysis of an optimal method for smooth, strongly convex func-
tions without the use of estimation functions as in [30]. This approach is similar to
the analysis of optimal methods for smooth functions in [38, 39]. The motivation for
the following derivations is to introduce the iteration dependent Lk and μk estimates
of L and μ. This will support the analysis of how Lk and μk should be selected.
We start with the following relations to the “hidden” supporting variables z(k) and γk

[30, pp. 73–75, 89],

y(k) − x(k) = θkγk

γk+1

(
z(k) − y(k)

)
, (A.1)

γk+1 = (1 − θk)γk + θkμk = θ2
k Lk,

(A.2)
γk+1z

(k+1) = (1 − θk)γkz
(k) + θkμky

(k) − θkGLk

(
y(k)

)
.

In addition we will make use of the relations
γk+1

2
‖z(k+1) − y(k)‖2

2

= 1

2γk+1

(
(1 − θk)

2γ 2
k ‖z(k) − y(k)‖2

2

− 2θk(1 − θk)γkGLk

(
y(k)

)T (
z(k) − y(k)

)+ θ2
k

∥∥GLk

(
y(k)

)∥∥2
2

)
, (A.3)

(1 − θk)
γk

2
− 1

2γk+1
(1 − θk)

2γ 2
k = (1 − θk)γkθkμk

2γk+1
. (A.4)

which originate from (A.2). We will also later need the relation

(1 − θk)
γk

2
‖z(k) − y(k)‖2

2 − γk+1

2
‖z(k+1) − y(k)‖2

2 + θkGLk

(
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)T (
y(k) − x�

)
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(
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(
z(k+1)

)T
x�

− (1 − θk)γk

(
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(‖z(k) − x�‖2
2 − (

x�
)T
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2
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x�
)T

x�
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+ θkμk

2

(‖y(k) − x�‖2
2 − (

x�
)T

x�
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(
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+ θkμk
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)(
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2
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2, (A.5)
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where we again used (A.2). We can now start the analysis of the algorithm by con-
sidering the inequality in Lemma 5.1,

(1 − θk)f
(
x(k+1)

) ≤ (1 − θk)f
(
x(k)

)+ (1 − θk)GLk

(
y(k)

)T (
y(k) − x(k)

)

− (1 − θk)
1

2Lk

∥∥GLk

(
y(k)

)∥∥2
2, (A.6)

where we have omitted the strong convexity part, and the inequality

θkf
(
x(k+1)

) ≤ θkf
(
x�

)+ θkGLk

(
y(k)

)T (
y(k) − x�

)− θk

1

2Lk

∥∥GLk

(
y(k)

)∥∥2
2

− θk

μ�
k

2
‖y(k) − x�‖2

2. (A.7)

Adding these bounds and continuing, we obtain

f
(
x(k+1)

)

≤ (1 − θk)f
(
x(k)

)+ (1 − θk)GLk

(
y(k)

)T (
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)

+ θkf
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(
y(k)

)T (
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μ�
k

2

∥∥x� − y(k)
∥∥2
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2Lk

∥∥GLk

(
y(k)
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2

= (1 − θk)f
(
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z(k) − y(k)

)

+ θkf
� + θkGLk

(
y(k)

)T (
y(k) − x�

)− θk

μ�
k

2

∥∥x� − y(k)
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2Lk
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(
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)T (
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= (1 − θk)f
(
x(k)

)+ θkf
� − θk

μ�
k

2

∥∥x� − y(k)
∥∥2

2

+ (1 − θk)
γk

2
‖z(k) − x�‖2

2 − γk+1

2

∥∥z(k+1) − x�
∥∥2

2 + θk

μk

2

∥∥y(k) − x�
∥∥2

2,

where we have used (A.1), a trivial inequality, (A.4) , (A.3), (A.2), and (A.5). If
μk ≤ μ�

k then

f
(
x(k+1)

)−f � + γk+1

2

∥∥z(k+1) −x�
∥∥2

2 ≤ (1− θk)

(
f
(
x(k)

)−f � + γk

2

∥∥z(k) −x�
∥∥2

2

)

(A.8)
in which case we can combine the bounds to obtain

f
(
x(k)

)−f � + γk

2

∥∥z(k) −x�
∥∥2

2 ≤
(

k−1∏
i=0

(1− θi)

)(
f
(
x(0)

)−f � + γk

2

∥∥z(0) −x�
∥∥2

2

)
,

(A.9)
where we have also used x(0) = y(0) and (A.1) to obtain x(0) = z(0). For complete-
ness, we will show why this is an optimal first-order method. Let μk = μ�

k = μ and

Lk = L. If γ0 ≥ μ then using (A.2) we obtain γk+1 ≥ μ and θk ≥ √
μ/L = √

Q−1.
Simultaneously, we also have

∏k−1
i=0 (1 − θk) ≤ 4L

(2
√

L+k
√

γ0)
2 [30, Lemma 2.2.4], and

the bound is then

f
(
x(k)

)− f �

≤ min

((
1 −

√
Q−1

)k
,

4L

(2
√

L + k
√

γ0)2

)(
f
(
x(0)

)− f � + γ0

2

∥∥x(0) − x�
∥∥2

2

)
.

(A.10)

This is the optimal convergence rate for the class F0,L and Fμ,L simultaneously
[28, 30].

Appendix B: Complexity analysis

In this Appendix we prove Theorem 6.1, i.e., we derive the complexity for reaching
an ε-suboptimal solution for the algorithm UPN. The total worst-case complexity is
given by (a) the complexity for the worst case number of restarts and (b) the worst-
case complexity for a successful termination.

With a slight abuse of notation in this Appendix, μk,r denotes the kth iterate in the
r th restart stage, and similarly for Lk,r , L̃k,r , x(k,r), etc. The value μ0,0 is the initial
estimate of the strong convexity parameter when no restart has occurred. In the worst
case, the heuristic choice in (6.4) never reduces μk , such that we have μk,r = μ0,r .
Then a total of R restarts are required, where

ρR
μ μ0,0 = μ0,R ≤ μ ⇐⇒ R ≥ log(μ0,0/μ)/ log(1/ρμ).
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In the following analysis we shall make use of the relation

exp

(
− n

δ−1 − 1

)
≤ (1 − δ)n ≤ exp

(
− n

δ−1

)
, 0 < δ < 1, n ≥ 0.

B.1 Termination complexity

After sufficiently many restarts (at most R), μ0,r will be sufficiently small in which
case (6.9) holds and we obtain

∥∥G
L̃k+1,r

(
x(k+1,r)

)∥∥2
2

≤
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i=1

(
1 −

√
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μ2
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)∥∥GL0

(
x(0,r)

)∥∥2
2
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√

μk,r
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)k(4L̃k+1,r

μk,r

− 2L̃k+1,r

2L0,r

+ 2L̃k+1,rγ1,r

μ2
k,r

)∥∥GL0,r

(
x(0,r)

)∥∥2
2

≤ exp

(
− k√

Lk,r/μk,r

)(
4L̃k+1,r

μk,r

− L̃k+1,r

L0,r

+ 2L̃k+1,rγ1,r

μ2
k,r

)∥∥GL0,r

(
x(0,r)

)∥∥2
2,

where we have used Li,r ≤ Li+1,r and μi,r ≥ μi+1,r . To guarantee
‖G

L̃k+1,r
(x(k+1,r))‖2 ≤ ε̄ we require the latter bound to be smaller than ε̄2, i.e.,

∥∥G
L̃k+1,r

(x(k+1,r))
∥∥2

2

≤ exp

(
− k√

Lk,r/μk,r

)(
4L̃k+1,r

μk,r

− L̃k+1

L0,r

+ 2L̃k+1,rγ1,r

μ2
k,r

)∥∥GL0,r
(x(0,r))

∥∥2
2 ≤ ε̄2.

Solving for k, we obtain

k = O
(√

Q logQ
)+ O

(√
Q log ε̄−1), (B.1)

where we have used O(
√

Lk,r/μk,r ) = O(

√
L̃k+1,r /μk,r ) = O(

√
Q).

B.2 Restart complexity

How many iterations are needed before we can detect that a restart is needed? The
restart detection rule (6.9) gives

∥∥G
L̃k+1,r

(
x(k+1,r)
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2

>

k∏
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(
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2L0,r

+ 2L̃k+1,rγ1,r

μ2
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(
x(0,r)

)∥∥2
2
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≥
(

1 −
√

μ1,r

L1,r

)k(4L̃1,r

μ1,r

− 2L̃1,r

2L0,r

+ 2L̃1,rγ1,r

μ2
1,r

)∥∥GL0,r

(
x(0,r)

)∥∥2
2

≥ exp

(
− k√

L1,r /μ1,r − 1

)(
4L1,r

μ1,r

− 2L1,r

2L0,r

+ 2L1,rγ1,r

μ2
1,r

)∥∥GL0,r

(
x(0,r)
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2,

where we have used Li,r ≤ Li+1,r , Li,r ≤ L̃i+1,r and μi,r ≥ μi+1,r . Solving for k,
we obtain

k >

(√
L1,r

μ1,r

− 1

)(
log

(
4L1,r

μ1,r

− L1,r

L0,r

+ 4γ1,rL1,r

μ2
1,r

)
+ log

‖GL0,r
(x(0,r))‖2

2

‖G
L̃k+1,r

(x(k+1,r))‖2
2

)
.

(B.2)
Since we do not terminate but restart, we have ‖G

L̃k+1,r
(x(k+1,r))‖2 ≥ ε̄. After r

restarts, in order to satisfy (B.2) we must have k of the order

O
(√

Qr

)
O(logQr) + O

(√
Qr

)
O
(
log ε̄−1),

where

Qr = O
(
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)
= O

(
ρR−r

μ Q
)
.

The worst-case number of iterations for running R restarts is then given by

R∑
r=0
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where we have used

R∑
i=0

O
(√
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μ

)
=

R∑
i=0

O
(√

ρμ
i
) = O

(
1 −

√
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μ
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)
= O(1).
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B.3 Total complexity

The total iteration complexity of UPN is given by (B.3) plus (B.1):

O
(√

Q logQ
)+ O

(√
Q log ε̄−1). (B.4)

It is common to write the iteration complexity in terms of reaching an ε-suboptimal
solution satisfying f (x) − f � ≤ ε. This is different from the stopping criteria
‖G

L̃k+1,r
(x(k+1,r))‖2 ≤ ε̄ or ‖GLk,r

(y(k,r))‖2 ≤ ε̄ used in the UPN algorithm. Con-
sequently, we will derive a relation between ε and ε̄. Using Lemmas 5.1 and 5.2, in
case we stop using ‖GLk,r

(y(k,r))‖2 ≤ ε̄ we obtain

f
(
x(k+1,r)

)− f � ≤
(

2

μ
− 1

2Lk,r

)∥∥GLk,r

(
y(k,r)

)∥∥2
2 ≤ 2

μ

∥∥GLk,r

(
y(k,r)

)∥∥2
2 ≤ 2

μ
ε̄2,

and in case we stop using ‖G
L̃k+1,r

(x(k+1,r))‖2 ≤ ε̄, we obtain

f
(
x̃(k+1,r)

)− f � ≤
(

2

μ
− 1

2L̃k+1,r

)∥∥G
L̃k+1,r

(
x(k+1,r)
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2 ≤ 2

μ

∥∥G
L̃k+1,r

(
x(k+1,r)

)∥∥2
2

≤ 2

μ
ε̄2.

To return with either f (x̃(k+1,r)) − f � ≤ ε or f (x(k+1,r)) − f � ≤ ε we require the
latter bounds to hold and thus select (2/μ)ε̄2 = ε. The iteration complexity of the
algorithm in terms of ε is then

O
(√

Q logQ
)+ O

(√
Q log

(
(με)−1))

= O(
√

Q logQ) + O
(√

Q logμ−1)+ O
(√

Q log ε−1)

= O(
√

Q logQ) + O
(√

Q log ε−1),
where we have used O(1/μ) = O(L/μ) = O(Q).

References

1. Alter, F., Durand, S., Froment, J.: Adapted total variation for artifact free decompression of JPEG
images. J. Math. Imaging Vis. 23, 199–211 (2005)

2. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148
(1988)

3. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising
and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434 (2009)

4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2, 183–202 (2009)

5. Becker, S., Bobin, J., Candès, E.J.: NESTA: a fast and accurate first-order method for sparse recovery.
SIAM J. Imaging Sci. 4(1), 1–39 (2011)

6. Becker, S., Candès, E.J., Grant, M.: Templates for convex cone problems with applications to sparse
signal recovery. Math. Program. Comput. 3, 165–218 (2011)



A first-order method for strongly convex TV regularization 355

7. Bioucas-Dias, J.M., Figueiredo, M.A.T.: A new TwIST: two-step iterative shrinkage/thresholding al-
gorithms for image restoration. IEEE Trans. Image Process. 16(12), 2992–3004 (2007)

8. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on con-
vex sets. SIAM J. Optim. 10, 1196–1211 (2000)

9. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
10. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis.

20, 89–97 (2004)
11. Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Rangarajan, A.,

Vemuri, B., Yuille, A.L. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recog-
nition. Lecture Notes in Computer Science, vol. 3757, pp. 136–152. Springer, Berlin (2005)

12. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications
to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

13. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image
restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1998)

14. Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Meth-
ods. SIAM, Philadelphia (2005)

15. Combettes, P.L., Luo, J.: An adaptive level set method for nondifferentiable constrained image recov-
ery. IEEE Trans. Image Process. 11, 1295–1304 (2002)

16. Dahl, J., Hansen, P.C., Jensen, S.H., Jensen, T.L.: Algorithms and software for total variation image
reconstruction via first-order methods. Numer. Algorithms 53, 67–92 (2010)

17. Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai and Borwein gradient method. IMA J.
Numer. Anal. 22, 1–10 (2002)

18. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation—Part I: Fast and
exact optimization. J. Math. Imaging Vis. 26, 261–276 (2006)

19. Fletcher, R.: Low storage methods for unconstrained optimization. In: Allgower, E.L., Georg, K.
(eds.) Computational Solution of Nonlinear Systems of Equations, pp. 165–179. Am. Math. Soc.,
Providence (1990)

20. Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation-based image
restoration. SIAM J. Sci. Comput. 27, 622–645 (2005)

21. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method.
SIAM J. Numer. Anal. 23, 707–716 (1986)

22. Hansen, P.C.: Discrete Inverse Problems: Insight and Algorithms. SIAM, Philadelphia (2010)
23. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections,

2nd edn. Springer, New York (2009)
24. Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based

INF-convolution-type image restoration. SIAM J. Sci. Comput. 28, 1–23 (2006)
25. Jørgensen, J.H.: Tomobox (2010). www.mathworks.com/matlabcentral/fileexchange/28496-tomobox
26. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. SIAM, Philadelphia

(2001)
27. Lan, G., Lu, Z., Monteiro, R.D.C.: Primal-dual first-order methods with O(1/ε) iteration-complexity

for cone programming. Math. Program., Ser. A 126(1), 1–29 (2011)
28. Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. Wiley,

New York (1983)
29. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence

O(1/k2). Sov. Math. Dokl. 269, 543–547 (1983)
30. Nesterov, Y.: Introductory Lectures on Convex Optimization. Kluwer Academic, Dordrecht (2004)
31. Nesterov, Y.: Smooth minimization of nonsmooth functions. Math. Program., Ser. A 103, 127–152

(2005)
32. Nesterov, Y.: Gradient methods for minimizing composite objective function (2007). CORE Discus-

sion Paper No 2007076, www.ecore.be/DPs/dp_1191313936.pdf
33. Nolet, G. (ed.): Seismic Tomography with Applications in Global Seismology and Exploration Geo-

physics. Reidel, Dordrecht (1987)
34. Parrish, R.: getLebedevSphere (2010). www.mathworks.com/matlabcentral/fileexchange/27097-

getlebedevsphere
35. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimiza-

tion problem. SIAM J. Optim. 7, 26–33 (1997)
36. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica

D 60, 259–268 (1992)

http://www.mathworks.com/matlabcentral/fileexchange/28496-tomobox
http://www.ecore.be/DPs/dp_1191313936.pdf
http://www.mathworks.com/matlabcentral/fileexchange/27097-getlebedevsphere
http://www.mathworks.com/matlabcentral/fileexchange/27097-getlebedevsphere


356 T.L. Jensen et al.

37. Schabel, M.: 3D Shepp-Logan phantom (2006). www.mathworks.com/matlabcentral/fileexchange/
9416-3d-shepp-logan-phantom

38. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. Manuscript
(2008). www.math.washington.edu/~tseng/papers/apgm.pdf

39. Vandenberghe, L.: Optimization methods for large-scale systems. Lecture Notes (2009).
www.ee.ucla.edu/~vandenbe/ee236c.html

40. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17,
227–238 (1996)

41. Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization under con-
straints in image processing. SIAM J. Sci. Comput. 31, 2047–2080 (2009)

42. Zhu, M., Wright, S.J., Chan, T.F.: Duality-based algorithms for total-variation-regularized image
restoration. Comput. Optim. Appl. (2008). doi:10.1007/s10589-008-9225-2

http://www.mathworks.com/matlabcentral/fileexchange/9416-3d-shepp-logan-phantom
http://www.mathworks.com/matlabcentral/fileexchange/9416-3d-shepp-logan-phantom
http://www.math.washington.edu/~tseng/papers/apgm.pdf
http://www.ee.ucla.edu/~vandenbe/ee236c.html
http://dx.doi.org/10.1007/s10589-008-9225-2

