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Compositional Veri�ation of Real-Time Systems Using EdarAlexandre David and Kim. G. Larsen and Axel Legay andMikael H. Møller and Ulrik Nyman and Anders P. Ravn and Arne Skou andAndrzej W¡sowski
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time of the ompositional to the lassial veri�ationshowing a huge di�erene in favor of ompositional ver-i�ation.Keywords Timed Input/Output Automata · Com-positional Veri�ation · Real-Time Systems · LeaderEletion Protool1 IntrodutionPrograms are intrinsially omponent based, they arebuilt from simple ommands, and when we reason abouttheir orretness, we intuitively think in terms of whatwe an assume about the program state before the om-mand is performed and what it guarantees about thestate afterwards. This simple fat was formalized earlyon in terms of Floyd assertions [18℄ and led to Floyd-Hoare logi [20℄ and is really the foundation of programveri�ation, whih led to muh fruitful researh in thefollowing years. In partiular, the hallenge of omposi-tional analysis of onurrent programs was pursued �rstin 1976 by Owiki and Gries [32℄, who extended Floyd-Hoare logi to parallel programs with shared variables,and later in 1981 by Jones [23℄, who introdued the rely-guarantee method, allowing for a ompositional ver-sion of the Owiki-Gries method. Yet, there are largeromponents in software appliations: subroutines fromlibraries, lasses in objet-oriented languages, serviemodules in servie-oriented arhitetures, ontrol mod-ules in embedded systems, et.Common for suh larger sale omponents are theharateristis made expliit by Szyperski [36℄:a unit of omposition with ontratually spei�edinterfaes and fully expliit ontext dependeniesthat an be deployed independently and is a sub-jet to third party omposition.



2 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowskiWe shall not onsider deployment or omponent imple-mentation. These are interesting questions, but we getto grips with omposition at the level of interfaes, be-ause this is essential for getting a useful produt outof gluing omponents together and deploying them. In-terfaes are essentially spei�ations of what we assumeabout the environment of the omponent and what theimplementation guarantees to deliver. In order to havea good theory for reasoning about omponent interfaespei�ation, we expet that for a given spei�ation,we an determine:Consisteny. When a spei�ation is satis�ed by at leastone implementation it is onsistent. Consisteny is need-ed to verify that spei�ations are well-formed and donot ontain ontraditory statements. Without onsis-teny, we an speify miraulous omponents whih noone an deliver.Conjuntion. Spei�ations are essentially logis, andwhen omposing them using onjuntion this shouldgive exatly the intersetion of feasible implementationsof the onstituents. Should the intersetion be empty,that is, the onjuntion is not onsistent, it is uselessto put those omponents together.Composition.When atual omponents are deployed to-gether they form a new omposite omponent. A sim-ilar parallel omposition operation is needed for theirspei�ations in order to build systems in a stepwisemanner.Re�nement.There is a natural partial order on ompo-nents de�ned by replaement of one by another whilemaintaining the funtionality of the system as a whole.When suh substitutions are possible, the more detailedand onstraining spei�ation re�nes the one for theomponent that is replaed.Spei�ation theories with re�nement were pioneeredby Jones [24℄ in a setting of sequential program om-ponents and it has lead to further development of suhtheories, most reently in the area of objet-orientedprogramming with design by ontrat and for instanethe Java Modeling Language (JML) [28℄.However, sine we wish to deal with a ontext of dis-tributed, ommuniating omponents, a spei�ationtheory with the state given by program variables is notwell suited. Spei�ations for suh systems are betterbuilt on proess algebras [5℄ and their underlying tran-sition system semantis. Transition systems are also in-timately linked to automata models. Sine transitionsystems generate traes of events or ations, spei�a-tion logis desribe properties of traes, and here a very

liberal use of assumptions and guarantees may lead tounsound reasoning. Essentially a guarantee an spe-ify that the past is hanged to �t an assumption, oran assumption an speak about a future that the guar-antee ontradits. This was investigated by Abadi andLamport [1℄. However, sine the spei�ation formal-ism employed here is automata based, it does not su�erfrom these anomalies.An interesting question with (parallel) ompositionof omponents is whether one an �nd a strongest spei-�ation for an unknown omponent that omposes witha given one to give a desired result. It is the questionof �nding a quotient or a weakest prespei�ation. Thisan be done for the urrent theory, a result that origi-nates in [26,27,4℄. Similar results in a logi based re�ne-ment theory are found in [21℄, although this solution ismore a proof of existene than an atual onstrution.1.1 Related WorkIn a series of reent work, it has been advoated thatspei�ations an be represented by interfae automata,that are automata whose transitions are typed with in-put and output . The semantis of suh an automaton isgiven by a two-player game: the input player representsthe environment, and the output player represents theomponent itself. Contrary to the input/output modelproposed by Lynh [30℄, this semanti o�ers an opti-misti treatment of omposition: two interfaes an beomposed if there exists at least one environment inwhih they an interat together in a safe way. In [16℄, atimed extension of the theory of interfae automata hasbeen introdued, motivated by the fat that time an bea ruial parameter in pratie, for example in embed-ded systems. In this paper, we represent spei�ationsby timed input/output automata [25℄, i.e., timed au-tomata whose sets of disrete transitions are split intoInput and Output transitions. Contrary to [16℄ and [25℄we distinguish between implementations and spei�a-tions by adding onditions on the models. This is doneby assuming that implementations have �xed timingbehavior and they an always advane either by pro-duing an output or delaying. Also, we provide a game-based methodology to deide whether a spei�ation isonsistent, i.e. whether it has at least one implementa-tion. An implementation exists when there is a strategythat despite the behavior of the environment will avoidstates that annot possibly satisfy the implementationrequirements.Our theory is rih in the sense that it aptures allthe good operations for a ompositional design theorydisussed above. Also, all the algorithms have been im-plemented in the Edar tool set. This implementa-



Compositional Veri�ation of Real-Time Systems Using Edar 3tion (available at edar.s.aau.dk) is build on top ofthe Uppaal-tiga tool-set [7℄. Uppaal-tiga is a toolthat implements a series of algorithms for solving timedgames [10℄ as well as heking timed temporal logi prop-erties.Edar usesUppaal-tiga to solve various gamesthat arise in omputing the omposition operations andre�nements.The �rst part of the paper presents an overview ofthe theory implemented in the Edar tool set. Theseond, and maybe most interesting part of the pa-per, applies Edar theory to a leader eletion protool.More preisely, we show how ompositional design anbe used to hek two important properties of the proto-ol in an inremental manner, outperforming lassialmodel heking tehniques for timed automata that areworking on the entire system diretly. The inrementalapproah used is based on the onept of independentimplementability [15℄, in whih a spei�ation an bere�ned into a more detailed spei�ation independentlyof what it is omposed with. This method is orret be-ause our re�nement operator is a preongruene withrespet to parallel omposition [13℄.Another tool supporting re�nement is PAT [34,35℄.Unlike Edar, it builds on CSP with a failures, di-vergenes and refusal semantis whih makes a diretomparison di�ult. However, the CSP theory does notsupport quotienting nor simple onjuntion of spei�-ations. And thus in ontrast to Edar, PAT does notsupport assume/guarantee reasoning about systems.1.2 StrutureThe rest of the paper falls in three parts: Theory, Case-study and Conlusion. The theory is presented in Se-tion 2 on page 3. The theory with its de�nitions is in-luded in order to make the paper self-ontained. The-orems and proofs an be found in [13℄. The ase-study,a leader eletion protool, is presented in Setion 3 onpage 10. While onlusion and future work is given inSetion 4 on page 16.2 Timed Input/Output AutomataSpei�ationsBefore we proeed to disuss our ase study, let uspresent the main onepts and onstrutions of the spe-i�ation theory for real time systems supported by theEdar tool. We only fous on the designer-faing as-pets of the framework. A reader interested in the the-oretial disussions is referred to [13℄.The main onept in our modeling framework is thatof a spei�ation�an abstrat, usually under-spei�ed,

desription of an implementation of a system. Eahspei�ation normally admits multiple implementationsthat an be derived by di�erent resolutions of detaileddesign hoies.We use the syntax of Timed I/O Automata (TIOA)to represent spei�ations. We will now reall their def-inition and only then proeed to de�ne spei�ationsthemselves along with a notion of satisfation of a spei-�ation by an implementation, notion of re�nement be-tween spei�ations, and the ompositional design op-erators that allow manipulating and ombining spei�-ations.TIOAs are essentially the usual Timed Automata[2℄ extended with two types of edges: inputs and out-puts. Input edges are drawn as solid arrows labeled byations followed by a question mark. Output edges aredashed and their ations are su�xed with an exlama-tion point. Fig. 1 shows an example of a TIOA desrib-ing the main researh proess at a hypothetial univer-sity, that, given grants as inputs produes patents asoutputs.The kind of ommuniation an automaton an en-gage in is limited by its sort�a signature of availableinput and output ations. In Fig. 1, the sort is depitedas inoming arrows (inputs) and outgoing arrows (out-puts) inident with the border surrounding the automa-ton. The initial loation is indiated by a doubly irledoutline. In this initial loation, after the university re-eives the grant input, it will output a patent.The olors used in the �gures do not arry seman-ti meaning but are used onsistently in order to in-rease the readability of the models. These olors�guards (green), resets (navy blue), invariants (violet),and ations (turquoise)�are the same as used in theeditor of Edar and in related tools suh as Uppaal.Additional labels on edges denote timing onstraintsover loks (known as guards) and lok resets. For ex-ample, the grant must be reeived before the lok u ex-eeds two time units (u ≤ 2). This lok is reset imme-diately upon reeption of the grant (u = 0). Then thepatent is issued within 20 time units, as the automatonan only reside in the target loation for twenty timeunits as indiated by the loation invariant u ≤ 20. Anyfurther grants reeived within this time interval are ig-nored through the grant input loop that has no guardand no resets. When the patent is issued the lok u isagain reset.If the �rst grant arrives after more than two timeunits, or if any subsequent grant arrives later than twotime units after a patent has been �led, then the behav-ior of the university automaton beomes unpreditable.This is aptured by the leftmost loation in the �gure,a so alled universal loation, in whih any ommunia-



4 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowskition an appear at any time; the loation has outgoingedges for any available ation and imposes no timingonstraints. Stritly speaking the behavior of the au-tomaton is still ompletely spei�ed, but sine it pro-vides no guarantees about its output in a universal lo-ation we also all this unpreditable.Let us now reall a formal de�nition of a TIOA:De�nition 1 A Timed I/O Automaton (TIOA) is atuple A = (Lo, q0,Clk, E,Act, Inv) where Lo is a �-nite set of loations, q0 ∈ Lo is the initial loation,Clk is a �nite set of loks, E ⊆ Lo × At× B(Clk) ×
P(Clk) × Lo is a set of edges with B(Clk) being aset of lok onstraints, P(Clk) is the set of loksto reset, At = Ati ⊎Ato is a �nite set of ations,partitioned into inputs and outputs respetively, andInv : Lo 7→ B(Clk) is a set of loation invariants.As we have intuitively skethed above, TIOA syn-tax has a semanti interpretation as a timed exeutionof a branhing proess. This is formally aptured by aTimed I/O Transition System (TIOTS), whih is like ausual disrete automaton but in�nitely branhing andover an in�nite state spae. In a TIOTS, time delaysare modeled as ontinuously many 'disrete' ations.De�nition 2 (TIOTS) A Timed I/O Transition Sys-tem (TIOTS) is a quadruple S = (StS , s0, ΣS,−→S),where StS is an in�nite set of states, s0 ∈ St is theinitial state, ΣS = ΣSi ⊕ ΣSo is a �nite set of ationspartitioned into inputs (ΣSi ) and outputs (ΣSo ) and
−→S : StS × (ΣS ∪ R≥0) × StS is a transition relation.We write s a−→Ss′ instead of (s, a, s′) ∈ −→S and use i?,
o! and d to range over inputs, outputs and R≥0 respe-tively. We sometimes omit the transition system name(s a−→s′) if obvious from the ontext and we omit thetarget loation (s a−→S) if we only need to know the ex-istene but not the identity of the target loation. Inaddition any TIOTS satis�es the following:[time determinism℄ whenever s d−→Ss′ and s d−→Ss′′ then
s′=s′′[time re�exivity℄ s 0−→Ss for all s ∈ StS[time additivity℄ for all s, s′′∈ StS and all d1, d2 ∈ R≥0we have s d1+d2−−−−→Ss′′ i� s d1−−→Ss′ and s′ d2−−→Ss′′ for an
s′ ∈ StSA state of the TIOTS derived from a TIOA A is apair (q, V ) where q is a loation and V : Clk 7→ R≥0 isa valuation funtion that assigns a non-negative valueto eah lok in Clk. We use u, u′ to range over lokvaluations. We write u + d, where d ∈ R≥0 is a delay,to denote a valuation suh that for any lok r we have
(u+ d)(r) = x+ d i� u(r) = x. Given c ⊆ Clk, we write
u[r 7→ 0]r∈c for a valuation whih agrees with u on all

grant patent

patent!

grant?grant?

grant?

u>2

u<=2

u<=20

grant?
u=0

patent! u=0

UniSpe
Fig. 1 University spei�ation UniSpe.values for loks not in c, and returns 0 for all loks in
c. We use 0 to denote the onstant funtion mapping allloks to zero. The initial state of A is the pair (q0,0).The semantis of a TIOA A = (Lo, q0,Clk, E,At,Inv) is a TIOTS [[A]]sem = (Lo × (Clk 7→ R≥0), (q0,0),At,−→), where −→ is the transition relation de�ned bythe following rules:� Eah (q, a, ϕ, c, q′) ∈ E gives rise to (q, u) a−→(q′, u′)for eah lok valuation u ∈ [Clk 7→ R≥0] suh that

u |= ϕ and u′ = u[r 7→ 0]r∈c and u′ |= Inv(q′).� Eah loation q ∈ Lo with a valuation u ∈ [Clk 7→ R≥0]gives rise to a transition (q, u) d−→(q, u+ d) for eahdelay d ∈ R≥0 suh that u+ d |= Inv(q).We only onsider deterministi TIOAs, so TIOAswhose semantis results in a deterministi TIOTS: foreah ation�state pair at most one ation is enabled.2.1 Spei�ationsWe now de�ne spei�ations in terms of TIOAs.De�nition 3 A spei�ation automaton is a TIOA thatis input-enabled, i.e., in eah state all the inputs shouldbe available at all times.The assumption of input-enabledness, also seen inmany interfae theories [29,19,33,37,31℄, re�ets our be-lief that an input annot be prevented from being sentto a system, but it might be unpreditable how thesystem behaves after reeiving it. The idea is atuallyquite old, and an be traed to the notion of a CHAOSproess in CSP [22℄.Input-enabledness enourages expliit modelling ofunpreditability, and ompositional reasoning about it;for example, deiding if an unpreditable behavior ofone omponent indues unpreditability of the entiresystem. Observe that it is easy to hek whether a TIOAis input-enabled. In pratie tools an interpret absentinput transitions in at least two reasonable ways. First,they an be interpreted as ignored inputs, orrespond-ing to loation loops in the automaton. Seond, theymay be seen as unavailable ('bloking') inputs, whih



Compositional Veri�ation of Real-Time Systems Using Edar 5an be ahieved by assuming impliit transitions to adesignated error state.We note that our example of Figure 1 an always a-ept grant? from any loation. It is also deterministi.Thus UniSpe TIOA is a well-formed spei�ation.2.2 ImplementationsThe role of spei�ations in a spei�ation theory is toabstrat, or under-speify, sets of possible implementa-tions. Implementations are onrete exeutable realiza-tions of systems. We will assume that implementationsof timed systems have �xed timing behavior (outputsour at preditable times) and systems an always ad-vane either by produing an output or delaying. Animplementation that annot voluntarily output or de-lay would have to blok passage of time, whih is notrealisti.De�nition 4 An implementation P is a spei�ationwhose underlying TIOTS satis�es the following ondi-tions:1. Independent progress: in eah state either an out-put is possible or one an delay until an output isenabled.either (∀d ≥ 0. p d−→P ) or
∃ d∈R≥0. ∃ o!∈ΣPo . p d−→p′ and p′ o!−−→P .2. Output urgeny: an available output annot be de-layed:

∀ p′, p′′ ∈ StP if p o!−−→P p′ and p d−→P p′′ then d = 0(and onsequently, due to determinism and time re-�exivity we have p = p′′)Example. Figure 2(a) spei�es a vending mahine thatan serve tea or o�ee. We will use this as a ompo-nent in our example. A possible implementation of thismahine an be found in Figure 2(b). The implementa-tion re�nes the spei�ation, whih is de�ned in thenext setion. Both automata are deterministi. Notethat the output transitions of the implementation Implarrive at a �xed moment in time and annot be de-layed, whih guarantees output urgeny (the invariantguarantees progress and the guard onstrains the tran-sition). Eah time the output tea! from Idle to Idle istaken, the lok y is reset. Without this reset, indepen-dent progress would not be guaranteed for valuationsof the lok y that are greater than 6.2.3 Satisfation and Re�nementRe�nement is always a pivotal element of a spei�ationtheory. Akin to entailment for logial spei�ations, re-�nement allows to start with very abstrat models, and

elaborate them towards more spei� ones. An earlyabstrat spei�ation would typially allow a large setof diverse implementations. This set is monotoniallyredued in a stepwise re�nement proess towards a de-tailed, more �ne grained and onrete spei�ation thatan be implemented diretly.Any re�nement should satisfy the following substi-tutability ondition: If AS re�nes AT , it should be pos-sible to replae AT with AS in every ontext and obtaina safe system. It is well known from the literature [14,15,8℄ that in order to give these kind of guarantees are�nement should have the �avor of alternating (timed)simulation [3℄.In our theory we de�ne the re�nement between spe-i�ations, by requiring a suitable re�nement relation intheir semanti expansion (TIOTS).De�nition 5 (Re�nement relation) Let AS andATbe two spei�ation automata and S = (StS , s0, Σ,

−→S) and T = (StT, t0, Σ,−→T ) be their orrespondingtimed transition systems. We say that AS re�nes AT ,written AS ≤AT , i� there exists a binary relation R⊆StS×StTontaining (s0, t0) and for all states sRt implies:1. Whenever t i?−−→
T t′ for some t′∈StT then s i?−−→

Ss′ and
s′Rt′ for some s′∈StS2. Whenever s o!−−→

Ss′ for some s′ ∈ StS then t o!−−→
T t′ and

s′Rt′ for some t′ ∈ StT3. Whenever s d−→
Ss′ for d ∈ R≥0 then t d−→

T t′ and s′Rt′for some t′ ∈ StTIntuitively, if AS re�nes AT then it an delay atmost as muh as AT an, and it an only produe out-puts that AT produes�not others. It, however, mayadmit more inputs than AT , as long as all AT 's inputsare handled. This onstrution ensures substitutability,beause then, if plaed in the same ontext, AS will en-gage in less omputations than AT , while maintainingability to always reeive the same inputs. This meansthat safety properties will be preserved.In the example of Figure 2, Mahine2 (), Mahine3(d), and Mahine4 (e) re�ne Mahine (a). Mahine6 (f)re�nes both Mahine3 (d) and Mahine4 (e). Mahine7(h) re�nes Mahine4 (e).De�nition 5 is non-onstrutive in the sense that itannot be diretly used to deide re�nement betweentwo automata. Disussion of a proper e�ient re�ne-ment heking algorithm is out of sope for this work.See [8,13℄ for details.We relate spei�ations to implementations usinga notion of satisfation. A proper implementation ofa spei�ation is said to satisfy it. Tehnially, in ourframework the satisfation is a speial ase of the re�ne-ment, when the left hand side is an implementation (it
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Fig. 2 a) Spei�ation of a o�ee/tea Mahine, b) an implementation, and ) d) e) f) g) h) more spei�ations of a o�ee/teamahine.satis�es independent progress and output urgeny�seeDef. 4).The set of all implementations ofA is denoted [[A]]mod.In [13℄, we have shown that the re�nement relation isomplete for our implementation model, i.e., AS re�nes
AT if and only if the set of implementations that satisfy
AS is inluded in the set of implementations that satisfy
AT . This is an important usability riterion for tools. Itmeans that if you indeed elaborated AT into AS suhthat any implementation of the latter implements theformer, the tool will never report a false positive whenheking AS ≤ AT .Consisteny. It an happen that a spei�ation an-not be implemented, for example, beause it enforesreahability of a stuk state, whih violates indepen-dent progress. As all implementations satisfy indepen-dent progress, they an never satisfy suh a spei�a-tion. We say that a spei�ation whih admits at leastone implementation is (globally) onsistent. For exam-ple o�ee mahine of Figure 2, the implementation 2(b)re�nes 2(a). Sine 2(a) admits at least one implemen-tation, it is a onsistent spei�ation.In the example of Figure 2, Mahine5 (g) is in fatinonsistent sine, in the state Serving no output isavailable and time annot diverge, thus violating inde-pendent progress.Inonsisteny of a spei�ation in a stepwise designproess is normally unintended�an error on behalf ofthe spei�er. Thus it is important for tools to providefeedbak on onsisteny. In [13℄, we have shown thatthis question an be answered automatially using analgorithm that deides if there exists a strategy for thesystem (output) to avoid reahing stuk states in thespei�ation. Furthermore we added a faility alled

pruning that removes from the TIOA all behaviors thatare not overed by suh a maximal strategy. Pruningthus redues the size of the TIOA spei�ation by re-moving inonsistent parts, while maintaining the sameset of implementations (Theorem 5 in [13℄).2.4 Step-wise Re�nementWe deompose and re�ne our University spei�ationof Figure 1 in a top-down manner. The re�nement isbased on a knowledge of how the system under design issupposed to meet the overall requirements. We deom-pose our spei�ation into three omponents in parallel:a Co�ee/Tea mahine, a Researher, and an Adminis-tration. The Mahine (Figure 2(a)) needs oins to fun-tion and provides the Researher with o�ee and tea.In addition it may o�er tea for free. The Researher(Figure 3(a)) produes publiations with some guaran-teed timing onstraints when provided with o�ee andtea regularly, otherwise the publiation output is notguaranteed any more. The Administration is in hargeof turning grants into oins to enable the use of theMahine and also to �le patents when publiations areprodued by the Researher.We ould make one TIOAto speify this behavior but it is naturally expressed asa onjuntion and making this TIOA manually is er-ror prone. Instead we speify our Administration as aonjuntion of HalfAdm1 and HalfAdm2, eah in hargeof one of the tasks. Figure 3(b) shows the alternationbetween oin! and grant? while Figure 3() shows thealternation between patent! and pub?. We note thatsine both automata are parts of the administration,HalfAdm1 always allows patent! and HalfAdm2 always



Compositional Veri�ation of Real-Time Systems Using Edar 7a)
coftea

pub

tea?

tea?

pub!

cof?

pub!

x=0 pub!
tea?cof?

Idle

x<=8x<=4

Stuck

Coffee Tea

x=0x=0

x<=15 x=0

x>15

x>=4

x>=2

Researher b)
grant pubpatent coin

pub? patent!

patent!

coin! grant?

A

B

pub? grant?

x<=2

x=0

HalfAdm1 )
grant pubpatent coin

grant? coin!

coin!

patent! pub?

C

D

pub? grant?

y<=2

y=0

HalfAdm2
Fig. 3 Spei�ation of (a) the Researher, and the Administration as a onjuntion of two omponents (b) HalfAdm1 and() HalfAdm2.allows oin!. Both sub-spei�ations are also input-enabled and an always aept grant? and pub?.Veri�ation of this re�nement is arried out step-wise using pruning at every step. In this example, theomponents are heked for onsisteny individually andpruned to valid behaviors. Then they are ombinedstep-wise, �rst with the onjuntion operator (explainedlater), the result being pruned, and then with the om-position operator, and then pruned. The resulting stategraphs for both spei�ations are �nally heked for re-�nement.The result here is that the re�nement does not hold,whih may seem surprising. It turns out that the orig-inal spei�ation of Figure 1 does not allow for �free�patents: grants must be reeived before a patent is pro-dued. However, given that the Mahine an produefree tea, free publiations may appear, and therefor freepatents as well, whih was not spei�ed. It is possibleto orret this by either allowing for free patents or re-moving free tea in the Mahine.In the following setions we will elaborate how thespei�ations are omposed in the framework.2.5 Combining Spei�ationsIn our example we used parallel omposition and on-juntion intuitively. Now we give more details on allavailable operators, namely parallel omposition, on-juntion, and quotient. In the rest of the setion, we willonsider two spei�ation automata AS = (Lo1, q10 ,Clk1, E1, Act

1, Inv1) and AT = (Lo2, q20 ,Clk2, E2, Act
2,Inv2). For tehnial reasons, we also assume that Clk1∩Clk2 = ∅.There are two main ways of omposing spei�a-tions in our framework: onjuntion and parallel om-position. The latter is the well known strutural ombi-nation of omponents�parallel omposition is meant toombine spei�ations of two separate interating om-ponents into a single box. In our example the Researher

spei�ation is omposed with the beverage dispensingMahine spei�ation in this manner.The other operator, onjuntion, is meant to om-bine two di�erent spei�ations for the same ompo-nent. The two spei�ations an typially represent re-quirements from a di�erent viewpoint. In our exampleHalfAdm1 represented requirements with respet to pro-viding funding (oins); HalfAdm2 represented require-ments on produing patents.Conjuntion. In our framework, onjuntion an onlybe de�ned if ActSi = ActTi and ActSo = ActTo (the ex-tension to dissimilar alphabets is straightforward). Theoperation redues to hek whether the two spei�a-tions an progress in the same way. Formally, the on-juntion of AS and AT , denoted AS ∧AT , is the TIOA
A = (Lo, q0,Clk, E,ActS , Inv) given by: Lo = LoS ×LoT , q0 = (qS0 , q

T
0 ), Clk = ClkS ⊎ClkT , Inv((qS , qT )) =Inv(qS) ∧ Inv(qT ). The set of edges E is generated bythe following rule:

(qS , a, ϕS , cS , q
′
S
) ∈ ES (qT , a, ϕT , cT , q

′
T
) ∈ ET

((qS , qT ), a, ϕS ∧ ϕT , cS ∪ cT , (q
′
S
, q′

T
)) ∈ EThe onjuntion operator may introdue loally in-onsistent states. For example, assume that AS reahesa state from s where the only available ation is theoutput a and AT reahes a state t from where the onlyavailable ation is the output b. Assume also that ASand AT annot delay in s and t. In (s, t), the onjun-tion will not issue any output and will not be able todelay, whih violates the independent progress property.As stated above the loally inonsistent states are re-moved by Edar using the pruning faility.In the example of Figure 2, Mahine5 (g) is a on-juntion of Mahine2 () and Mahine4 (e) (though itis an inonsistent onjuntion). Furthermore, Mahine6(f) is a onjuntion of Mahine3 (d) and Mahine4 (e).



8 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowskiParallel Composition. This operation omputes the las-sial produt between timed spei�ations [25℄, whereomponents synhronize on ommon inputs/outputs.Two omponents are omposable i� the intersetion be-tween their output alphabets is empty.Formally, the parallel omposition of AS with AT ,denoted AS ||AT , is the TIOA A = (Lo, q0,Clk, E,Act,Inv) given by: Lo = LoS × LoT , q0 = (qS0 , q
T
0 ), Clk =ClkS ⊎ ClkT , Inv((qS , qT )) = Inv(qS) ∧ Inv(qT ) and theset of ations At = Ati ⊎ Ato is given by Ati =AtSi \AtTo ∪AtTi \AtSo and Ato = AtSo ∪AtTo . Theset of edges E is generated by the following rules:1. Whenever (qS , a, ϕS , cS , q

′
S
)∈ESwith a ∈ AtS\AtT then for eah qT ∈ LoTalso ((qS , qT ), a, ϕS , cS , (q

′
S
, qT )) ∈E2. Whenever (qT , a, ϕT , cT , q

′
T
) ∈ ETwith a ∈ AtT \AtS then for eah qS ∈ LoSalso ((qS , qT ), a, ϕS , cS , (qS , q

′
T
)) ∈E3. Whenever (qS , a, ϕS , cS , q

′
S
)∈ES and

(qT , a, ϕT , cT , q
′
T
)∈ET with a∈AtS∩AtT thenalso ((qS , qT ), a, ϕS∧ϕT , cS∪cT , (q′S , q

′
T
)) ∈ E.The �rst rule represents all the ases where AS makesan individual move, be it input or output, beause a isnot in the signature of AT . Similarly the seond rulehandles all individual moves by the seond omponent

AT . The third rule handles all synhronizations betweenthe two omponents. The possibilities are input/inputwhih again gives an input or input/output whih givesan output.Quotient. The operation of quotienting is radially dif-ferent from the other omposition operators. It is adi�erening operator [17℄ that an be used to synthe-size requirements for missing omponents in a projet.Two �x attention, let's assume that we have an abstratspei�ation AT for the entire system, and a spei�a-tion AS of an existing available omponent. The quo-tient synthesizes a spei�ation AT \\AS for the missingomponent�the omponent that when omposed with
AS would implement AT .The use of quotient simpli�es independent design ofomponents. Assume that X is the missing omponentthat needs to be designed by another person, or evenanother vendor than the rest of the system. The or-retness requirement for X is AS ||X ≤ AT . In generalthis requirement might be a rather ompliated veri�a-tion expression. Fortunately, it is su�ient to separatethe onerns using quotienting. The new designer doesnot need to have aess to the entire system, nor doeshe need to perform the veri�ation of the entire systemeah time he heks his urrent design for X . It su�esto synthesize the quotient AT \\AS and he an simply

hek whether X ≤ AT \\AS . This latter spei�atione�etively aptures all ontextual requirements for X .Summarizing, quotienting allows for fatoring outbehavior from a larger omponent. If one has a largeomponent spei�ation AT and a small one AS then
AT \\AS is the spei�ation of exatly those omponentsthat when omposed with AS re�ne AT .Quotienting for spei�ations is de�ned in the fol-lowing way. Consider two spei�ationsAT = (LoT , qT0 ,ClkT , ET , ActT , InvT ) and AS = (LoS , qS0 ,ClkS , ES ,

ActS , InvS) with AtSi ⊆ AtTi ∪AtTo and AtSo ⊆ AtTo .The quotient, whih is denoted AT \\AS is the TIOAgiven by: Lo = LoT × LoS ∪ {lu, l∅}, q0 = (qT0 , q
S
0 ),Clk = ClkT ⊎ClkS⊎{xnew}, Inv((qT , qS)) = Inv(lu) = ttand Inv(l∅) = {xnew ≤ 0}. The two new loations luand l∅ are respetively universal and inonsistent. Theset of ations At = Ati ⊎ Ato is given by Ati =AtTi ∪AtSo ∪ {inew} and Ato = AtTo \AtSo .The set of edges E is generated by the followingrules:� Whenever qT ∈ LoT , qS ∈ LoS and a ∈ Atthen also ((qT , qS), a,¬InvS(qS), {xnew}, lu) ∈ E.� Whenever qT ∈ LoT , qS ∈ LoS then also

((qT , qS), inew,¬InvT (qT )∧InvS(qS), {xnew}, l∅)∈E.� Whenever (qT , a, ϕT , cT , q
′
T
) ∈ ETand (qS , a, ϕS , cS , q

′
S
) ∈ ESthen ((qT , qS), a, ϕT ∧ ϕS , cT ∪ cS , (q

′
T
, q′

S
)) ∈ E� Eah (qS , a, ϕS , cS , q

′
S
) ∈ ES with a ∈ AtSogives rise to ((qT , qS), a, ϕS∧¬GT , {xnew}, l∅) where

GT =
∨
{ϕT | (qT , a, ϕT , cT , q

′
T
)}� Eah (qT , a, ϕT , cT , q

′
T
) ∈ ET and a /∈ AtSgives ((qT , qS), a, ϕT , cT , (q

′
T
, qS)) ∈ E� Eah (qT , a, ϕT , cT , q

′
T
) ∈ ET with a ∈ AtSogives rise to ((qT , qS), a,¬GS , {}, lu) where GS =

∨
{ϕS | (qS , a, ϕS , cS , q

′
S
)}� Eah a ∈ Ati gives rise to (l∅, a, xnew = 0, {}, l∅)� For eah a ∈ At gives rise to (lu, a, tt, {}, lu)Just like onjuntion, the quotient operation mayprodue (loally) inonsistent spei�ations. Hene, eahquotient operation is followed by pruning.In the following we will illustrate the quotientingthrough a very simple example. The example onsistsof three Timed Input/Output Automata Spei�ationsas shown in Fig. 4. We start with a simple spei�a-tion, shown in Fig. 4a) of a system with two buttons.The spei�ation states that as long as only button1 ispressed then only good output will be produed. If atsome point button2 is pressed then the system ouldstart to produe bad output.The following de�nition de�nes an operator knownas weaken or weakening, that is used for easier spei�-ation of assume guarantee spei�ations.
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Fig. 4 Spei�ation of (a) the ButtonSpe, (b) the assumption ButtonA () the guarantee ButtonG.De�nition 6 Weaken >>:For any two Timed Input/Output Automata spei�a-tions A and G we de�ne G >> A as follows:
G >> A ≡ (A||G)\\AIn our simple example we would like to express theassumptions and guarantees that we have to the systemseparately. In Fig. 4b) we speify the assumption thatbutton2 is never pressed while in Fig. 4) we speify theguarantee that the system never produes bad output.Even though, in this example, our ButtonSpe is quitesimple the assumption ButtonA and guarantee ButtonGare even simpler and extremely easy to understand.For this example we an use Edar to prove thefollowing two re�nements:refinement: (ButtonG >> ButtonA) <= ButtonSperefinement: ButtonSpe <= (ButtonG >> ButtonA)Thus e�etively being able to substitute ButtonG
>> ButtonA for ButtonSpe in any ontext.The possibility of splitting assumptions from guar-antees beomes even more appealing when having mul-tiple assumptions and guarantees that are onjoined.2.6 Syntati ExtensionsThe Edar tool o�ers a range of syntati extensionsbuild over the ore language desribed above. These ex-tensions do not a�et the theoretial expressiveness ofthe language, but instead they enable more natural de-sription of systems using primitives suh as �nite do-main types, variables, onstants, hannels, ommittedloations, and arrays. These are the same extensions asknown from Uppaal, but adapted to the two playersemantis.Types, variables and onstants. Edar allows to intro-due �nite domain variables ranging over restrited in-teger types. The variables are more onise desriptions

of ounters and value plaeholders than �nite state ma-hines. Named onstants allow easy parameterizationof models, for example with allowed delays.Channels and arrays. Ations are de�ned using the syn-tax: �broadast han a� whih gives both the inputlabel a? and the output label a!. Ations are, as de�nedin the theory, broadast and thus outputs are neverbloked.Channels an be organized in arrays. This is veryonvenient to enode loal ommuniation�for exam-ple a two dimensional n×n array of hannels an modelindividual two-ended hannels between n proesses.Selet statements. The modeling language of Edaralso allows for using selet statements of the form e:id_ton a transition. This translates into a set of transitionswith e having eah of the possible values that the typeid_t an assume. This is only syntati sugar whihallows for muh more ompat models.Templates. Templates are spei�ations parameterizedwith named but unresolved onstants. Templates anbe instantiated by providing values for onstants, andthe semantis is given by maro expansion. Templatesare useful for instantiating many similar proesses, per-haps with di�erent initial onditions. They interplaywell with onstants and hannel array.Instantiating templates allows not only to hangetiming properties, but also to on�gure various om-muniation topologies. For example, parameterize thetemplate with the name (index in an array) of a han-nel to be used for ommuniation. Then instantiate theparameters so that the instanes reate trees, rings, andother layouts. We will use this tehnique to model ringsin the ase study in the following setion.



10 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowski3 The Leader Eletion ProtoolWe analyze a variant of the leader eletion protool thatoperates on a ring topology. The protool an be instan-tiated for an arbitrary number of nodes. Eah node inthe ring has both a plae in the ring represented by itsid and, apart from this, also a unique priority. The pro-tool performs one round of leader eletion seleting thenode with the highest priority as the leader. When theprotool is initiated all nodes know that the eletion hasstarted and an thus start to send their own priority tothe next node in the ring topology. Figure 5 illustratesan instantiation of the protool for six nodes, with theirinitial priorities and the ommuniation hannels usedbetween the nodes. If a node reeives a priority that islower than its own priority it will just disard the re-eived priority. If it reeives a priority that is higherthan its own priority it will keep a opy of the new pri-ority and then send it on at the same time stopping tosend its own priority. If at some point a node reeivesits own priority, it will know that it is the leader, sinethis priority has traveled one full round on the ringtopology without being disarded and thus is greaterthan all other priorities.

Fig. 5 Overview of the ring topology and ommuniationhannels in a ring with 6 nodes. Eah node has both an idgiven by its name (e.g. N0) and a priority (e.g. pr5). Betweeneah set of nodes in the ring there is a set of ommuniationhannels used to mimi value passing.The exeution of the protool is illustrated in Fig. 6whih shows how the information �ows in a ring of6 nodes, in the ase where all nodes just happen tosend the information at exatly the same time (syn-hronously).We proeed to speify the protool using Timed I/OAutomata in the Edar tool. Let N be a onstant thatdetermines the number of nodes in the ring.

onst int N = 6;We also delare a onstant for the maximum delay be-fore a node sends the maximal priority that it has seento the next node in the ring.onst int MaxD = 2;Finally we delare a data type id_t whih is used forall the variables ontaining ids and priorities.typedef int[0,N-1℄ id_t;Using the onstant N we delare two global arrays ofhannels that are used to ommuniate the informationin the model.broadast han send[N℄[N℄;broadast han leader[N℄;The send hannel is atually an array of N by N han-nels. In the hannel expression send[4℄[3℄! the �rstindex (in this ase node number 4) represents the id ofthe node that is the reeiver of the message. The seondindex (in this ase 3) represents the priority pr that isbeing send as the message. This is the standard way ofmodeling value passing in Timed (I/O) Automata.3.1 Spei�ation model for the nodesFigure 7 shows the template for speifying the nodes.Eah node is instantiated with an identi�er id and apriority pr. Eah node uses a loal variable ur of typeid_t to store the urrent priority value, initialized withthe value of the pr onstant:id_t ur := pr;The node onsists of three loations. The top loationwhih is also the initial loation represents the normaloperation of the protool. This state has an invariantx<=MaxD ensuring that the node will send the maximalpriority that it has seen so far, stored in the loal vari-able ur to the next node in the ring with intervals ofno more that MaxD time units.Eah node reeives on the set of hannels send[id℄[e℄?where e an be any priority. Similarly it sends on a setof hannels send[(id+1)%N℄[e℄ to the next node inthe ring (the % is the modulus operator). On a givenedge in the template, say the top leftmost one in Figure7, the selet statement e:id_t semantially translatesinto the instantiated template being able to reeive anypriority whih is then bound to the variable e.The node template has three input transitions in itsinitial loation. The one leading to the seond loationis taken exatly in the ase where the priority reeivedmathes the priority of the node itself. If this transition
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Fig. 6 Illustration of one senario of how the information ould be passed around the ring using the protool. For the sake ofillustration every node happens to send the information to the next node at exatly the same time thus giving us six distintsteps. Notie that the maximum priority will travel exatly one around the ring. In this ase giving a total of 30 messages.
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Fig. 7 Node template used for eah of the nodes in the ringtopology.is taken the node will delare itself leader. The othertwo represents the two ases where the loal variableur should be updated or not.Both the seond and third loation are input en-abled but does nothing with the input. The seond lo-

ation, marked with a u meaning that it is urgent, willimmediately send out the leader[id℄! output.3.2 Veri�ationThe orretness of a ring of N nodes we are interestedin has both a funtional part�i.e. the orret leader iseleted�as well as a non-funtion part�i.e. the leaderis eleted within an aeptable upper time bound. Forthis we formulate and verify the two general propertieselaborated below.The �rst property S , shown in Fig. 8, states thatonly the orret node, the one with the lowest priority,an delare itself leader.
leader[0]!Fig. 8 The most basi spei�ation S stating that only theorret node delares itself leader.



12 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowskiThe seond property T , shown in Fig. 9, states thata leader will be eleted within x<=(N+1)*MaxD timeunits, being equal to the maximal priority traveling ex-atly one round as slowly as possible.
leader[e]!

leader[e]!

x<=(N+1)*MaxD

e:id_t

e:id_tFig. 9 A property T stating that a leader is eleted withinthe spei�ed time-bound.These overall properties of the ring of nodes an beveri�ed with the following re�nement heks:refinement:(N0 || N1 || N2 || N3 || N4 || N5) <= Srefinement:(N0 || N1 || N2 || N3 || N4 || N5) <= TWe all this type of veri�ation monolithi, sineit onstruts and explores the spei�ation represent-ing the entire systems in order to settle the suggestedre�nements. In the present ase with 6 nodes Edarquikly proves the re�nements and provides a witness-ing strategy whih an be exerised interatively. How-ever, it is lear that the monolithi approah will su�erfrom the exponential growth of the states in the numberof nodes in the ring.3.3 Compositional Veri�ationIn order to ombat the state-spae explosion problemand enable veri�ation of the orretness of the proto-ol for larger numbers of nodes we will apply ompo-sitional veri�ation for both the funtional orretnessproperty S and the non-funtional orretness property
T . The idea is to reate N sub-spei�ations Si (and
Ti) that may be shown to apture the behavior of thesub-ringNN || . . . ||Ni indutively, by demonstrating thefollowing sequene of re�nements:

NN ≤ SN (1)
Si+1||Ni ≤ Si for i = (N − 1) . . . 1 (2)
S1||N0 ≤ S (3)As mentioned in the introdution this ompositionalveri�ation is sound beause our re�nement operatoris a preongruene with regards to parallel omposi-tion[13℄.

Using the that the re�nement relation ≤ is a preon-gruene with respet to parallel omposition and tran-sitive it may be onluded that the ring is a re�nementof S. Given six nodes (1), (2) and (3) amounts to per-forming the following series of re�nement heks:refinement: N5 <= S5refinement: ( S5 || N4 ) <= S4refinement: ( S4 || N3 ) <= S3refinement: ( S3 || N2 ) <= S2refinement: ( S2 || N1 ) <= S1refinement: ( S1 || N0 ) <= SThe series of re�nement heks is illustrated in Fig.10. Though greater in number than the single mono-lithi veri�ation eah of the six re�nement heks onlyinvolve three small omponents, thus making the over-all veri�ation e�ort linear rather than exponential inthe number of nodes in the ring.

Fig. 10 Overview of how the indution hypothesis ϕ1 is usedto prove the property for a larger and larger set of nodes.In order to obtain the sub-spei�ations Si and Ti asinstanes of general templates, we de�ne the followingset of Boolean arrays whih are simply used as a reverselook up of whih ids are inluded in the set of nodesthat a given instantiation of the indution hypothesisovers.onst bool S5[N℄ = { 0, 0, 0, 1, 0, 0};onst bool S4[N℄ = { 0, 0, 1, 1, 0, 0};onst bool S3[N℄ = { 0, 0, 1, 1, 1, 0};onst bool S2[N℄ = { 0, 1, 1, 1, 1, 0};onst bool S1[N℄ = { 1, 1, 1, 1, 1, 0};These Boolean arrays are then used as input pa-rameters to the orresponding instantiations of the in-dution hypotheses. The sub-spei�ations Si used toindutively prove the funtional property S is shown inFigure 11, and may be informally desribed as follows:
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Fig. 11 The sub-spei�ation Si. The nodes overed by thesub-spei�ation (NN , . . . , Ni) an only delare themselvesleader after having reeived a priority also overed by thesub-spei�ation.
Si �rst and �nal version:Whenever the sub-ring NN || . . . ||Ni reeives pri-orities outside those belonging to one of its nodes,no leader is delared. If a priority belonging toone of the nodes of the sub-ring is reeived, it isallowed for any of the nodes to delare leader-ship.The sub-spei�ation does not restrit that it hasto be the same node that delares itself leader as theone that reeives its own id. It is worth noting thatthe sub-spei�ation is this way aptures the part ofthe behavior that is important to prove exatly thisproperty, while ignoring other aspets. In partiular,nothing is said about timing of events.3.3.1 Timing propertyNow let us apply the ompositional approah to estab-lish the non-funtional property T , i.e. that a leader willbe eleted within (N+1)*MaxD time units. Thus, we aresearhing a (timed) sub-spei�ation Ti, for i = N . . . 1satisfying the following set of re�nements:

NN ≤ TN (4)
Ti+1||Ni ≤ Ti for i = (N − 1) . . . 1 (5)
T1||N0 ≤ T (6)The �rst attempt at de�ning the timed sub-spei�-ation is shown in Fig. 12 and may informally be readas follows:

Ti �rst attempt:Whenever the sub-ring NN || . . . ||Ni reeives apriority larger than any one belonging to one ofits nodes, this priority will be delivered to N0 be-fore (N-i+1)*MaxD time-units.

Note the use of the loal variable g for ensuring thatthe priority delivered is the one reeived. However, thisproposal for a sub-spei�ation Ti turned out to be tooerroneous (too strong) as it is too strong to be used asthe indution hypothesis as it is possible to prove the�nal step but neither the iterative step nor the basease.In partiular, the base ase does not hold as there isno guarantee that a �large� priority reeived will even-tually be delivered to N0 as an even �priority� may bereeived by the sub-ring in the mean-time. An attemptof orreting this is given in Fig. 13, and may be readinformally as follows:
Ti seond attempt:Whenever the sub-ring NN || . . . ||Ni reeives apriority larger than any one belonging to one ofits nodes, this priority will be delivered to N0before (N-i+1)*MaxD time-units, unless anotherpriority is reeived before.As desired, the modi�ed sub-spei�ation validatesthe re�nements required in the base ase and the �nalase. Unfortunately, though seemingly a true property,it turns out that it is too weak for the re�nement of theiterative step to hold.Figure 14 is an attempt of �nding a sub-spei�ationfor whih the re�nements of the iterative steps are valid.Here, the behavior after having reeived a priority andstoring it in g is made dependent on whether the pri-ority reeived is equal to the one stored in g. Unfortu-nately this renders all the re�nement heks inorret.After three (and in fat several) more failing at-tempts, we �nally obtain the satisfatory sub-spei�a-tion in Fig. 15, that radially di�ers from the previousin that it only keeps trak of what happens to the mes-sages that ontains the maximum priority. Informally,the sub-spei�ation reads as follows:
Ti �nal version:Whenever the sub-ring NN || . . . ||Ni reeives themaximum priority before i*MaxD time-units - andunless one of the nodes of the sub-ring delaresitself leader - the maximum priority will be de-livered to N0 before (N-i+1)*MaxD time-units.Fortunately, this make the sub-spei�ation strongenough to prove the �nal property T as well as theiterative re�nement steps, yet weak enough to be ableto prove the base ase and pass the onsisteny hek.3.4 Assume/Guarantee Spei�ationsIn order to make the hunt for the orret sub-spei�a-tions easier we will speify S and T in the form of a pair
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Fig. 12 The �rst version of Ti turned out to be too strong.
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Fig. 13 The seond version of Ti, whih turns out to be too weak.
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Fig. 14 Third version of Ti
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Fig. 15 Final version of Ti, whih only keeps trak of the timing regarding messages arrying the maximum priority.of an assumption and a guarantee part. The assumptionand guarantee equivalents of S are shown in Fig. 16 andFig. 17 respetively.
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Fig. 16 The simple assumption SAi that no input will besent with priorities that belong to the set of nodes representedby the sub-spei�ation.
SAi �rst and �nal version:We will never send any priority to the sub-ring
NN || . . . ||Ni with priorities belonging to one ofits nodes.

send[0][e]!

send[i][e]?
e:id_t

e:id_tFig. 17 The simple guarantee SGithat no leader output willbe generated.

SGi �rst and �nal version:The sub-ring NN || . . . ||Ni will never generate anyleader output.These two very simple Timed I/O Automata an beombined into a ontrat using the weakening operator
>>.The following two re�nements hold (for eah i):refinement: S1 <= (SG1 >> SA1)refinement: (SG1 >> SA1) <= S1Thus we have shown that the S that we have omeup with is idential to the more easily understandableassumption and guarantee.The assumption and guarantee equivalents of T areshown in Fig. 18 and Fig. 19 respetively.
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Fig. 18 The assumption T Ai that a message with the maxi-mum priority will be delivered to the sub-spei�ation before
i ∗MaxD time units.

T Ai �rst and �nal version:The maximum priority will be delivered to thesub-ring NN || . . . ||Ni before i∗MaxD time units.
T Gi �rst and �nal version:The sub-ring NN || . . . ||Ni deliver a message withthe maximum priority to the node 0 before (N +

1) ∗MaxD time units.
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e : id_tFig. 19 The guarantee T Gi the sub-spei�ation will delivera message with the maximum priority within (N+1)∗MaxDtime units.Similarly as for the other ase we an now ombinethese two spei�ations into a ontrat. For this aseonly one way of the re�nements hold (for eah i):refinement: (TG1 >> TA1) <= T1This means that in this ase we an onlude thatthe omposed sub-spei�ation T that we have ome upwith re�nes the ontrat omposed from the assumptionand guarantee and thus we an use T when performingthe veri�ation and still rely on the fat the guaranteewill hold.3.5 Performane omparison of analysis methodsIn order to ompare the e�ieny of regular monolithiand ompositional veri�ation we timed the veri�ationof the two properties S and T for several di�erent valuesof N. All the veri�ation was performed on the samemahine and all veri�ation instanes where allowed amaximum of �ve minutes to terminate. The hoie ofexatly �ve minutes as the upper bound is arbitrary andwill not e�et the shape of the graphs that we obtain,but only determine the point at whih the graphs stop.The upper bound is needed in order to be able to runa large amount of experiments e�iently. The resultsare listed in Fig. 20. For both the properties in themonolithi ases they took more than �ve minutes toverify for rings with 7 nodes.As an be seen from the graph the ompositionalveri�ation method is apable of handling muh largerinstanes within a reasonable time bound. Besides thisthe ompositional method also has a muh larger the-oretial upper bound. It will only verify one step ata time and thus will not su�er from lak of availablememory as long as a single step an be handled withthe available memory.

4 Conlusion & Further WorkConlusion. In this paper we have presented the om-plete spei�ation theory for timed systems underlyingthe Edar tool. Being powered by the game solving en-gine of the branh Uppaal-tiga, the Edar tool pro-vides support for re�nement and onsisteny hekingbetween spei�ations as well as allow for the logialand strutural omposition. In partiular, as demon-strated in our treatment of the Leader Eletion Pro-tool example, the theory and tool allow for e�ientompositional veri�ation of systems by the exploita-tion of engineer-provided sub-spei�ations. As suh,the ompositional usage of the tool is not fully auto-mated, and the design of appropriate sub-spei�ations� strong enough to entail an overall spei�ation andsu�iently weak to be entailed themselves � is a majorhallenge. We believe that engineers will always be un-familiar with any new spei�ation formalism. However,we believe that engineer-provided sub-spei�ations arenot only neessary in the development of realisti sys-tems, but also extremely useful for raising the overallunderstanding of the systems. In order for the methodto be appliable in large sale projets it needs to besupported by a mature tool that is as intuitive as possi-ble to use. As demonstrated in the Leader Eletion Pro-tool, tool support is vital in establishing a oherent setof sub-spei�ations. The need for programmer gener-ated spei�ations is in no way unique to our approahand is also needed in frameworks suh as SPEC# [6℄ inwhih assertions (invariants) written by the program-mer about a C# program are heked by a range ofdi�erent analysis tehniques.An important feature of our theory is the existeneof a quotient onstrut (i.e. weakest property trans-former with respet to parallel omposition), whih inpartiular allows for sub-spei�ations to be obtainedfrom pairs of assumptions and guarantees. As demon-strated, this often allow for substantially simpler spe-i�ations of sub-systems.Performane Analysis. The spei�ation theory present-ed and the tool Edar provide support for establishinghard real-time guaranteed properties from TIOA mod-els. However, as we will sketh in the following, it is pos-sible to also derive soft real-time properties in terms ofexpeted behavior from the same TIOA models. E.g. inthe extensive treatment of the Leader Eletion Protoolof Setion 3, we have �rmly established that the orretleader is guaranteed to be delared within (N+1)*MaxDtime-units, given a ring of N nodes eah implementingthe TIOA spei�ation of Fig. 7, i.e. 14 time-units for aring with 6 nodes. The spei�ation theory presented in



Compositional Veri�ation of Real-Time Systems Using Edar 17

5 10 15 20 25 30 35 40

Nodes

00:00

00:20

00:40

01:00

01:20

T
im

e
 (

m
m

:s
s
)

S_c
S_m
T_c
T_m

Fig. 20 Timing results of veri�ation of S and T for the ompositional and monolithi ases.this paper, assumes that implementations are onreteexeutable realizations of spei�ations. In partiularimplementations are assumed to have �xed timing be-havior, meaning that outputs our at preditable andexat time moments. However, in a riher setting thetiming behavior of implementations ould be stohas-ti, with timing delays of omponents being hosen bydistributions.In a line of reent work [12,11,9℄ suh a stohastisemantis has been put forward for networks of TIOA,giving a probability measure on sets of runs. This allowsfor re�ned probabilisti performane properties to bede�ned and analyzed, suh as the property �the proba-bility of the set of runs where a leader is delared within4 time-units is greater than 0.3�, whih ould be highlyinteresting for the Leader Eletion Protool. The newUppaal-sm branh o�ers a simulation engine allow-ing to settle suh probabilisti properties within desiredlevels of on�dene based on a number of random runsof the system. Assuming that the delay of eah node isgiven by uniform distribution on the interval [0,MaxD℄Fig. 21 (a) gives the estimated probability, that theleader (node N2) is delared within T time-units, with Tranging from 0 to 14. Knowing from our previous veri�-ation e�ort that 14 is the guaranteed upper bound, it isinteresting to see that the average time before eletionis signi�antly lower, namely 4.42624 time-units Using

(a)
(b)Fig. 21 Performane Analysis of the Leader Eletion Pro-tool, giving the probability that the leader will be delared(a) within T time-units and (b) within M messages being send,estimated by Uppaal-sm.Uppaal-sm we obtain [0.38241, 0.402412] as a 95%on�dene interval for the probability of that the leaderis eleted within 4 time-units using 18,445 random runs.On the other hand, diretly testing whether this prob-
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