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Preview-based Asymmetric Load Reduction of Wind Turbines

Mathias Madsen, Jakob Filsø, and Mohsen Soltani

Abstract— Fatigue loads on wind turbines caused by an
asymmetric wind field become an increasing concern when
the scale of wind turbines increases. This paper presents a
model based predictive approach to reduce asymmetric loads
by using Light Detection And Ranging (LIDAR) measurements.
The Model Predictive Controller (MPC) developed is based on
a model with individual blade pitching to utilize the LIDAR
measurements. The MPC must also maintain a given power
reference while satisfying a set of actuator constraints. The
designed controller was tested on a 5 MW wind turbine in the
FAST simulator and compared to the same controller without
LIDAR data. The results showed that the MPC with LIDAR
was able to reduce the asymmetric loads compared to the MPC
without LIDAR while still maintaining the power reference.

I. INTRODUCTION

The wind turbine industry has been growing rapidly over
the last decade as a cause of more interest in renewable
energy sources [1]. The way wind turbine manufacturers
are trying to reduce the cost of energy is by expanding
the size of the wind turbine structures to capture more
wind energy [2]. This expansion requires the use of lighter
materials which combined with the larger structure increase
the flexibility of the turbine structure. The increase of blade
spans of the turbines causes more asymmetry in the wind
field raising the possibility for more varying turbulence
affecting local areas of the rotor plane resulting in fatigue
loads on the turbine structure. These factors demand more
advanced control strategies to mitigate the increased loads in
the structure while still maintaining the produced power at
the rated level.

Traditionally, in full load operation, the collective pitch
angle is adjusted to control the aerodynamic rotational torque
of the rotor [3]. The input to the wind turbine that is the
reference for the collective pitch angle is controlled by a PID
controller, acting on the generator speed [4]. In this case,
the collective pitch control is not able to reduce harmonic
loads that are caused by asymmetric loads on the rotor plane.
These loads normally appear as harmonics with frequency
peaks at integer coefficients of the rotor angular velocity,
n · P . For a 3-bladed turbine, which is used in this paper,
the asymmetric loads appear at the 1P frequency as well
as harmonics with frequency peaks at integer coefficients of
3P , 6P , 9P etc. For large scale wind turbines, the loads at
the 1P frequency contribute very significantly to the fatigue
loads on the structural components of the wind turbine, and
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is therefore of great interest [5]. The works in [6], [7], and
[8] show that the 1P frequency loads can be reduced by
adding a correction to the reference command of individual
pitch references.

In this paper, we show that by using Light Detection and
Ranging (LIDAR), which provides preview information of
the wind field for the wind turbine controller, a reduction
of the 1P frequency harmonic loads is achieved. In [9],
[10], and [11] the LIDAR preview information showed to
have a big potential for reduction of loads in wind turbine
structures. However, these works use only simple models
for designing a collective pitch controller. In this paper,
we propose a model-based design of a predictive controller
which incorporates the preview information as an input to
the individual pitch controller. The controller chosen is a
Model Predictive Controller (MPC), as actuator constraints
and preview information are easily implemented in MPC. We
compare the results of the proposed controller to the MPC
without LIDAR information in the high fidelity aero-servo-
elastic wind turbine simulation software FAST [12] from the
National Renewable Energy Laboratory (NREL) on a fictive
3-bladed 5 MW reference turbine [13].

This paper is organized as follows: Section 2 describes the
modeling wind turbine, linearization hereof, and the LIDAR
module. The proposed controller is forumlated in section 3,
and comparison of the results are discussed in section 4.
Finally, a conclusion on the paper is given in section 5.

II. WIND TURBINE MODEL

A. Aerodynamics

The aerodynamics of a wind turbine capture the wind
energy and converts it into rotational energy through the
blades. The rotor blades of the wind turbine are excited
by the wind field which gives rise to forces and moments
upon the structure and mechanical components of the turbine.
The blade forces and moments are calculated for the blades
individually as the wind field can vary greatly over the
rotor span, thereby utilizing the information of the wind
field ahead of the turbine and the blades can be controlled
individually. This is done by using Blade Element Momen-
tum (BEM) theory [14]. In BEM theory each blade is split
into a number of annular blade elements NB with seperate
aerodynamic properties. Forces and moments are then found
using momentum theory on each element. BEM theory
uses the assumption that there are no annular aerodynamic
interaction between the blade elements.

The division of a blade into a finite number of elements
is shown in Fig. 1, where rj is the distance from the hub
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Fig. 1. Decomposition into blade elements. The distance rj is from the
hub center to the center of the j’th element and ∆rj is the length of the
j’th element.
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Fig. 2. Wind components and angular quantaties for blade element j.

center to the center of the j’th element and ∆rj is the length
of the j’th element.

The incoming relative horizontal wind speed V0 that the
wind turbine experiences is dependent on the horizontal
tower velocity ẋt in the downwind direction (see Fig. 3),
and is given by V0 = Vw − ẋt, where Vw is the horizontal
free stream wind speed.

The effective wind speed that each blade element is
exposed to depends on the angular velocity of the rotor ωr,
together with two induction factors that capture the effect
of the presence of the blade elements. The axial induction
factor aj and the tangential induction factor a′j describe the
change in horizontal wind speed and the change in tangential
wind speed for the j’th element, respectively. Effective wind
speed is then given by

Veff,j =
V0(1− aj)

sin(φj)
=
ωrrj(1 + a′j)

cos(φj)
, (1)

where the local inflow angle φj is the angle between the
effective wind speed and the rotor plane as shown in Fig. 2.

The local angle of attack shown in Fig. 2 is defined as
αj = φj − βtw,j − β, where βtw,j is the local twist angle
of the blade element and β is the pitch angle of the entire
blade.

Lift and drag forces on a blade element, Lj and Dj , are
found using coefficient curves Cl,j(αj) and Cd,j(αj) and are
given by

Lj =
ρ

2
V 2

eff,jcjCl,j(αj)

Dj =
ρ

2
V 2

eff,jcjCd,j(αj),
(2)

where ρ is the density of the air, cj is the chord length of
the j’th element shown in Fig. 2. The drag force points in

the direction of the effective wind speed and the lift force is
perpendicular to it.

The rotational torque Tr, tangential bending moment Mb,
and thrust force Ft for a single blade, which are of interest in
this paper, are now found by summation of the contributions
from each blade element given by

Tr =

NB∑
j=1

(Lj sin(φj)−Dj cos(φj)) rj∆rj

Mb =

NB∑
j=1

(Lj cos(φj) +Dj sin(φj)) rj∆rj (3)

Ft =

NB∑
j=1

(Lj cos(φj) +Dj sin(φj)) ∆rj .

To calculate (3) for a given wind speed, rotational speed,
and blade pitch angle, the local inflow angle, axial induction
factor, and tangential induction factor are needed for each
element. By rewriting (1) the local inflow angle is obtained
by

φj = arctan

(
(1− aj)V0

(1 + a′j)ωrrj

)
. (4)

Thus, the local inflow angle is dependent on the induction
factors. These are expressed as

aj =

(
4F sin(φj)

2

σjCn
+ 1

)−1

(5)

a′j =

(
4F sin(φj) cos(φj)

σjCt
− 1

)−1

, (6)

where F is the Prandtl approximation for tip and root loss
factors [14], σj is the solidity which is the fraction of the
annular area that the blades at the local radius are sweeping.
Cn and Ct are the axial and tangential force coefficients
respectively, given by

Cn = Cl(α) cos(φj) + Cd(α) sin(φj)

Ct = Cl(α) sin(φj)− Cd(α) cos(φj).
(7)

As seen, the induction factors are dependent on the local
inflow angle and vice versa. These are calculated by initial-
izing the induction factors to zero, and then calculating the
local inflow angle by (4). This first estimate is then used to
calculate the induction factors by (5) and (6). This proces
is repeated until the changes in inflow angle and induction
factors become sufficiently small.

B. Structure Dynamics

The asymmetric loads are described by transforming the
three tangential blade moments Mb1, Mb2, and Mb3 into a
non-rotating coordinate system by the Coleman transform
[15]. Two of the three coordinates of the non-rotating coor-
dinate system are used. These describe the rotor tilt and yaw
moments given by
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Fig. 3. Lumped representation of the wind turbine fore-aft tower deflection.
The tower deflection xt is positive in the downwind direction.

[
Mt
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]
= Tc
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 , (8)

where Mt and My are tilt and yaw moments respectively, and
Tc is the Coleman tranformation matrix. The transformation
matrix Tc is given by

Tc =
2

3

[
cos (ψ) cos

(
ψ + 2π

3

)
cos
(
ψ + 4π

3

)
sin (ψ) sin

(
ψ + 2π

3

)
sin
(
ψ + 4π

3

)] , (9)

where ψ is the azimuth angle of the first blade as shown in
Fig. 5.

The thrust force from the rotor is transferred to the
structure of the wind turbine. This results in a fore-aft
deflection of the tower. The fore-aft motion of the tower
xt is expressed as a second-order linear translational model
as shown in Fig. 3 and is given by

ẍt(t)Mt = FT (t)−Ktxt(t)−Btẋt(t), (10)

where Mt is the equivalent mass of the tower, Bt is the
damping coefficient, and Kt is the stiffness.

C. Drivetrain, Generator, and Pitch Actuator

The drivetrain transfers the rotor torque Tr to the generator
which in turn transforms it to electrical power by applying a
generator torque Tg . A visual representation of the drivetrain
is shown in Fig. 4. As traditional generators operate at higher
rotational speeds than the rotor, a gearing between the rotor
and the generator is used. The rotor is mounted on a shaft
usually termed the low-speed shaft which connects to the
high-speed shaft of the generator through the gearing.

The drivetrain is modeled by two inertias: One at the
low-speed shaft Jr and one at the high-speed shaft Jg . A
rotational damping Bθ and a rotational stiffness Kθ are added
to the low-speed shaft to model the shaft torsion θ. The
equations for the drivetrain are given by

Kθ Bθ
Jr

Jg

Tr

Tg

ωr

ωg

N

Fig. 4. Lumped representation of the wind turbine drivetrain dynamics.
The angular velocities ωr and ωg have opposite positive directions.

ω̇r(t)Jr = Tr(t)−Kθθ(t)−Bθ θ̇(t)

ω̇g(t)Jg = −Tg(t) +
Kθ

N
θ(t) +

Bθ
N
θ̇(t) (11)

θ̇(t) = ωr(t)−
ωg(t)

N
,

where ωg is the angular velocity of the high-speed shaft and
N is the gear ratio.

The generator electrical power output is controlled by the
applied generator torque Tg . The generator torque is modeled
by introducing the constraints

Tgmin ≤ Tg(t) ≤ Tgmax

|Ṫg(t)| ≤ Tgrate,
(12)

where Tgmin is the minimum generator torque, Tgmax is the
maximum generator torque, and Tgrate is the slew rate of the
generator torque.

The produced electrical power Pe is described by

Pe(t) = Tg(t)ωg(t)ηg, (13)

where ηg is the generator efficiency.
The pitch actuators of the wind turbine use a closed

loop servo system that guarantees that the pitch reference is
obtained. This is modeled as a first order closed loop system
given by

β̇i(t) =
1

τβ
(βref,i(t)− βi(t)) , i = 1, 2, 3, (14)

subject to the constraints

βmin ≤ βi(t) ≤ βmax

|β̇i(t)| ≤ βrate,
(15)

where τβ is the time constant of the pitch system, βref,i is
the pitch angle reference for the i’th blade, βi is the pitch
angle of the i’th blade, βmin and βmax are the minimum and
maximum blade pitch angle, respectively, and βrate is the
pitch slew rate.



D. Linearization

The models of the subsystems are collected into a nonlin-
ear state-space model

ẋn= f(xn, un, dn) (16)
zn= h(xn, un, dn), (17)

where xn = (xt, ẋt, ωr, ωg, θ, β1, β2, β3)
T is the state

vector, un = (βref,1, βref,2, βref,3, Tg)
T is the input vector,

dn = (V1, V2, V3)
T is the disturbance vector (V1, V2, and V3

denote the blade wind speeds at 75 % blade span), and zn =
(Pe, β1, β2, β3, β̇1, β̇2, β̇3, ẋt, ωr, θ̇, Mb1, Mb2, Mb3)T

are the performance outputs used for MPC.
The aerodynamic model of the wind turbine is highly

nonlinear and is not suited for control purposes. A linearized
model of (16) and (17) is therefore derived. The steady
state operating points used for the linearization are found
by maximizing the power output at low wind speeds. In full
load operation the pitch angle operating points are found by
limiting the power to the rated level. Since the aerodynamics
are not in closed-form expressions, the linearized aerody-
namic model is derived numerically at the operating points
in the dependent variables βi, ωr, and Vi. The expression for
the generated electrical power in (13) is linearized using a
first-order Taylor approximation.

As the operating point for the electrical power (and thus
all operating points) are dependent on the mean wind speed
V , the linear model is parameterized by the mean wind speed
by

ẋ= A(V )x+Bu(V )u+Bd(V )d (18)
z= Cz(V )x+Du(V )u+Dd(V )d, (19)

where the variables x, u, d, and z denote the pertubations
from the operating points. A, Bu, Bd, Cz , Du, and Dd are
the linear parameter varying state-space matrices. The reason
for the independence from the azimuth angle ψ used in (9)
is that neither Mt nor My is included in the performance
outputs z, but are both instead included in the cost function in
MPC by the Coleman transformation (through the weighting
matrix Q) as will be explained in section 3.

E. LIDAR

The objective of the LIDAR is to provide a wind preview
for each of the three blades. A wind preview at each
controller time step over the entire prediction horizon of the
MPC is required. The LIDAR type considered for this paper
is a hub mounted Continuous-Wave LIDAR taking rotary
measurements at 75 % of the blade span where the maximum
power extraction from the wind is [16]. Three measurements
are taken at each time step, one for each blade.

The focal distance of the measurements is chosen accord-
ing to [17], which recommends that the measurement angle
should be less than 45◦. Given the focal distance D and
a mean wind speed V̄ , the preview time Tp is calculated
as Tp = D

V . The focal distance is chosen to be 54 m,
corresponding to a preview time Tp of 3 seconds for a wind

ωrTp
3
4 R

ψ

Fig. 5. LIDAR measurement positions (crosses) in the rotor plane.
Measurements are taken ωrTp radians ahead of the blades and at 75 %
blade span.

field with a mean wind speed of 18 m/s (which is used in
the simulations).

When obtaining a time history of the wind speeds, the
predicted positions of the blades need to be taken into
account. Because of this, the position of the measurements
in the rotor plane is ωrTp radians ahead of each blade. This
is shown in Fig. 5.

Some assumptions need to be made in order to use LIDAR
for predictive control:
• The mean wind direction is perfectly aligned with the

wind turbine, meaning that the lateral and vertical wind
speeds both have zero mean in the preview horizon.
If this is not the case, the LIDAR could be measuring
entirely different speeds than those affecting the turbine.

• Turbulence moves with the mean wind speed and
direction and the turbulence does not grow or fade
in the preview horizon (Taylor’s Frozen Turbulence
Hypothesis).

• As the LIDAR measures in Line Of Sight (LOS) di-
rection, the wind vector needs to be projected into the
horizontal component of the wind. If lateral and vertical
components of the wind field are present, this will give
an error in the measured horizontal wind speed. It is
assumed that the vertical and lateral components of the
wind field are negligible compared to the horizontal
component so that this error becomes very small.

Investigation of these assumptions in different LIDARs is the
current topic of research, since the LIDAR technology is not
mature [17].

III. CONTROLLER

The goal of this paper is to reduce the 1P frequency
harmonic loads in the structure caused by an asymmetric
wind field, while maintaining the power production at a
rated level. The use of preview measurements of the wind



together with hard constraints on the system makes Model
Predictive Control (MPC) well suited for this task as it
provides a natural formulation of these. MPC works by
predicting the future system outputs over a prediction horizon
Hp and computing the optimal control inputs over a control
horizon Hu. The first calculated control input is applied to
the system, the horizons are then shifted one time step and
the optimization is repeated for the next time step. Thus, an
optimization problem is solved at each controller time step.
MPC is usually formulated with a quadratic cost function
and linear inequality constraints [18], as is the case for this
paper. The cost function used in this paper is described by

Jz(k)=

Hp∑
i=0

‖ẑ(k + i|k)− r(k + i)‖2Q

Ju(k)=

Hu−1∑
i=0

‖û(k + i|k)‖2R (20)

J(k)= Jz(k) + Ju(k),

where Jz is the tracking error cost, Ju is the input cost,
J is the total cost, ẑ are the predicted outputs, r is the
reference trajectory, û are the predicted inputs, Q is the
output weighting matrix and R is the input weighting matrix.
The predicted outputs ẑ are calculated using (19). The
reference trajectory is chosen to be a constant reference,
and since the model is linearized at the operating points,
the reference trajectory becomes zero for all outputs. The
constraints in this paper are on the actuators. All constraints
are linear and are given in (12) and (15).

Since the goal among others is to reduce the harmonic
loads and the formulation of these are nonlinear in ψ, as
shown in (9), they cannot be used as outputs of the linear
model without scheduling very frequently. Instead they are
introduced through the output weighting matrix Q. As the
cost function is quadratic the tilt and yaw moments must be
defined as quadratic terms as well. The sum of the squares
of the tilt and yaw moments yields

M2
t +M2

y =
[
Mb1 Mb2 Mb3

]
T

Mb1

Mb2

Mb3

 , (21)

where T = TTc Tc. The matrix T is positive-semidefinite as
it is a requirement for Q. By using trigonometric identities,
T is further reduced to

T =
22

33

 1 − 1
2 − 1

2
− 1

2 1 − 1
2

− 1
2 − 1

2 1

 , (22)

which shows that T is constant and independent from ψ.
The output weighting matrix Q is now expressed as

Q =

[
I 0
0 T

]
Qw, (23)

where I is the identity matrix and Qw is a diagonal matrix
containing the weights of each output. The squared tilt and
yaw moments are now included in the cost function and
are independent from ψ which makes the MPC problem
less complicated since a prediction of ψ is not needed to
generate output weighting matrices for each time step in
the prediction horizon. Instead Q is constant over the entire
prediction horizon.

The MPC is designed with weights on the performance
outputs as well as the inputs given in section 2. The MPC
controller is implemented with a sample rate of 10 Hz,
prediction horizon of 15 and a control horizon of 15.

IV. RESULTS

The designed individual pitch MPC with LIDAR is com-
pared to an MPC with collective pitch and without LIDAR
measurements. Both the controllers are linearized around
the mean wind speed of the test wind field, and full state
information is assumed in the simulation. The wind field is
generated with the stochastic wind field simulator TurbSim
from NREL [19]. The generated wind field measured at the
hub is shown in Fig. 6.

The primary goal is to produce power and keep the power
production steady at the rated level. The comparison of the
power production is shown in Fig. 7. It is seen that both
controllers are able to maintain the rated power level (5
MW). However the power of the MPC with LIDAR has a
slightly lower sample standard deviation of 0.29 % compared
to 0.36 % for the MPC without LIDAR.

To compare the asymmetric loads of the controllers, the
power spectral densities of the flap-wise bending moment
of blade 1 and the bending moment of the low-speed shaft
at the tip (in the direction of blade 1) are shown in Fig. 9
and 10, respectively. Both figures show significant reductions
around the 1P frequency (0.2 Hz) of the LIDAR based MPC
compared to the MPC without LIDAR. The reduction for the
shaft bending moment is 85 % and the reduction for the flap-
wise blade bending moment is 60 %.

Furthermore the damage equivalent load (DEL) reduction
for the shaft bending moment at the tip, flap-wise bending
moment for blade 1 and tower deflection are calculated
using the rainflow counting algorithm according to [20]. The
reduction of the shaft bending DEL is 33.9 %, the flap-wise
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Fig. 6. Simulation wind speed measured at the hub.
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Fig. 7. Power production comparison of MPC and baseline controller.
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Fig. 8. Comparison of pitch activity from 0 s to 70 s.

bending DEL reduction is 11.6 %, and the tower deflection
DEL is reduced by 15.6 %.

The pitch activity of both controllers is shown in Fig. 8. As
seen, the LIDAR based MPC introduce harmonic motions in
the pitch actuators to counteract the harmonic 1P moments.

V. CONCLUSION

The goal of this paper was to show the possibility of using
LIDAR to reduce harmonic loads caused by an asymmetric
wind field while maintaining a power reference. This was
done by using MPC with LIDAR measurements. A model
with individual blade pitching was developed for MPC and
parameterized by the mean wind speed. Non-rotating tilt and
yaw moments were introduced to the cost function of MPC to
reduce the harmonic loads. The power was maintained at the
rated level, while greatly reducing the power of the harmonic
loads of both the low-speed shaft bending moment and the
flap-wise blade bending moment around the 1P frequency
by 85 % and 60 %, respectively.
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