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Abstract

Late blight, caused by the oomycete Phytophthora infestans, is the most important disease of potato (Solanum tuberosum).
Understanding the molecular basis of resistance and susceptibility to late blight is therefore highly relevant for developing
resistant cultivars, either by marker-assissted selection or by transgenic approaches. Specific P. infestans races having the
Avr1 effector gene trigger a hypersensitive resistance response in potato plants carrying the R1 resistance gene
(incompatible interaction) and cause disease in plants lacking R1 (compatible interaction). The transcriptomes of the
compatible and incompatible interaction were captured by DeepSAGE analysis of 44 biological samples comprising five
genotypes, differing only by the presence or absence of the R1 transgene, three infection time points and three biological
replicates. 30.859 unique 21 base pair sequence tags were obtained, one third of which did not match any known potato
transcript sequence. Two third of the tags were expressed at low frequency (,10 tag counts/million). 20.470 unitags
matched to approximately twelve thousand potato transcribed genes. Tag frequencies were compared between
compatible and incompatible interactions over the infection time course and between compatible and incompatible
genotypes. Transcriptional changes were more numerous in compatible than in incompatible interactions. In contrast to
incompatible interactions, transcriptional changes in the compatible interaction were observed predominantly for
multigene families encoding defense response genes and genes functional in photosynthesis and CO2 fixation. Numerous
transcriptional differences were also observed between near isogenic genotypes prior to infection with P. infestans. Our
DeepSAGE transcriptome analysis uncovered novel candidate genes for plant host pathogen interactions, examples of
which are discussed with respect to possible function.
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Introduction

The oomycete Phytophthora infestans causes late blight disease in

Solanaceous plants, particularly in potato (Solanum tuberosum),

tomato (Solanum lycopersicum) and their wild relatives. In potato

plants, P. infestans attacks foliage, stems and tubers. When not

controlled, late blight epidemics can completely destroy crop yield

[1]. Late blight is therefore world wide the most important disease

in potato cultivation. The control by pesticides increases

considerably the production costs and can lead to the evolution

of resistant P. infestans strains. Improving the genetic resistance of

potato to late blight is therefore a long standing breeding goal,

which is paralleled by numerous research efforts to describe,

understand and manipulate the genetic basis of resistance. Genetic

resistance to P. infestans has been discovered in many wild potato

species and was introgressed during the last century into the

cultivated potato primarily from the Mexican wild species S.

demissum [2]. Host resistance to specific races of P. infestans is

conferred by single, dominant R genes, which recognize the

corresponding avirulence (Avr) gene of P. infestans and trigger a

defense response manifesting itself in local cell death (hypersen-

sitive resistance, HR), thereby arresting pathogen growth. In this

case the host plant and the pathogen are incompatible

(incompatible interaction). In recent years, several R and Avr

genes have been cloned from potato and P. infestans, respectively,

and functionally characterized [3,4,5,6,7,8,9,10,11,12]. All potato

R genes for resistance to P. infestans characterized so far are

members of the CC-NBS-LRR type gene family [13], typically

having a coiled coil (CC) domain, a nucleotide binding site (NBS)

and a leucine rich repeat (LRR) domain. Pathogen recognition by

an R gene is quite easily circumvented by mutations in the

corresponding P. infestans avirulence gene, which enables the

pathogen to successfully invade and colonize the host plant in a

compatible interaction. The compatible interaction is not uniform.

Depending on the genotype of the host plant, invasion, growth and

sporulation of P. infestans progresses with variable efficiency and

speed. This natural variation of the compatible interaction

constitutes another type of resistance, which is controlled by
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multiple genetic and environmental factors and is called

quantitative resistance [14]. The identification of the genes that

underlay quantitative resistance is in its infancy. Genetic analyses

suggest that ‘defeated’ R genes (R genes overcome by new races of

P. infestans) are one component of quantitative resistance to late

blight [14,15,16,17]. Further candidates for quantitative resistance

are genes functional in defense signaling [18,19] and defense

response genes [20].

The compatible and incompatible interaction of potato with P.

infestans involves transcriptional activation or repression of a large

number of genes. A fraction of these pathogenesis related genes

has been characterized at the molecular level, including expression

changes upon infection with P. infestans, initially on a gene by gene

basis, for example [21,22,23,24]. Then, PCR (polymerase chain

reaction) based subtractive hybridization [25] made possible the

parallel isolation of dozens known as well as novel cDNAs that

were differentially expressed upon infection with P. infestans. Large

DNA sequence databases facilitated the assignment of putative

functions to differentially expressed cDNAs by sequence similarity

[26,27,28,29]. A further step towards monitoring the full potato

transcriptome in response to P. infestans infection were hybridiza-

tions of microarrays [30] with cDNA probes from infected and

non infected leaves, which yielded hundreds of known and new

differentially expressed genes [31,32,33]. With the exception of the

early papers analysing single gene expression in the same genotype

after infection with virulent or avirulent strains of P. infestans

[22,23,24], the recent high troughput studies do not allow a direct

comparison of the compatible and incompatible interaction in the

same genetic background, because either an incompatible or a

compatible interaction was analysed for expression changes over

an infection time course, or incompatible and compatible

interactions were compared between different potato genotypes

or even species. Either infection of the same genotype carrying an

R gene with a virulent or avirulent P. infestans race, or infection of

‘near isogenic’ genotypes transformed with an R gene and

comparison with the susceptible wild type should facilitate the

detection of transcripts that are specifically up- or down regulated

in the compatible or incompatible interaction, independent from

the genetic background. Transcripts that are up- or down

regulated in the compatible interaction are candidates for being

involved in quantitative resistance and may be further analyzed,

for example by association genetics [18] or gene silencing

approaches [19].

Next generation sequencing technology [34] has opened new

possibilities for de novo, comprehensive analysis of the transcrip-

tome by serial analysis of gene expression (SAGE) [35].

DeepSAGE [36] is a further development of SAGE. Libraries of

21 base pairs DNA sequence tags are generated from poly-

adenylated RNA and subjected to massive parallel sequencing.

Ideally, all transcripts present in a biological sample are detected

by specific sequence tags, the frequency of which is linearly related

with the frequency of the transcript in the sample. Differentially

expressed transcripts are identified by comparing the tag

frequencies in libraries generated from two or more biological

samples.

We used DeepSAGE technology to comprehensively capture and

compare the transcriptomes of the compatible and the incompatible

interaction between S. tuberosum and P. infestans. The transcriptome

of the incompatible interaction was obtained from two independent

transgenic lines carrying the R1 gene for resistance to late blight in

the same genetic background [6], whereas the transcriptome of the

compatible interaction was obtained from the same untransformed

genotype and further transgenic lines transformed with the empty

vector or a paralogous member of the R1 gene family of unknown

function. Our analysis identified novel differential transcripts that

might have a functional role during compatible or incompatible

host-pathogen interactions.

Results

DeepSAGE libraries
We generated fourty four 39 sequence tag libraries from five

genotypes, three time points and three biological replicates (one

tag library failed (ORF45_3dpi_rep3)) from total RNA extracted

from leaf tissue of single plants. The tissue samples were collected

0, 1 and 3 days after infection of five nearly isogenic potato

genotypes with a P. infestans race carrying the avirulence gene Avr1.

Two independent transgenic Désirée lines (10-2/4 and 10-23/2)

carrying a single insertion of the R1 resistance gene represented

the incompatible interaction, whereas untransformed Désirée

(WT), a transgenic Désirée line carrying the empty vector

(LV41) and a Désirée line transformed with a 10 kbp potato

genomic fragment containing the r1.1 gene (ORF45), represented

the compatible interaction. The function of the r1.1 gene is not

known. It shares high sequence homology with R1 but does not

confer resistance to P. infestans carrying Avr1 [6]. The ORF45

transgenic line contains one or more fragments of unknown size of

the 10 kbp construct (see Materials and Methods). Deep

sequencing of the 44 tag libraries resulted in 47.189809 million

high quality reads. Removal of singleton sequences left 37.115611

million reads, corresponding to 30 859 unique 21 base pair

sequence tags (unitags) (Table S1), which were further analysed.

Principal component analysis (PCA) of the 44 samples (Figure 1)

showed clustering according to the infection time course along the

axis of the first principal component. At 0 dpi (days post infection)

most samples clustered separately from the samples at 1 dpi and

3 dpi, irrespective of genotype. Nevertheless, even at 0 dpi

dispersion occurred along the axis of the first principal component,

indicating considerable transcriptome variation among near

isogenic, uninfected plants. The largest differentiation between

the samples occurred at 3 dpi. Samples having R1 (incompatible

interaction) were separated from the r1/ORF45 samples (compat-

ible interaction) at 3 dpi. However differences within the R1 and

r1/ORF45 samples were as large as the differences between the

two groups. A clear grouping of samples according to genotype

and time points after infection was therefore not observed.

To facilitate data analysis and to improve the reliability of

differential tag identification, we combined the data from the two

incompatible (R1) lines 10-2/4 and 10-23/2 and those from the

compatible (r1) lines WT and LV41 (3 biological replicates each) in

two genotypic groups named R1 and r1, respectively. Pair wise

comparisons between time points and between incompatible and

compatible genotypes R1 and r1 were therefore based on tag

libraries of six independent biological samples (two genotypes,

three biological replicates) per time point and group (Table 1). The

transcriptome data of line ORF45 were analysed separately from

the R1 and r1 groups. The statistics of line ORF45 was based on

two to three biological replicates of a single transgenic line

(Table 1). The average library size per grouped samples ranged

from 764873 to 1 406649 sequence tags and the number of

unitags per library from13288 to 18919 (Table 1).

The majority of the 30859 unitags showed low expression levels.

20929 unitags had an average expression level of less than 10

counts/million and only 867 unitags were detected with more than

100 counts/million (Fig. 2A). 20470 unitags (66.33%) matched to

expressed potato genes (sequence targets) available in public

databases. The remaining 10389 unitags were not represented in

the public potato unigene collections. The percentage of unknown

DeepSAGE of Potato Interaction with P. infestans
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unitags decreased with increasing expression level (Fig. 2A). In the

lowest expression class (,10 counts/million), 36% of the unitags

were unknown compared to 14% in the highest expression class

(.100 counts/million). The specificity of the tag annotation was

assessed by counting the number of unitags that matched to one or

more target sequences. 14065 (45.58%) and 3789 (12.28%) unitags

matched to one or two target sequences, respectively. The

remaining 2616 annotated unitags (8.48%) matched to three or

more target sequences (Fig. 2B). In many cases, multiple unitags of

highly variable abundance matched to the same target sequence,

indicating expression of multiple gene copies and/or allelic

variants of the target sequence in the sample. An unknown

portion of these tags, particularly low abundant ones, are also

likely artefacts resulting from incomplete restriction digestion

during library construction or sequencing errors. Discounting

redundant tags, the matching unitags corresponded to 12312

target sequences or expressed Solanum tuberosum genes. One

hundred and thirty nine unitags matched the genomic sequence

of Phytophthora infestans strain T30-4 [37]. As some of these tags

were also present in the 0 dpi samples, they likely correspond to

genes conserved between P. infestans and other microorganisms,

which colonized the sampled leaves.

Standard defense responses
A number of genes are known to be characteristically up or

down regulated upon pathogen infection [38]. In order to verify

Figure 1. Biplot of the principal components one and two after principal component analysis based on the transcriptome data of
44 samples.
doi:10.1371/journal.pone.0031526.g001

Table 1. Summary of the 39sequence tag libraries used for pair wise comparisons.

Genotypic group Time point4 No. of samples Average library size SD library size
Average number
of unitags

SD unitag
number Type of interaction5

R11 0 dpi 6 982 739 351 930 16 093 4 530 incompatible

1 dpi 6 1 249 088 298 093 18 919 3 926 incompatible

3 dpi 6 994 582 305 624 16 172 5 150 incompatible

r12 0 dpi 6 884 486 252 353 13 288 4 265 compatible

1 dpi 6 1 034 652 433 311 15 003 3 063 compatible

3 dpi 6 1 115 435 142 596 15 937 3 978 compatible

ORF453 0 dpi 3 1 291 402 527 049 16 731 6 238 compatible

1 dpi 3 1 406 649 598 539 17 426 5 913 compatible

3 dpi 2 764 873 537 101 14 994 10 862 compatible

1Combination of the Désirée transgenic lines 10-2/4 and 10-23/2 containing the R1 gene.
2Combination of untransformed Désirée (WT) and Désirée transgenic line LV41.
3Désirée transgenic line, transformed with a 10 kbp genomic fragment containing the r1.1 gene (ORF45).
4Time after inoculation in dpi (days post inoculation) when leaf tissue was sampled.
5Type of interaction between the host and the pathogen. ‘Incompatible’ indicates a hypersensitive resistance response whereas ‘compatible’ indicates a successful
colonization of the host tissue.

doi:10.1371/journal.pone.0031526.t001
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infection of the sampled leaf tissues, the data were searched for

known expression signatures for successful infection by the

pathogen. Twenty four unitags grouped under the gene ontology

(GO)-term ‘‘defense response’’ (GO:0006952) were extracted from

the data set, which matched most reliably defense response genes

according to the annotation of the Potato Gene Index by the Dana

Faber Cancer Institute. The expression levels of these genes at

1 dpi and 3 dpi as compared to 0 dpi were analysed by

hierarchical clustering of the corresponding tags (Fig. 3, Table

S2). Twenty two unitags showed a log-fold expression change of at

least 2 at 1 dpi and/or 2 dpi compared to 0 dpi and twelve of

those tags showed significant (FDR#0.05) changes, primarily

during the compatible interaction at 3 dpi (r1 and ORF45). This

set of tags included well known pathogenesis related (PR) genes,

the expression of which is up regulated upon pathogen attack.

Certain ‘defense response’ tags appeared to be up regulated in the

compatible but not in the incompatible interaction (histone 2A

variant (TC218608), lipoxygenase (TC204989), NtPRp27

(TC199490)). Variation between the expression patterns of the

r1 genotypes and ORF45 was also observed.

Differential expression in compatible and incompatible
interactions

We performed nine pair wise comparisons between expression

tag libraries, two comparisons each for the genotypic groups R1,

r1 and ORF45 over the infection time course and three

comparisons among the genotypic groups at 0 dpi (Fig. 4).

Transcriptional changes upon infection were more numerous in

the compatible as compared to the incompatible interaction.

Three days after infection with P. infestans, a five to eight-fold

higher number of differentially expressed unitags (false discovery

rate FDR,0.05) was observed for the compatible interactions (r1

and ORF45) as compared to the incompatible interactions (R1)

(Fig. 4). The highest number of 3265 differential unitags was found

in the r1 samples at 3 dpi versus 0 dpi.

Hierarchical cluster analysis of 406 unitags with significant

expression changes in the incompatible interactions (R1) at 3 dpi

compared to 0 dpi showed similarities and dissimilarities with

compatible interactions (r1 and ORF45) (Fig. 5). Some clusters

showed specificity for incompatible interactions. Two examples

are enlarged in Figure 5. The first cluster contained 16 unitags,

mostly with unknown function, which were all clearly down

regulated in the R1 transgenic plants but less so in the r1 plants.

The ORF45 transgenic line did not show a consistent expression

pattern in this group of tags. One of the most interesting members

in this group is a gene encoding a putative SJCHGC09842

protein. A member of this class of proteins was originally described

in Schistosoma japonicum and shows structural similarities to the

Cathepsin L class [39]. This gene was down regulated in R1 and

up regulated in r1 plants. Transcript changes of this gene in the

ORF45 plants were similar as in R1 plants at 1 dpi but at 3 dpi

the expression increased to the initial level (Fig. 5). The second

cluster contains 20 tags, also mostly unknown, which show

primarily up regulation in the R1 transgenic lines. Three tags in

this group are remarkable, because they responded in the

compatible interaction in the opposite direction. The first matched

to a heat shock protein (TC197553), the second to a gene with

unknown function (BQ113339) and the third lacked any

annotation.

To address the question, how many and which unitags were

preferentially up or down regulated in either compatible or

incompatible interactions, we filtered the data on the one hand for

potato tags (excluding tags derived from P. infestans) that showed

significant expression differences only in the R1 transgenic lines at

1 dpi and/or 3 dpi when compared to 0 dpi (incompatible

interactions). Three hundred ninety unitags fulfilled these criteria

(Table 2, Table S3). Twenty eight tags were differentially

expressed at both 1 dpi and 3 dpi. The 267 known tags matched

to 240 different target sequences. Ten target sequences matched to

multiple tags. Around one quarter of the tags had annotations that

suggest a putative function. Among those were the tags with the

lowest FDR values, which matched to the accessions TC207935

(tag StET010841 down regulated at 3 dpi, FDR = 5,85610216)

annotated as fibrillin 8, CV474958 (tag StET002320 up regulated

at 3 dpi, FDR = 1.86610213) annotated as a putative dihydroor-

otate oxidoreductase, and TC196885 (tag StET009643 up

regulated at 1 dpi, FDR = 2.6261026, Fig. 6), encoding a

transaldolase (EC2.2.1.2).

Filtering the data on the other hand for unitags that were

differentially expressed only in the r1 and ORF45 plants at 1 dpi

and/or 3 dpi when compared to 0 dpi (compatible interactions),

resulted in 796 potato tags, of which 178 were unknown (Table 2,

Table S4). The 618 known tags matched to 220 different target

sequences. This was due to the fact that 50 (23%) target sequences

were matched by multiple tags, indicating that some of these tags

Figure 2. Categories of tag frequencies, fraction of unknown
tags per category and number of tags matching one or more
target sequences. (A) Histograms of the average tag frequencies. The
curve above the histogram in A shows the average proportion (y-axis
on the right) of unknown tags in the five frequency classes. (B) The
number of tags matching from 1 to more than 15 different target
sequences. NA: Number of tags with no match.
doi:10.1371/journal.pone.0031526.g002
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correspond to multigene families and/or multiple alleles. Multiple

alleles are expected to occur in the tetraploid potato which is

highly heterozygous. Among others, two functional categories

were prominent among the sequences targeted by multiple

unitags: defense response genes such as PR1 (TC199385), PR2

(TC203758), PR10 (TC198314) and chitinase (TC224221), all up

regulated upon infection, and genes functional in photosynthesis

and CO2 fixation such as components of photosystem I and II (e.

g. TC197880, TC198430, TC199524, TC219799, TC213698),

ferredoxin 1 precursor (TC212710), chlorophyll a–b binding

protein (TC195879) and ribulose bisphosphate carboxylase small

subunit (TC223622, TC201192), which were all down regulated

(Table S4).

Only 28 tags were consistently up or down regulated in both

compatible and incompatible interactions (Table 2, Table S5).

The most conspicuous among those with meaningful annotation

were protease inhibitors encoded by multigene families [40]. Two

hundred and one tags were extracted from the whole data set that

matched to 48 target sequences annotated as various protease

inhibitors. After confirmation of the annotation by blasting the

Figure 3. Differential expression of known defense response genes in compatible and incompatible interactions analysed by
hierarchical cluster analysis. The heat map of the log-fold change values of sample groups R1, r1 and ORF45 at 1 dpi and 3 dpi versus 0 dpi is
shown. Unitags matching to twenty four transcripts were selected based on allocation to the gene ontology term ‘‘defense response’’ (GO:0006952).
The annotation and the corresponding unigene number are shown on the right. Significance of the pair wise comparisons between R1, r1 and ORF45
sample groups is indicated by * (FDR#0.05), ** (FDR#0.01) and *** (FDR#0.001).
doi:10.1371/journal.pone.0031526.g003
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target sequences against the nucleotide sequence collection at

NCBI (http://blast.ncbi.nlm.nih.gov/Blast), 150 tags matching 47

target sequences remained, which corresponded to at least 13

different types of protease inhibitors (Table S6). With the

exception of serine protease inhibitors (TC206576, TC203946),

members of all inhibitor types showed differential expression upon

infection with P. infestans. Members of the following inhibitor

families were down regulated in compatible and incompatible

interactions, although less so in incompatible interactions:

‘Protease inhibitor 1’ (Pin1, e.g. TC221091, TC216360,

CV503740, TC214045), ‘aspartic protease inhibitors 1 and 5’

(CV475336, TC197847), ‘cysteine protease inhibitor’ (e.g.

TC222339, TC199588), ‘trypsin inhibitor’ (TC199575), ‘protease

inhibitor 2 TR8 precursor’ (Pin2, TC205638) and ‘protease

inhibitor isoform’ (TC223032). Interestingly, some inhibitors were

predominantly up or down regulated in compatible interactions.

Down regulated was ‘Probable protease inhibitor P322’ (e. g.

TC224767, CV475377). Up regulated were ‘Metallocarboxypep-

tidase inhibitor’ (TC225685, TC222028, TC195941) and ‘ethyl-

ene-responsive proteinase inhibitor 1’ (TC219689) (Table S6).

GO-terms over represented in compatible and
incompatible interactions

To obtain an overview on the processes which might be

involved in the compatible and incompatible interactions, a GO

(gene ontology)-term analysis was performed using those unitags,

which were differentially expressed three days after inoculation

(3 dpi) in the R1, r1 and ORF45 genotypic groups. Testing for

over representation identified 61 significant GO-terms (Fig. 7).

Fifteen GO-terms were over represented in all three genotypic

groups R1, r1 and ORF45. They related to the photosynthetic

apparatus, the utilization of carbon and the generation of

precursor metabolites and energy. Thirty three GO-terms were

exclusively over represented in the r1 plants (compatible

interactions), including the terms ‘response to stress’, ‘response to

cold’, ‘response to stimulus’ and ‘carbohydrate metabolic process’.

In the ORF45 transgenic plants five terms were specifically over

represented which were mainly connected to carbon fixation

represented by terms such as ‘‘ribulose bisphosphate carboxylase

activity’’ or ‘‘carbon-carbon lyase activity’’. No GO-term occurred

specifically in the R1 plants (incompatible interactions).

Differential expression between genotypes at 0 dpi
The comparison of the genotypic groups R1, r1 and ORF45

with each other at 0 dpi should reveal expression differences, that

either exist in these plants independent of infection with P. infestans,

or are extremely rapid induced upon infection (within four

minutes after inoculation, see Materials and Methods for sample

preparation). Comparing the expression profiles at 0 dpi between

the groups R1 and r1 resulted in 159 different tags (FDR,0.05),

between R1 and ORF45 in 576 and between r1 and ORF45 in

1026 different tags (Fig. 4). The overlap between the three

comparisons was small. When filtering the data further for tags

with significant differences in both comparisons R1 versus r1 and

R1 versus ORF45, only 7 tags remained (Table 2, Table S7).

Except tag StET005879 (TC207421), which was annotated as a

GRAS9 transcription factor, none of these tags had a meaningful

annotation. Two unknown tags showed in R1 transgenic plants

higher expression than in both r1 and ORF45 plants, whereas the

other five tags showed the opposite pattern, low expression in R1

transgenic plants and up regulation in r1 and ORF45 plants.

Figure 4. Number of tags showing significant expression changes (FDR#0.05) in nine pair wise comparisons. The grey bar indicates
the number of unknown tags. Incompatible (R1) and compatible (r1, ORF45) interactions at 1 dpi and 3 dpi were compared with 0 dpi. At 0 dpi,
genotypic groups were compared: R1 with r1 and ORF45, and ORF45 with r1.
doi:10.1371/journal.pone.0031526.g004
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Differential expression in ORF45
The transgenic line ORF45 contains one or more fragments of

unknown size from a 10 kbp construct containing the potato r1.1

gene. Unitags differentially expressed only in ORF45 plants when

compared with R1 and r1 plants might be connected to function,

position and copy number effects of the transgenic DNA insertions

in cv Désirée background. We filtered the data set for tags up or

down regulated preferentially in ORF45 plants at 1 dpi and/or

Figure 5. Heat map of the log-fold change values of sample groups R1, r1 and ORF45 at 1 dpi and 3 dpi compared to 0 dpi. Shown is
the result of a hierarchical cluster analysis using 406 unitags with significant expression changes in the incompatible interactions (R1) at 3 dpi
compared to 0 dpi. Two regions with preferential up or down regulation in the incompatible interaction are shown enlarged with the tag annotation
given on the right side. NA: Tag with no matching target sequence.
doi:10.1371/journal.pone.0031526.g005

DeepSAGE of Potato Interaction with P. infestans
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3 dpi versus 0 dpi. This turned up 1471 unitags, of which 149

were differentially expressed at both 1 dpi and 3 dpi (Table 2,

Table S8). The 1008 known tags matched to 744 different target

sequences. Finally, we selected tags with significantly different

expression levels in ORF45 when compared to both R1 and r1

plants at 0 dpi. This comparison resulted in 199 tags (Table 2,

Table S9). With 5 exceptions, these tags were expressed at higher

level in ORF45 plants than in both R1 and r1 plants. Eighty nine

of these tags showed no changes over the infection time course,

among those candidates such as SKP1-like protein (TC201682),

EF hand family protein (TC200512), Cullin 3-like protein

(TC198425), nuclear receptor GRF (CK252537) and LeArcA1

protein (TC197505). Due to multiple tags targeting the same

sequence, the 152 annotated tags matched to 63 target sequences,

many of which are annotated as genes operating in photosynthesis

and carbon fixation, similarly as observed for the compatible

interactions over the infection time course. Many of these tags

were also differentially expressed during infection.

Discussion

In this study, we used next generation sequencing of 44

DeepSAGE libraries to detect and quantify the transcripts present

in potato leaves before and after infection with P. infestans. To

eliminate effects of the genetic background on the leaf transcrip-

tome, we used for infection experiments and sampling five near

isogenic genotypes derived from cv Désirée, which differed only by

the presence or absence of the R1 resistance gene. The comparison

of the interaction of potato with P. infestans at three infection time

points was based on six and nine independent biological samples

for the incompatible and the compatible interaction, respectively.

This redundancy provided very stringent experimental conditions

for detecting differentially expressed transcripts. The statistical

treatment of comparisons between SAGE data from multiple

samples such as described here is in an exploratory phase. Several

test statistics have been proposed to handle comparisons of SAGE

data, for example the G-test [41], a variation of Fisher’s exact test

[42], baySeq [43], DEGseq [44], DESeq [45] and edgeR [46].

After exploring the DeepSAGE data with the G-test, Fisher’s exact

test, baySeq (unpublished results) and edgeR, we found that

edgeR, for the time being, was the most appropriate method when

performing multiple sample comparisons. However, we observed

that the test statistic does influence the results obtained. As there is

no consensus yet on the optimal test statistic for identifying ‘true’

differences between tag counts, particularly those with low

frequency, our extensive data set represents an excellent basis

for method comparison and improvement.

Principal component analysis (Fig. 1) based on the tag data of all

44 samples, each representing several leaflets of a single plant,

showed large variation of individual defense responses. Most

samples showed clustering at 0 dpi, although less than it was

expected for genetically nearly identical plants prior to infection.

Dispersal of the samples along both axes was observed at 1 dpi and

more so at 3 dpi, indicating significant changes of the transcript

profiles, but without consistent grouping according to time point

or interaction type. Looking at actual tag counts, large variation

was observed between individual plants within the same group at

the same time point. This indicates that the timing of the defense

response varied considerably between individual plants, some

responding faster than others. Many physiological and environ-

mental factors can influence the timing of individual defense

responses. One might be the movement in time and space of

defense signals from the site of the initial physical contact between

P. infestans zoospores and host cells and the neighboring cells. To

avoid contamination of the transcriptome data with tag sequences

originating from P. infestans, we sampled the tissue for transcrip-

tome analysis from inoculated leaflets but excluding the infection

points where the initial haustoria are established (see Materials and

Methods). Variation of defense signaling could therefore have

contributed to the individual variation of transcript profiles.

During the first three days after infection with P. infestans, the

leaves are almost symptomless. Visible HR or sporulating leasons

Figure 6. Expression patterns of tags StET010753 and
StET009643 matching the tomato transaldolase isoforms
ToTAL1 (PotTAL1) and ToTAL2, respectively. Tag StET10753 is
weakly up regulated in the R1 and r1 plants but not in the ORF45 plants
at three days post inoculation. Tag StET009643 shows clear up
regulation only in the R1 plants one day after inoculation. Transcript
levels are shown as mean tag counts/million of six (R1 and r1 plants),
three (ORF45 plants at 0 dpi and 2 dpi) and two (ORF45 plants at 3 dpi)
independent samples. Bars indicate the standard deviation according to
the Poisson distribution.
doi:10.1371/journal.pone.0031526.g006
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develop after four to six days. Infection was therefore monitored

by extracting from the SAGE data a set of unitags which

corresponded to genes known to be differentially regulated during

the defense response of Solanum tuberosum. Most of these defense

response tags showed logfold changes of at least two at 1 dpi and/

or 3 dpi (Fig. 3), indicating successful infection of most sampled

leaflets. Not all of these changes were significant though in the

corresponding pair wise comparisons of the sample groups. This

can be explained by the highly variable tag counts in the individual

samples (Table S2) and the asynchronous infection kinetics as

shown by PCA.

DeepSAGE analysis unraveled some interesting aspects of

general leaf transcriptome architecture. Two thirds (68%) of the

unitags were expressed at low levels (,10 counts/million) in leaf

tissue, of which one third (36%) did not match to any known potato

transcript. This shows that, despite the extensive EST (expressed

sequence tag) data available (DFCI Potato Gene Index), knowledge

about the transcriptome composition is still incomplete, particularly

in a non-model organism such as Solanum tuberosum. The unknown

tags and their expression patterns provide a first entry point into the

discovery of novel potato defense genes. The potato genome

sequence [47] will provide a platform for identification of the

corresponding genes. On the other hand, only 3% of the unitags

showed an average expression above 100 counts/million but

accounted for 32% of the total transcriptome. Of the highly

frequent transcripts only 14% were unknown. The most frequent

tag (StET008016, average 27184 counts/million) matched to

unigene TC208859, annotated as cell wall protein. The expression

of this gene accounted for 4% of all transcripts in the leaf tissues.

According to the uniprot database not very much is known about

the function of the encoded protein. BLASTp and motif pattern

searches revealed that it belongs to the superfamily of glycine rich

proteins. The potential functions of glycine rich proteins range from

callose deposition and cell development to defense and stress

responses and chaperone activities [48]. Not surprisingly, other

highly frequent tags corresponded to genes functional in photosyn-

thesis and primary metabolism, for example ribulose bisphosphate

carboxylase, chlorophyll a–b binding proteins and other compo-

nents of photosystem I and II.

Transcriptional changes during infection were much more

pronounced in compatible than in incompatible interactions. The

number of target sequences was however similar, 240 and 220 for

incompatible and compatible interactions, respectively. The

higher tag numbers in compatible interactions resulted mainly

from multiple tags matching the same target sequence. Overall,

the transcriptomes of incompatible and compatible interactions

showed more differences than commonalities. The incompatible

interaction results in programmed cell death of a small number of

cells at the spot of primary contact with the pathogen. The

transcriptome of these cells, which were not included in the

DeepSAGE samples, might undergo dramatic changes, whereas

the sampled neighboring tissue remains relatively undisturbed.

The changes observed here might be causes or consequences of

systemic acquired resistance (SAR) signaling [49] or of induced

resistance to other types of biotic and abiotic stress called priming,

which is triggered by necrotizing pathogens [50]. Three quarters

of the tags differentially expressed during the incompatible

interaction were not significantly up or down regulated during

the compatible interaction, indicating considerable differences

between the corresponding transcriptomes. Only five tags (1.3%)

had an average expression above 100 counts/million in the

incompatible interaction, compared with 94 (11.8%) tags in this

category in the compatible interaction (Tables S3 and S4). The

GO-analysis gave no hint, which cellular and metabolic processes

might specifically be affected in the incompatible interaction,

probably due to lack of knowledge of Solanum tuberosum genes

functional in this context. The GO-term ‘defense response,

incompatible interaction’ (GO:0009814) contained only 64 genes,

while the next higher order term (GO:0006952) ‘defense response’

contained 506 genes. At present, the resolution of GO-analysis is

not sufficient to identify the processes initiated or interrupted

during the incompatible interaction. Consistent with this is the fact

that a meaningful annotation was assigned to only one quarter of

the tags showing differential expression in the incompatible

interaction. Of those we discuss below two interesting cases with

highly significant differential expression.

One day post inoculation, tag StET009643 matching the

transaldolase gene ToTAL2 (TC196885) was specifically and

transiently up regulated during incompatible interactions

(Figure 6B). Transaldolases (EC 2.2.1.2) catalyze the conversion

of sedoheptulose 7-phosphate and D-glyceraldehyd 3-phosphate

into D-erythrose 4-phosphate and D-fructose 6-phosphate, as part

of the oxidative pentose phosphate pathway. Erythrose 4-

phosphate is one precursor of the shikimic acid pathway, which

gives rise to phenylpropanoids, alkaloids and the plant hormones

auxin and salicylic acid (http://www.brenda-enzymes.info/php/

result_flat.php4?ecno = 2.2.1.2) [51]. These molecules are all

associated with plant defense. Salicylic acid is an important

Table 2. Rational and summary of the comparisons between compatible and incompatible interactions over the infection time
course, and between genotype groups R1, r1 and ORF45 at 0 dpi.

Tag data filtering conditions
No. of
differential tags

No. of unknown
tags

No. of up
regulated tags

No. of down
regulated tags

No. of target
sequences

FDR,0.05 in R1, FDR.0.05 in r1 and ORF45, comparing
1 dpi and 3 dpi with 0 dpi

390 123 204 186 240

FDR,0.05 in r1 and ORF45, FDR.0.05 in R1, comparing
1 dpi and 3 dpi with 0 dpi

796 178 432 364 220

FDR,0.05 in R1, r1 and ORF45, comparing 1 dpi and
3 dpi with 0 dpi

28 7 3 25 13

FDR,0.05, comparing R1 with r1 and ORF45 at 0 dpi 7 2 2 5 5

FDR,0.05 in ORF45, FDR.0.05 in r1 and R1, comparing
1 dpi and 3 dpi with 0 dpi

1471 463 793 678 744

FDR,0.05, comparing ORF45 with r1 and R1 at 0 dpi 199 46 194 5 65

doi:10.1371/journal.pone.0031526.t002
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Figure 7. Histogram of significantly (FDR#0.1) over represented gene ontologies (GO). The Tags differentially expressed three days after
inoculation (3 dpi) in the R1, r1 and ORF45 sample groups were used for the analysis. The bars indicate relative tag quantity by determining the ratio
between the representation of an ontology term and the total number of significant tags.
doi:10.1371/journal.pone.0031526.g007
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component of SAR, in which auxins may also have a role [49].

Only two tags in the whole data set were annotated as

transaldolase, one (StET009643) corresponding to tomato ToTAL2

(AY007225) [52] and the other (StET010753) to potato PotTAL1

(U95923) [53] and tomato ToTAL1 (AF184164) [52]. The latter

was up regulated at 3 dpi in both R1 and r1 plants but not in

ORF45 plants (Figure 6A), whereby only the up regulation in r1

plants reached the significance threshold (Table S1). Up regulation

of transaldolase 1 upon fungal infection has been also observed in

cucumber and wheat [52], suggesting a more general role of this

isoform in defense, whereas transaldolase 2 might have a more

specific function in the incompatible interaction.

Three days after infection, tag StET010841 matching a Fibrillin

8 (FIB8) gene (TC207935) was strongly and specifically down

regulated (Table S3). Interestingly, tag StET01040, which differed

by only one nucleotide, was not differentially regulated (Table S1).

This tag might represent an allele or a paralogous FIB gene. Plant

fibrillins are structural, lipid associated proteins located in

thylacoid membranes, which seem to play a role in biotic and

abiotic stress responses, growth and development and in hormone

signaling [54]. Down regulation of Arabidopsis FIB’s by RNA

interference resulted in reduced growth and increased symptoms

of photooxidative stress when plants were exposed to a

combination of high light and cold temperature. The stress

symptoms could be cured by treatment with methyl-jasmonate,

suggesting that FIB transcript levels condition jasmonate (JA)

production, possibly by lowering the level of oleic acid-containing

triacyl glycerol, a substrate for JA biosynthesis [55]. In the context

of host-pathogen interactions, jasmonates are involved in SAR

[49]. The specific down regulation of a potato FIB gene may cause

decreasing JA levels around 3 dpi during the incompatible

interaction. Consistent with this is the observation that down

regulation of JA biosynthesis in the same R1 transgenic Désirée

lines as used here for DeepSAGE analysis did not compromise the

hypersensitive response [56].

Transcriptional changes during compatible interactions are of

particular interest for quantitative resistance to late blight, which is

considered as natural variation of the kinetics and size of a

compatible interaction. In the compatible interaction, a general

reprogramming of the host tissue seems to occur, as indicated by

the large number of transcriptional changes and overrepresenta-

tion of general GO terms mainly in the compatible interaction.

Most tags with meaningful annotation matched gene families

known to be up or down regulated during host pathogen

interactions. The up regulation of pathogenesis related genes

and down regulation of genes functional in photosynthesis and

CO2 fixation during the compatible interaction is consistent with

previous findings [32]. Down regulation of carbonic anhydrase,

suggested to increase susceptibility to P. infestans [32] was

represented by several tags matching the unigenes TC209461,

TC218724 or TC221870 annotated as carbonic anhydrase (Table

S1). Systematic comparisons with microarray experiments

[31,32,33] are difficult at present due to differences of genetic

material used, experimental set ups and the lack of common

sequence identifiers. Besides the well known transcripts, Deep-

SAGE analysis provided also first information on novel transcripts

with potential function in compatible interactions, such as down

regulated TC210616, described as ‘putative 16 kD membranes

protein’, up regulated TC208974, encoding an unknown protein,

or the down regulated tag StET002587 without any matching

sequence.

DeepSAGE allows a better dissection of the expression of

multigene families. This is discussed using protease inhibitors as an

example. Protease inhibitors are up regulated in response to

wounding and herbivore attack. The wound response is mediated

by jasmonate signaling [57]. In both compatible and incompatible

interactions with P. infestans however, most tags matching protease

inhibitors were down regulated (Table S6). This is consistent with

the coordinated down regulation of Kunitz-type and Pin2

inhibitor families upon infection with P. infestans of two compatible

cultivars, which was observed using qRT-PCR, which discrimi-

nated between inhibitor families but not between individual family

members [58]. This indicates that the interaction with P. infestans is

the contrary of a wound response, at least during the initial

biotrophic phase, which might involve a decrease in jasmonate

levels (see above). Some inhibitor tags however, matching certain

metallocarboxypeptidase, Pin2 and ethylene-responsive protease

inhibitors, were up regulated, preferentially in the compatible

interaction. This suggests functional differentiation between

members of some inhibitor gene families. When comparing

multiple tags matching the same inhibitor sequence, large

differences in average tag frequencies were evident. Multiple tags

with very low frequency may be artefacts resulting from library

construction and sequencing. Some may result however from

variable expression of individual members of the gene family and/

or allelic variants, which became visible for the first time in the

DeepSAGE data.

The DeepSAGE experiment allowed to assess the effect on the

leaf transcriptome of the presence of the transgenes R1 and ORF45

in cv Désirée background. Seven tags were expressed at higher or

lower level at 0 dpi in the R1 plants as compared with the r1 and

ORF45 plants (Table S7). These seven tags might be the

consequence of the presence or absence of the R1 transgene in

the genome of cv Désirée, or they might have a role in the very

early onset of incompatible versus compatible interactions (the

0 dpi samples were collected immediately after inoculation, see

Materials and Methods). The only tag with meaningful annotation

matched GRAS9 (TC210616), a member of GRAS transcription

factor family. This transcript was undetectable in the R1

transgenic plants at 0 dpi, whereas it was detected in moderate

levels in r1 and ORF45 plants. One and three days after infection,

the transcript was present at low level in all plants. GRAS

transcription factors are known to be involved in developmental

processes, but may also have a role in host pathogen interactions.

GRAS transcripts accumulated in tomato during incompatible

interactions and silencing a member of this family (SIGRAS6)

impaired tomato resistance to bacterial speck disease [59].

Although speculative at this point, our findings point to a possible

connection between the presence of NBS-LRR type resistance

genes such as R1 and repression of GRAS transcriptional

regulators.

The ORF45 transgenic line was included in the DeepSAGE

analysis with the aim to capture differential transcripts caused by

the presence of the r1.1 transgene, which is physically closely

linked and highly similar to the R1 resistance gene [60] but does

not confer resistance to P. infestans [6]. Transcripts specifically up

or down regulated in ORF45 plants might hint at a possible

function of the r1.1 gene that is independent from pathogen

resistance. We could not obtain evidence however, that the

ORF45 transgenic line contains a full length copy of the r1.1

transgene. Differences observed between the leaf transcriptomes of

ORF45 and wild type plants can therefore result from unspecific

effects of transgene copy number and position, and/or from

specific effects of functional sequences present in the transgenic

DNA insertion(s) in ORF45 plants. A surprisingly large number of

tags were present in higher frequency in ORF45 plants at 0 dpi

when compared with R1 and r1 plants. Part of the reason for this

might be that in case of ORF45 only three instead of six samples
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were available for comparisons, which reduced the reliability of

the comparison. An unknown proportion of significant tags likely

resulted from random biological variation of transcript levels. On

the other hand, some transcriptional differences might be the

consequence of the transgenic DNA insertion(s) in ORF45 plants.

Interestingly, many tags overrepresented in ORF45 plants at 0 dpi

were matching genes for photosynthesis, CO2 fixation and

respiration. Phenotypically, there was however no visible differ-

ence between non infected ORF45, R1 and r1 plants.

Conclusion
Using DeepSAGE technology for the generation of transcrip-

tome data and subsequent computational data analysis delivered a

suite of novel candidate genes that might play a functional role in

compatible and incompatible host pathogen interactions in general

and interactions of potato with Phytophthora infestans in particular.

Further research is required to elucidate their putative role in

more detail. The tag matching unigenes and their annotation

provide the entry points for structural and functional exploration

of these genes, for example by gene silencing or association studies.

For the ‘unknowns’, the potato genome sequence [47] provides a

promising new tool for identifying the corresponding genes. The

set of data described in this paper can be used as an experimental

basis for the development and application of novel bioinformatics

tools, which might lead to further insights in the biological process

of host pathogen interactions in plants.

Materials and Methods

Plant material
For comparative transcriptome analysis of the compatible versus

the incompatible interaction with P. infestans we used the cultivar

Désirée and four transgenic Désirée lines. The independent

transgenic lines 10-2/4 and 10-23/2 both carried the R1 resistance

gene and showed the hypersensitive response upon infection with

P. infestans races having the Avr1 gene (incompatible interaction)

[6]. Progeny tests of both lines had shown that R1 was inherited as

a single locus [61]. Untransformed Désirée (WT) and a transgenic

line (LV41) transformed with the empty vector pCLD04541 [62]

used for complementation analysis of R1 [6] were used for the

compatible interaction. The fourth transgenic line (ORF45) has

been transformed with a 10 kbp genomic fragment containing the

r1.1 gene [6], which corresponds to ORF45 in [60]. Agrobacter-

ium mediated transformation was performed as described [6].

Line P4H5K3S2 shows a compatible interaction with P. infestans

races having the Avr1 gene. The presence of the left border, but

not the right border of the 10 kbp insertion could be demonstrated

in line P4H5K3S2 by PCR using primers that flank the vector-

insertion junction (not shown). Primers designed for specific

detection of ORF45 failed to discriminate between the transgene

and endogenous members of the R1 gene family present in cv

Désirée. Copy number and integrity of the r1.1 transgene in line

P4H5K3S2 are therefore unknown. Transgenic and wild type

Désirée plants were regenerated from in vitro shoot cultures and

grown under long day conditions (16 h light, 80 mmol photons

m22 s21, and 8 h darkness) in a climate chamber (York

International, Mannheim, Germany) at 21uC.

P. infestans cultivation and inoculum preparation
Phytophthora infestans strain R208m2 race 4 (Avr1) [63] was

propagated either sterile at 18uC on rye agar plates [64]

containing small leaves from susceptible in vitro grown potato or

non-sterile in a Petri dish on detached leaflets from 6–10 week old

susceptible plants. Long term cultures were maintained at 12uC.

The race composition was controlled by a detached leaflet test [65]

using the race 1–11 differential set of potato cultivars from the

Scottish Crop Research Institute (Invergowrie, UK). For inoculum

preparation, sporangia were collected in deionized water from 6–

11 days old infected leaves. Sporangia concentration was

quantified in a Neubauer chamber and adjusted to the required

concentration. Sporulation was induced by incubating the

sporangia suspension at 4–8uC for 3–6 h. Successful sporulation

was controlled optically using a Stereomicroscope. Detached

leaflets were inoculated with 20 ml sporangia suspension (30000–

60000 sporangia/ml). Infection symptoms were observed between

the fifth and the 7th day post inoculation and confirmed by the

presence of mycelia.

Infection experiments
Plants were grown for 6–8 weeks under standard conditions. At

least one week before infection, the plants were transferred to a

growth chamber (Vötsch Industrietechnik, Balingen, Germany)

with lower temperature (16 h light at 18uC, 8 h dark at 14uC).

Four leaves of each plant were used for infection starting at the

third leaf from the top. Each terminal leaflet was infected with four

12.5 ml droplets of inoculum (30 000 sporangia/ml). The droplets

were placed in the four corners of the leaflet. Tissue samples were

collected by punching out a leaf disc of 2 cm in diameter from the

center of the leaflet, excluding the inoculation spots. The discs of

three leaflets derived from one plant were pooled, immediately

frozen in liquid nitrogen and stored at 280uC. The fourth

inoculated leaflet was harvested eight days post inoculation to

verify a successful infection by semi-quantitative amplification of

genomic P. infestans DNA using the primers 0–83 and 0–84 [66]

and as template genomic DNA extracted from the whole leaflet.

Inoculation and harvest of leaf discs were done in the late

afternoon (circa 16:30 to 20:00 o’clock) at zero (0 dpi), one (1 dpi)

and three (3 dpi) days post inoculation. The 0 dpi samples were

collected immediately after inoculation with a contact time of less

than three minutes. The plants were then covered with clear

plastic bags to insure high humidity. For each time point material

was harvested from a different plant to avoid wounding and

priming effects. The infection experiment was repeated three times

with new batches of plants and inoculum (Rep1, Rep2 and Rep3).

39-tag library production and Deep sequencing
Total RNA was extracted from infected leaf tissue using the

ToTALLY RNA Kit (Applied Biosystems, Carlsbad, USA)

following the suppliers instructions. RNA was quantified using the

Nanodrop system of Thermo Scientific (Waltham, USA). Prior to

the production of 39-tag libraries the RNA was assessed for integrity

on 1% agarose gel by the presence of intact ribosomal RNA bands.

Two mg of total RNA per sample was used to construct DeepSAGE

tag libraries [36] using a modification to facilitate direct sequencing

of the amplicons by Solexa/Illumina sequencing [67]. Samples were

diluted to a final concentration of 10 nM and were pooled into four

pools each containing 10 samples with different identification key.

Final pool concentrations were estimated using Quant-iT-Pico-

Green prior to template DNA hybridization and sequencing on an

Illumina Genome Analyzer II (Illumina, San Diego, USA)

according to the manufacturer’s instructions. Due to the restriction

enzyme NlaIII used for library construction, each tag carries the

nucleotides CATG at the 59 end, which were not included in the tag

sequences shown in the supplementary tables.

Data analysis
The tag count data were transformed into a data matrix using a

series of Perl-scripts available for download on the PoMaMo database
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[68] (http://www.gabipd.org/projects/Pomamo/). Sequence tags

detected less than twice (singletons) were removed from the data using

the script ‘‘CutoffLibsV3.pl’’. Then the data of all libraries were

combined in one table using ‘‘CompareSage.pl’’. The tag count data

was transformed into the relative unit counts/million by implement-

ing ‘‘NormaliseTagTable.pl’’. To this data matrix a second cutoff was

applied using ‘‘CutoffCombinedLibsTable.pl’’. This cutoff was

defined as a minimum of 110 tag counts/million summed up over

all libraries and a minimum detection in three libraries. As last step

the tag annotation was performed by the implementing ‘‘GlobalSa-

geMap-V23.pl’’. The source for the tag annotation was a combined

reference sequence set consisting of the currently available Potato

Gene Index ‘‘Potato 13.0’’ (http://compbio.dfci.harvard.edu/tgi/

plant.html from the Dana Faber Cancer Institute) and the genomic

sequence of Phytophthora infestans T30-4 (http://www.broadinstitute.

org/annotation/genome/phytophthora_infestans/MultiHome.html

at the Broad Institute) [37]. Taking into account the high sequence

diversity and SNP (single nucleotide polymorphism) density within

Solanum tuberosum [69] one nucleotide mismatch was allowed for a

successful tag annotation.

Logfoldchange (logarithm 2 of the fold-change of a tag count

between two samples), p and FDR values were calculated using the

software R v.2.11.1 in combination with the extension package

edgeR 1.6.5 [46]. For the calculation of p-values the tag wise

dispersion was estimated using a grid length of 1000. P values were

corrected for multiple testing with the method after Benjamini &

Hochberg [70]. Comparisons were made between grouped

samples (groups R1, r1 and ORF45, Table 1) at a given time

point or between a single group at different time points.

Principal component analysis was performed using the prin-

comp command included in R v.2.11.1. and the normalized

expression data matrix.

Hierarchical cluster analysis was performed using the online services

CARMAweb v.1.5 and GenesisWeb v.1.1 (https://carmaweb.

genome.tugraz.at/carma/ and https://carmaweb.genome.tugraz.at/

genesis/index2.html) using average linkage clustering and Spearman

rank correlation.

GO-Term analysis was performed using tags which showed a

significant expression change (FDR#0.1) at three days post

inoculation compared to 0 days post inoculation from the same

group. The software Cytoscape v.2.6.3 in combination with the

extension Bingo v.2.3 [71] was used for the analysis. The mapping

source was the currently available information from the Dana

Faber Cancer Institute for Solanum tuberosum (http://compbio.dfci.

harvard.edu/cgi-bin/tgi/gimain.pl?gudb=potato), which was

adapted to the needs of the software (the modified version will

be available at the PoMaMo database). Fishers Exact test was used

in combination with the multiple testing correction according to

[70]. Significance of overrepresentation (FDR#0.05) was calcu-

lated related to the whole annotation information. FDR#0.05 was

accepted as significant. The network diagram of overrepresented

GO-terms was created using AMIGO v.1.7 (available under

http://amigo.geneontology.org/cgi-bin/amigo/go.cgi) [72].

Supporting Information

Table S1 Tag identification, sequence, annotation and
normalized tag counts (Columns X to BO) of 30.859
unitags; log-fold change values (logFC) and false discov-
ery rates (FDR) of the nine pair wise comparisons
(columns E to V) between sample groups (Fig. 4). FDR

values,0.05 are highlighted white.

(XLSX)

Table S2 Tag identification, sequence, annotation and
normalized tag counts (Columns X to BO) of 146
‘defense response’ (GO:0006952) unitags; log-fold
change values (logFC) and false discovery rates (FDR)
of the nine pair wise comparisons (columns E to V)
between sample groups (Fig. 4). FDR values,0.05 are

highlighted white.

(XLSX)

Table S3 Tag identification, sequence, annotation and
normalized tag counts (Columns X to BO) of 390 unitags
differentially regulated (FDR,0.05) only in incompati-
ble interactions; log-fold change values (logFC) and false
discovery rates (FDR) of the nine pair wise comparisons
(columns E to V) between sample groups (Fig. 4). FDR

values,0.05 are highlighted white.

(XLSX)

Table S4 Tag identification, sequence, annotation and
normalized tag counts (Columns X to BO) of 796 unitags
differentially regulated (FDR,0.05) only in compatible
interactions; log-fold change values (logFC) and false
discovery rates (FDR) of the nine pair wise comparisons
(columns E to V) between sample groups (Fig. 4). FDR

values,0.05 are highlighted white.

(XLSX)

Table S5 Tag identification, sequence, annotation and
normalized tag counts (Columns X to BO) of 28 unitags
differentially regulated (FDR,0.05) in both compatible
and incompatible interactions; log-fold change values
(logFC) and false discovery rates (FDR) of the nine pair
wise comparisons (columns E to V) between sample
groups (Fig. 4). FDR values,0.05 are highlighted white.

(XLSX)

Table S6 Tag identification, sequence, annotation and
normalized tag counts (Columns X to BO) of 150 unitags
annotated as protease inhibitors; log-fold change values
(logFC) and false discovery rates (FDR) of the nine pair
wise comparisons (columns E to V) between sample
groups (Fig. 4). FDR values,0.05 are highlighted white.

(XLSX)

Table S7 Tag identification, sequence, annotation and
normalized tag counts (Columns X to BO) of 7 unitags
differentially regulated (FDR,0.05) in incompatible
versus compatible interactions at 0 dpi; log-fold change
values (logFC) and false discovery rates (FDR) of the nine
pair wise comparisons (columns E to V) between sample
groups (Fig. 4). FDR values,0.05 are highlighted white.

(XLSX)

Table S8 Tag identification, sequence, annotation and
normalized tag counts (Columns X to BO) of 1471
unitags differentially regulated (FDR,0.05) only in
compatible ORF45 interactions; log-fold change values
(logFC) and false discovery rates (FDR) of the nine pair
wise comparisons (columns E to V) between sample
groups (Fig. 4). FDR values,0.05 are highlighted white.

(XLSX)

Table S9 Tag identification, sequence, annotation and
normalized tag counts (Columns X to BO) of 199 unitags
differentially regulated (FDR,0.05) in ORF45 versus R1
and r1 at 0 dpi; log-fold change values (logFC) and false
discovery rates (FDR) of the nine pair wise comparisons
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(columns E to V) between sample groups (Fig. 4). FDR

values,0.05 are highlighted white.

(XLSX)
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(2009) Single nucleotide polymorphisms in the Allene Oxide Synthase 2 gene are
associated with field resistance to late blight in populations of tetraploid potato

cultivars. Genetics 181: 1115–1127.

19. Pajerowska-Mukhtar KM, Mukhtar MS, Guex N, Halim VA, Rosahl S, et al.
(2008) Natural variation of potato allene oxide synthase 2 causes differential

levels of jasmonates and pathogen resistance in Arabidopsis. Planta 228:

293–306.

20. Trognitz F, Manosalva P, Gysin R, Nino-Liu D, Simon R, et al. (2002) Plant
defense genes associated with quantitative resistance to potato late blight in

Solanum phureja x dihaploid S. tuberosum hybrids. Mol Plant Microbe Interact 15:
587–597.

21. Hoegen E, Stromberg A, Pihlgren U, Kombrink E (2002) Primary structure and

tissue-specific expression of the pathogenesis-related protein PR-1b in potato.
Mol Plant Pathol 3: 329–345.
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