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—Paper—

CLOSED-LOOP IDENTIFICATION FOR CONTROL OF
LINEAR PARAMETER VARYING SYSTEMS

Jan Bendtsen Klaus Trangbaek

ABSTRACT

This paper deals with system identification for control nékr parameter
varying systems. In practical applications, it is often artant to be able
to identify small plant changes in an incremental manneheuit shutting
down the system and/or disconnecting the controller; taf@tely, closed-
loop system identification is more difficult than open-loaleritification. In
this paper we prove that the so-called Hansen Scheme, aigeehknown
from linear time-invariant systems theory for transforghztosed-loop system
identification problems into open-loop-like problems, dam extended to
accommodate linear parameter varying systems as well. Wstigate the
identified subsystem’s parameter dependency and obseateuthder mild
assumptions, the identified subsystem is affine in the paeamector. Various
identification methods are compared in direct and HansererSehsetups
in simulation studies, and the application of the Hansere®8ghis seen to
improve the identification performance.

Key Words: Closed-loop system identification, Linear parameter vayyi
systems, Youla-Kucera parameterisation

I. Introduction Assuming that a good, or at least acceptable, model
for the original system already exists, however, it seems
Industrial control systems are typically in oper- asteful to estimate the total model from scratch in
ation for extensive periods of time, amongst other case of limited structural modifications. Motivated by
things due to the fact that once a functioning system thjs observation, we study incremental modelling for
has been commissioned and brought into operation, control of plants running in closed loop in this paper.
it is very costly in terms of engineering manpower In particular, we look at the so-calleHansen
and loss of production output (and hence income) to scheme[1, 2, 3], which, given a nominal system
take the system out of action in order to maintain model and controller, allows Open_|oop_|ike System
and update it. On the other hand, most large-scale jdentification unmodelled dynamics parameterised via
industrial systems are subject to frequent changes anda technique calledlual Youla-Kucera factorisation-
modifications, which may change the dynamics of see the survey paper][and the references therein
various subsystems of the overall plant. Thus, itis often for further details. It is worth noting here that several
the case that a control system can be improved afterrigorous studies show that models obtained with the
initial commissioning, as more actual operation data Hansen scheme are distinctly superior to models

becomes available. obtained from ‘direct’ identification methods when it
comes to subsequent controller designg.
Manuscript received November 1, 2011 In this paper, we show how the Hansen scheme can

The authors are with the Department of Electronic Systems,

- o > be reformulated to deal witlnear parameter varyin
Automation and Control, Aalborg University, Denmark; email: P ying

{dimon, kit @es.aau.dk (LPV) systems 1. 8, 9,_10]. _P_Iea_se note that we are .
This work was supported by The Danish Research Council ﬂOt proposing a new identification methOd_ as such;
for Technology and Production Sciences. it remains necessary to employ an established LPV
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identification method for LPV identification of the dual

6(k) in the following. We require thad belongs to the

Youla-Kucera parameter. Rather, our aim is to remove bounded compact set

some of the specific closed-loop difficulties from the
identification setting in order to facilitate subsequent
control design.

There are already a number of methods for
identification of LPV systems available in the literature,
e.g. [11,12 13 14, 15, 16, 17, 18, 19, 20, 21, 22, 23],
all of which can, in principle, be used in the setup we
shall present in the following with little modification.

The main contribution of the present paper is

to show that the Hansen scheme can be formulated

for LPV systems in a non-conservative setting using
the notions ofLPV stability shown via polyhedral
Lyapunov function$24]. The work presented here is
related to results presented g5 and [26], which

presented similar results in a quite general, nonlinear
setting. However, by restricting the class of systems
under consideration here, we are able to present an

explicit methodology for the identification and control
design, which is suitable for controller updating as it
focuses on incremental modelling.

The outline of the rest of the paper is as follows.
Sectionll provides some important preliminary results
on the notion of LPV stability employed in the rest
of the paper. Sectiofil then presents a Youla-Kucera
parametrisation of LPV systems, after which Section

@z{QERq

9i>0’i9i:1}

i=1

and thatAy, By, Cy and Dy are continuous, bounded
functions ofo € © (only).
For notational convenience, we will

shorthand
_ Ag Bg
kars

for the LPV system1)—(2) in the sequet.
If Dy is nonsingular, i.e.D;1 is well defined for
all 9, the LPV systentzy has an inverse operator

|

in the sense thatyG,' = G,'Gy =1, where is
the identity, for any trajectory o). We will ensure
invertibility by construction whenever necessary in the
sequel.

Next, consider the autonomous LPV system
zry1 = Agxp, along with the Lyapunov function
candidate V(z) = |Wz| o, Where W e R¥*™ is a
constant matrix of rank. V(z) is a positive definite

use the

G,'!

Ag+ ByDy'Cy | ByDy'
D;'Co | Dy’

IV shows how the Hansen scheme is cast in this function withV(0) = 0, and computing the sample-to-

framework. Sectiorl/ investigates the identified sub-
system’s parameter dependency, whereupon Section

compares several open- and closed-loop identification

schemes on a simple simulation example. Finally,
SectionVIl sums up the conclusions of the work.

IIl. LPV Stability

In this work, we consider discrete-time linear
parameter-varying (LPV) systent®y with a minimal
state space realisation given by matrix functions
Ay e R"*™ By € Rnxm,CQ € RP*"™ and Dy € RP*™,
mapping an input signal vectar € R™ to an output
measurement signgle R?. Specifically, we deal with
systems of the form

Ge : (1)

()

wheref(k) € R? is an external scheduling parameter,
which is allowed to vary as a function of time but not as
a function of the system states Since we only allow
0 to depend ork, we will simply write 6 rather than

Tht1 Ag(k)l‘k —|—Bg(k)uk

Yk

CoryTr + Do(ryu

sample difference yields

Vieksr) = Vier) Wait1lloo = [Wakllo

WAk |loo = [IWkloo

which is negative if4, is sufficiently small; this can be
tested via algebraic means. If the autonomous part of
an LPV system admits such a Lyapunov function for all
0 € ©, we say that it i PV stable

In particular, it is known that golytopic LPV
system, i.e., a system wherdy, By,Cy and Dy
are given as convex combinations of fixed matrices
A;,B;,C; and D;,i=1,...,q, admits a polyhedral
Lyapunov function if the associated matrix equalities
hold for each vertex system. Furthermore, it is
shown in p4] that the existence of a polyhedral
Lyapunov function is in facéquivalento LPV stability
for polytopic LPV systems. That is, this class of
Lyapunov functions is non-conservative, as opposed to
e.g. quadratic Lyapunov functions in the sense that one

*Please note that this notation should not be confused widmster
functions”; throughout the paper we strictly consider apers defined
in state space, as given bi)€(2), with zp = 0 unless otherwise noted.
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may find examples of stable polytopic LPV systems which is satisfied iff3W2A4%' = Q3'W! v € ©.

that do not permit a quadratic Lyapunov function, but SinceW! has full row rank, it has a left pseudo-
it is not possible to find stable polytopic LPV systems inverseW!1; thus, we may choos@2! = W2 A2t Wit
that do not permit a polyhedral Lyapunov function. We with 3 sufficiently small to satisfy

require the following technical result:

Qp 0
Lemmal [24] V(z)=|Wz|. is a (polyhedra) H {BWQA?W” Q%} . <1 veo
Lyapunov function for the polytopic autonomous LPV
systemr;,1 = Agxy, if and only if there exist matrices ~ Which is always possible sincg' is bounded. <
Q; € R#*F suchthatV A, = Q;W and||Q;]|« < 1 for
i=1,...,q.

[ll. Basic Parametrisation

Based on Lemmd we can show the following
simple, yet important result for connection of LPV
systems.

Ag | By
Lemma 2 Suppose two autonomous LPV systems Gy = Co | 0 (4)
l'l,k-i-l:Aélxl,k and 22,k+1:A3222,k are LPV

stable; then for any continuous and bounddg' of  and that that they are both stabilised by an observer-
appropriate dimensions, the autonomous LPV system pased LPV controller of the form

In the rest of the paper, we will assume that the
plant and the nominal modél, are strictly proper, i.e.

Tih41| _ At 0] (o 3 [ Ao+ BoFs+ LoCy | —Lg
|:-T2,k+1] |:A§1 A32 To ( ) KG - FO ‘ 0 (5)
is also LPV stable. for all 6 € ©, whereF, and Ly are such thafy,; =
(Ag + BgFg)j}k and Thy1 = (A@ + LgC@)@k are LPV

Proof:  According to Lemmal, since the systems
Ty 1 = Apteyp and zo 41 = A2%20 ), are LPV sta-
ble, there exist matricdd!, W2, Q}, Q2 of appropriate
dimensions with|Q} || < 1, ||Q%]l~ < 1 such that

stable.

Any G, that satisfies the above assumption for
any trajectory of € ©, can be written as a right,
respectively left, coprime factorisation of the form:
wt oo ][40 o Qy ol[w' o 1 1
o[- Sl e Gom ot =N ©
whereNy, My, M, and N, are LPV stable operators of
a specific form given below. Correspondingly, can
be factorised as

for 6 € ©. Also, we have

Qy 0
0 Q|

<1

Ko =UpV, ' =V, U, (7)
Turning to the combined syster)( if we can find a . o _
scalarg > 0 and af-dependent matrig?' such that with LPV stableUs, Vp, Uy, Vy. The factors are given as

[Wl 0 } [Aél 0 ] [Qé 0} [Wl 0 ] My Us Ag+ BoFy | By —Lg
= = F 1 0 8
0 BW?| A2 A2 22l o pw? [Ng Vg] ool @
- - Aog+ LoCy | —Bg Ly
Q Ol _, {_‘ﬁ ;\g"] = 7 T 0 ] ©)
31 Qg 0o o o Co 0 I

hold for everyf € ©, then we can conclude that the  Then, it is possible to check that
system is LPV stable by invoking LemniaRewriting

the matrix equality above, we get I 0ol  [Va —Ug|[My Usg
0 I| = |=Ny My||Noe Vp

wiap! 0 _[Qiw? 0 _ My U [ Ve —Us (10)
BW2AZ AW2A22| T QAW BQIW? T [No Vol |-Ny M
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holds; this equation is referred to as ttheuble Bezout
identity.

Finally, we introduce thaupper linear fractional
transformationof appropriately block-partioned sys-

tems
I IIio
1__[ =
[Hm H22:|
andA defined as
Fu (G, A) =Tlyy + Ty A1 — T3 A) Mo

provided the inverse exists (see al&a,[Chap. 10]). We
have the following result.

S
z ¢
Gsﬁ GO,G
u Y
u y
Ky Ky

Fig. 1. AllLPV systemsG s ¢ Stabilised by the LPV controlldk (left)
can be represented by a nominal systégyy stabilised byKg
and a dual Youla-Kucera paramefgy (right).

Theorem 1 Let Gy = NQMQ‘1 with state space reali-
sation @) be LPV stabilised by a feedback controller
Ko =UsV, ! with state space realisation5) (see
Figure 1). Let F and Ly be matrix functions such that
Tht1 = (Ag + Bng)i’k and &p. 1 = (Ae + Lng):i’k
are LPV stable for alb € ©. All plants stabilised by<,
can be parametrised aSs ¢ = F,, (G0, Sg), Where

Ay ‘ —Lyg By
Gop=| —Fy 0 I
Cy I 0
and Sp = ’ézz Bg’e is any proper LPV stable

systemsSy Is denoted the dual Youla-Kucera parameter.

Proof: ~ We first show that under the given
assumptionsk, stabilisesGs . The upper loop in the
right part of Figurel is closed, yielding= s ¢ in the left
part of the figure:

Gso = Ful(Go,5)
Asg —BgsoFy | Bs,
= —LgCs Ayg By (11)
Cso Gy | 0

and when connecting’y as shown to this system, we
obtain the autonomous LPV system

Ekt1 Asg —BsoFy 0 §k
Me+1 | = 0 Ag + LgCy 0 Mk
Xk+1 —LoCs9  —LoCy  Ag+ BoFy| |xxk

where¢ is the state vector oby, x is the controller
state vector ang = = — y is the difference between the
state vector of7y g andKy. SinceAs g, Ag + LoCy and
Ap + BygFy are all LPV stable, and®s o Fy, LyCs 9 and
LyCy are bounded for boundéwe can then conclude
that the closed-loop system is LPV stable by applying
Lemmaz2 twice in succession.

We then show that, giveRy = U9V9*1, a nominal
Go = NpM, ' stabilised by Ky and a Ggy also
stabilised byKy, there exists affy (connected as shown
in Fig. 1) such that the interconnection 6% » and Sy
is identical toG g ¢.

We construct the dual Youla-Kucera parameter as
Sy = Fu (Ge, GS,Q), where

Ag+ BoFy+ LoCy | —Lg By
Fy 0 1
—Cy I 0

Go =

First, we note that thé1,1)-block subsystem of7,
is identical toKjy (cf. (5)); thus, sinceF, (Kq, Gy) is
LPV stable, Sy = 7, (Gy,Gsp) is also LPV stable.
Secondly, it is fairly easy to see that

Fu (Goy,Gy) = [? é}

which is the identity ofF,, (-, -). Thus,

Fu(Go,e,5) Fu (Go,e,56)
= Fu(Gop, Fu(Go,Gsp))
= Fu(Fu(Goe,Go),Gsyp)
= Gsp.
which completes the proof. <

Note that knowledge of a specific polytopic
Lyapunov function is not required in the proof;
we simply require the state transformations to be
independent of the system states.

By Theoreml, all LPV systems stabilized biKy
can be written a&'s g = F,, (Go,9, Se), With Gy ¢ given
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in the theorem. By inspection, it is seen that system identification problem into an ‘open-loop-like’
problem.
Ay | —Lo By We assume that a nominal state space LPV
Goy = —Fy 0 I model of an existing system(/y, has been found.
Co 1 0 The system takes control signals as input, and
:—M”Ug ML yields corresponding output measurementswhich
= M",l G? } are affected by additive noisg, € R?. The parameter
- 0 o variationé is measurable and satisfies the assumptions
_ ~M,; U, M, in the previous sections.
T Vo= NeMy'Us NoM, ™ Based on this model, a stabilising observer-based

o _ LPV controller Ky of the form 6) with stable observer
where the last equality is obtained by the Bezout gnd state feedback dynamics has been designed, for

identity. Then, it can be checked that instance using the methods i2g. However, for some
. reason, e.g., monitoring of the plant during operation,
Fu(Gop,S9) = (No+ VeSo)(My+ UpSp) it is suspected that there is additional un-modelled

(I + SGUQ)_l (N + 54VK)12) dynamics, which we wish to identify. _
Since K, stabilises Gsy and (12) is a full
This setup is depicted in Figugeand will be used ~ Parametrisationof all LPV systems stabilised by,
in the following. Theoreml ensures that there exists an (LPV stable)
parameter systerfiy such thatGsy can be written as
in (12) (or, equivalently, as in(1)).

¢ Consider now the setup shown in Figuiewhere
M, Ny Ky and Gy are shown in their factorised form as
woo Yy in (7) and @), respectively.n’ = (Mg + SeUs)n, is
the measurement noise that would normally affect the
S measurementg, relocated in the block diagram to

affect the output of the parameter system instead, and

r1 andry are external excitation signals.
Us Vo
z " ¢
—O—>0—> ]\19_1 Ny —>O—
,r2 J— l A y
Fig. 2. Dual Youla-Kucera parametrisation of all proper polytop\L
plants stabilised by the LPV controlléfy = Uy V,,~ L Sp
Tﬁ -
IV. Open-Loop-Like System Identification L U, Vo

Next, we consider system identification of an LPV
systemGg,y. Output measurements are related to the vl Uy ry
input through the expression

y = Gou +ny, o , o
Fig. 3. Hansenlscheme setup for closed-loop system identification
and a good estimate @f, can be obtained if: andn, L’;f,’ﬁ,‘;ﬂt{f;,if{ﬁ,’;‘,’fgb‘,’fni?d on samples gfands Is an open
are uncorrelated, using any of the methods mentioned
in the Introduction. From the block diagram, we find the following
Unfortunately, in a closed-loop setting is not relations:
uncorrelated withn,, since the noise is fed back (Ng + VoSp)¢ =y — Von' (13)

through the controller, and the frequency content in gng

u may be severely limited in closed-loop operation

as well, especially in near-steady state operation. To (Mo + UspSp)¢
alleviate these drawbacks, we recast the closed-loop = 1o+ V; 'Ug(y +11) — Uprfl4)

u — Ugn/

(© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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Applying the LPV operator¥, andU; to (13) and (L4), Proof: We isolateSy in (12) and use the Bezout
respectively, subtractinglg) from (13) and using the  identity to obtain
Bezout identity then results in

¢ = Upry + Vors (15) So =V, Y(GspKog—I)"(Gg — Gs,9)My  (18)
In a similar vein, from the block diagram, we have the eyt by inserting the expressions
relations
MQC = u-— U@Z A7
No¢ = y-V ’ Co |1
6 Yy 0%

Applying the LPV stable filter&V, to the top expression
and My to the bottom one, subtracting one from the

—1_ Ag 4+ ByFy + LyCy ‘ Ly ]

-1

other and using the Bezout identity then results in @y Lo Fy 0
N - (Gs_yng — I)fl = 0 Ag+ BoFy+ LgCy | —Ly

z = Mypy — Nou (26) H, 0 =TI
Thus, andz can be obtained by filtering measurements [ B, I 0
through knoyvn_, stable LPV filters. Furthermore, — | —LyHy Ay+ BogFy+ LoCy | —Ly
assumingn,, is independent of-; andr,, then( is —H, 0 ‘ 7
independent of’ as well. -

As a consequence, althoughandy are measured

in closed-loop, the identification &fy using the signals Ag 0 | B
6, »~ and ¢ becomes equivalent to an open-loop LPV Go—Gsg=| 0 @y | T
identification problem. Co —Hp| 0O

and
V. Parameter dependency

My = |: Ag + BoFy ‘ By ]

As argued above, the Hansen Scheme allows open- Fy |1

loop-like identification ofSy. However, in order to use .

several of the LPV identification methods mentioned in (18), we get (L9) on the following page. Let, € R®"
in the Introduction, it is particularly convenient if the denote the state vector o). Then, by applying the
system to be identified is affine # which is clearly  state transformatioy, = T'¢,, where

not evident from EquationlQ). Thus, in this section,

we investigate what assumptions must be imposed on I 0 —-I 0 0 O0
the overall system’s dependency ®im order to justify 0O -I 0 0 I O
identification of an affines). T 0 0 —-I I 0 O
0 O 0 I 0 O
Theorem 2 Suppose an LPV plant 0O 0 0 0 I 0
0 O 0 I 0 —-I

by rg]

GS,@ = |: H0 0
and removing two sets of unobservable and two sets of

where &y € R"*", T'y € R"*™ and Hy € RP*" are  yncontrollable states, we see thag(may be reduced
matrix-valued functions of the parametérc ©, is to (17). 4

known to be stabilised by an LPV controll&f, with
state space realisatiorb). Let Ky be designed based
on a nominal plant modetyy # G with state space
realisation @), and letGy and Ky be factorised as given
in (8)—(9).

Then the dual Youla-Kucera parametgy in (12)

Theorem 2 shows that the dual Youla-Kucera
parameter runs the risk of becoming nonlineagiii
both of the factors in either of the produdigFy, By Fy,
LgHy or LyCy are §-dependent. To put it differently,
suppose for instance théy, Ay, Fy and Ly are affine

has the state space realisation functions of#, while the in- and output matrices are
constants, i.eBy = B, Cy = C, Hy = H andl'y =T
Py 2 Ly then each of the state space matriceS4mwilll depend
So= | —LeHy Ao+ Bolop+LoCo | Bo | (17)  affinely ond. We shall assume this in the following
Hyp —Co | 0 example.

(© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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[ Ag + BoFy + LyCy —LoHy 0 —LyCy LgHy 0 0 7
0 Dy ToFy 0 0 0 0
0 —LgHy Ag+ BoFy+ LgCy —LgCy LoHy 0 0
0 0 0 Ag 0 BeFy | By (19)
0 0 0 0 By TyFy | Ty
0 0 0 0 0 Ag + BgFy | By
L Cy —Hy 0 —Cy Hy 0 0

VI. Simulation Example

We consider the following unstable system with a
single time varying parametér< ¢ < 1:

Tr1 = DPoxp +Tup + Kok
Yy = Hxp+ g,
i 0.9 0.05 0.1 —-0.3 0.4
-0.2-0.76 0.9 0 0 0
Py = 0 0.1 0.9 0.1 —-0.1
0.3+6 0 0 0 0.3+ kK
L 0 0.3 —-0.3 0.3 0.92+0.050
M1 —0.8
0 0.3
r = |1|, k=] 0 |,
-1 0
-1 —0.7
H = [0 1 2 1 -1],

with £ = 0.3 and E{vzv{ } = 1075. We assume that

in Figure 3). The full output measurement sequence
is shown in Figurel and a zoom of the signals along
with the auxiliary signals used in the Hansen scheme is
shown in Figures.

. ”w il f

-100

o 1000 2000 3000 5000 6000 7000 8000

4000
sample number

Fig. 4. Measurement data for system identification. Té{g); bottom:
Yk

we already have a reasonably accurate nominal model

(Ag, B, C) of the deterministic partd, is equal to®,,
except that the model assumes-= 0, while the input
and output matrices are correctly identified, iR+ T,
C=H.

The system is open loop unstable and only barely
detectable and stabilisable; in fact, although the model
error may seem small, even a slightly larger error can in
fact easily cause an unstable closed loop.

A stabilising LPV controller

(Ag + BFy + LyC)xc o — Loyn
Fexc,k

xc,k+1
U

with

Fy [0.11—0.279 042 —-0.43 0.1240.050 0.7]

0.87 —0.370
—0.26 — 0.776
—0.19
0.47 + 0.46
0.87

has been designed for the system.
requirements given in Theoreirfor all 6 € [0 ; 1].

In closed loop operation, excitation in the form of
white noise with variance 1 is added to the inpuf (

\ \ \ \ \
@ 0.5%
0 : :

20

=0WWWWWMWWNW

3250 3300 3350 3400

-10
3000

3050 3100 3150 3200

sample number

Fig. 5. Zoom of measurement data, indluding auxiliary signals. From
top to bottomury j;; 0(k); uk; yi; Ci 2k

In all the |dent|f|cat|ons models on the form

It satisfies theka = Ag:ﬂk + Byuy, 9, = Ci), are assumed, with

Ay and By depending linearly of.
In order to evaluate the obtained models, thgap
between the model and the real system is computed.
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The v-gap is a value between 0 and 1 that expressesis filtered as discussed in Sectidvi. Then the ARX
the difference between two transfer functions in terms method is used to identify5y, again with 5 delayed
of their similarity with respect to closed loop operation; outputs and 5 delayed inputs, which is then combined
that is, if thev-gap between two plant models is small, with the nominal model as in EqnlY). The resulting
then a good controller designed for one transfer function model error is shown by the solid lines in Figure
will also work well with the other 29]. The v-gap 6. The dotted lines show the-gap for the nominal

is only defined for LTI systems, so the comparisons model (which is approximately 0.08 for all frozem,
strictly speaking only hold for fixed values 6f Here, indicating that a significant improvement is achieved
thev-gap is evaluated fat frozen ato, 0.5 and1. with a reasonably small number of samples.

The identifications are performed using an
increasing number of samples, in order to evaluate how * 7]
much excitation is needed. Two identification methods, i
ARX and PBSIDopt, are tested, both in a direct form
and using the Hansen scheme. The state space matrice
are found by minimising the prediction error using
least squares methods. Note that we do not assume §
any explicit knowledge of which entries id,, are
erroneous, so a direct grey box approach is not possible.

The first identification method examined is the
LPV ARX method found in e.g.J[1] and [1L7]. Here, the
state estimate simply consists of delayed outputs and L

inputs. In the direct application, the method is simply * samples used for 1D
fed measured input and output data’ and a mOde! W'th Fig. 7.v-gap for models identified using PBSID, with frozen values
5 delayed outputs and 5 delayed inputs is identified. of 0, as a function of increasing sample size. Dash-dot: direct
We assume a zero-order polynomial dependence on  identification; solid: Hansen scheme

# in the identification. The dash-dot line in Figuée

shows the-gap as a function of the number of samples ) ) )
used. For = 1 the model is acceptable, but fér= 0 ~ The second method examined is PBSIDopt, which
and 0 = 0.5, even large numbers of samples do not IS Presented in an LPV version in2(. In this
yield acceptable models. Making delayed values of approach, a subspace method is used to construct the

available to the identification algorithm did notimprove State estimates, and consequently requires a lot of
the model, either. computational power.
First PBSIDopt (with a window length of 9) is

applied directly to the measurements to obtain a 5th
order LPV model, and the result, shown by the dash-dot
lines in Figure?, is quite poor. Changing the window
length did not improve the identification noticeably.
Next, PBSIDopt (again with a window length of 9)
is applied to obtain a 7th order LPV model & in the
Hansen scheme. Thegaps of the resulting model is
shown with solid lines in Figur&; as can be seen, the
v-gap drops below those of the nominal model when
more then 3000 samples are used. The result is not as
: good as for the Hansen ARX method, but it is a definite
samples usba for 15 improvement over using PBSIDopt directly.
Fig. 6. v-gap for models identified using ARX methods, with frozen Flgure-8 shows -BOde plots for all the mOd-eIS
. ;/alues off, as a function of increasing sample siée. Dash-dot: obtained with the maXImqm number of Samples' with
direct identification; solid: Hansen scheme frozen at0.9. The picture is similar for all other values
of #; the Hansen scheme is able to capture the spike,
whereas the direct methods are not.
Next, the ARX method is used to identify a dual The reason that the Hansen scheme improves on
Youla parameter in a Hansen scheme. First the datathe identification is likely different for the two different
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Bode Diagram
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Fig. 8. Bode plots for different models identified using PBSIDOpthwi
6 =0.9.

identification methods. For the ARX case, the closed-
loop nature of the data affects the direct ARX method,
and the Hansen scheme helps to decouple these effects.
In PBSIDopt, the main approximation lies in assuming

that the state transition is zero beyond the window 7.

length; in this example this is not the case. The Hansen
scheme, on the other hand, focuses on the identification
of a subsystem, where this assumption is closer to being

satisfied. 8.

VII. Discussion

(o]

In this paper we considered incremental system
identification of LPV systems that are modified during
online operation, for instance due to replacement
and/or addition of system components (so-cafidy-
and-play contrg). We used the notion of polyhedral
Lyapunov functions to prove the existence of a dual
Youla-Kucera parameter system for proper polytopic

LPV systems in a non-conservative manner. Then 11

we showed how the Hansen scheme can be used
for incremental system identification of such LPV
systems in an open-loop-like setting. The method is an
extension of the Hansen scheme for LTI systems. This
particular approach is suited for systems where dynamic 1,
elements are changed during online operation, e.g. due
to replacement or introduction of new sensors, actuators
or other components; only the changed dynamics need
to be identified, while nominal plant and controller
information may be retained.
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