
 

  

 

Aalborg Universitet

Reliability Evaluation and Probabilistic Design of Coastal Structures

Burcharth, H. F.

Published in:
International Seminar on Hydro-Technical Engineering for Futute Development of Ports and Harbors

Publication date:
1993

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Burcharth, H. F. (1993). Reliability Evaluation and Probabilistic Design of Coastal Structures. In International
Seminar on Hydro-Technical Engineering for Futute Development of Ports and Harbors Unʼyushō Kōwan Gijutsu
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1 Introduction 

Conventional design practice for coastal structures is deterministic in nature and is based 
on the concept of a design load, which should not exceed the resistance (carrying capacity) 
of the structure. The design load is usually defined on a probabilistic basis as a charac­
teristic value of the load, e.g. the expectation (mean) value of the lOO-year return period 
event, however, often without consideration of the involved uncertainties. The resistance is 
in most cases defined in terms of the load which causes a certain design impact or damage 
to the structure and is not given as an ultimate force or deformation. This is because most 
of the available design formulae only give the relationship between wave characteristics 
and structural response, e.g. in terms of run-up, overtopping, armour layer damage etc. 
An example is the Hudson formula for armour layer stability. Almost all such design for­
mulae are semi-empirical being based mainly on central fitting to model test results. The 
often considerable scatter in test results is not considered in general because the formulae 
normally express only the mean values. Consequently, the applied characteristic value of 
the resistance is then the mean value and not a lower fractile as is usually the case in other 
civil engineering fields. The only contribution to a safety margin in the design is then the 
one inherent in the choice of the return period for the design load. 

It is now more common to choose the return period with due consideration of the en­
counter probability, i.e. the probability that the design load value is exceeded during the 
structure lifetime. This is an important step towards a consistent probabilistic approach. 

A safety factor or a conventional partial coefficient (as given in some national standards) 
might be applied too, in which cases the methods are classified as Level I (determinist ic/quasi 
probabilistic) methods. However, such approaches do not allow the determination of the 
reliability (or the failure probability) of the design, and consequently it is neither possible 
to optimize, nor to avoid over-design of a structure. In order to overcome this prob­
lem more advanced probabilistic methods must be applied where the uncertainties (the 
stochastic properties) of the involved loading and strength variables are considered. Meth­
ods where the actual distribution functions for the variables are taken into account are 
denoted Level Ill methods. Level II methods comprise a number of methods in which 
a transformation of the generally correlated and non-normally distributed variables into 
uncorrelated and standard normal distributed variables is performed and reliability in­
dices are used as measures of the structural reliability. Both Level II and Ill methods 
are discussed in the following. Described is also an advanced partial coefficient system 
which takes into account the stochastic properties of the variables and makes it possible 
to design to a specific failure probability level. 

2 Failure modes and failure functions 

Evaluation of structural safety is always related to the structural response as defined by 
the failure modes. Neglect of an important failure mode will bias the estimation of the 
safety of the structure. 
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Fig. 1 illustrates the failure modes for a conventional rubble mound breakwater with a 
capping wall. 

Overtopping 

~Breakage, sliding , 
of capping wall 

Core settlement 
..................... ____ ..,..,., 

Subsoil settlement .... ______ .... 
FIG . 1. Failure modes for a rubble mound breakwater. 

tilting 

Each failure mode must be described by a formula and the interaction (correlation) between 
the failure modes must be known. As an illustrative example let us consider only one failure 
mode, "hydraulic stability of the main armour layer", described by the Hudson formula 

n3 = n: 
n I<v !l3 cota 

(1) 

where Dn is the nominal block diameter, !l = i!..L -1, where i!..L is the ratio of the block 
Pw Pw 

and water densities, a is the slope angle, Hs is the significant wave height and I<v is the 
coefficient signifying the degree of damage (movements of the blocks). 

The formula can be split into load variables Xfoad and resistance variables, X[e3
• Whether 

a parameter is a load or a resistance parameter can be seen from the failure function. If 
a larger value results in a safer structure it is a resistance parameter and if a larger value 
results in a less safe structure it is a load parameter. 

According to this definition one specific parameter can in one formula act as a load pa­
rameter while in another it can act as a resistance parameter. An example is the wave 
steepness in the van der Meer formulae for rock, which is a load parameter in the case of 
surging waves but a resistance parameter in the case of plunging waves. The only load 
variable in eq. (1) is H3 while the others are resistance variables. 

Eq. (1) is formulated as a failure function (performance function) 

{ 

< 0 failure 
g =A· !l · Dn (I<v cota)113

- Hs = 0 limit state (failure) 
> 0 no failure (safe region) 

(2) 

All the involved parameters are regarded as stochastic variables, Xi, except Kv, which 
signifies the failure, i.e. a specific damage level chosen by the designer. The factor A in 
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eq. (2) is also a stochastic variable signifying the uncertainty of the formula. In this case 
the mean value of A is 1.0. 

In general eq. (2) is formulated as 

g=R-S (3) 

where R stands for resistance and S for loading. Usually R and S are functions of many 
random variables, i.e. 

R = R (X~u , x;e" , ... , X;:") and S = S (x;::~; , .... .. , X~oad) or g = g (.X) 

The limit state is given by 

g=O (4) 

which is denoted the limit state equation and defines the so-called failure surface which 
separates the safe region from the failure region. 

In principle R is a variable representing the variations in resistance between nominally 
identical structures, whereas S represents the maximum load effects within a period of 
time, say successive T years. The distributions of Rand S are both assumed independent 
of time. The probability of failure P, during any reference period of duration T years is 
then given by 

P, = Prob [g :5 0] (5) 

The reliability n is defined as 

(6) 

3 Single failure mode probability analysis 

3.1 Level Ill methods 

A simple method- in principle- of estimation of P1 is the Monte Carlo method where a 
very large number of realisations x of the variables X are simulated. P, is then approxi­
mated by the proportion of the simulations where g :5 0. 

The reliability of the method depends of course on a realistic assessment of the distribution 
functions for the variables X and their correlations. 

Given fx as the joint probability density function (jpdf) of the vector X = (Xl ' x2 ' ... ' 
Xn) then eq. (5) can be expressed by 

P1 = j f x ( x) dx 
R$S 

4 

(7) 



Note that the symbol x is used for values of the random variable X. 

If only two variables R and S are considered then eq. (7) reduces to 

P1 = j f(R,s)(r,s)drds 
R$S 

(8) 

which can be illustrated as shown in Fig. 2. If more than two variables are involved it is 
not possible to describe the jpdf as a surface but requires an imaginary multi-dimensional 
description. 

s 

s 

rfcce 

region 

Contours of 
constont fR,s 

FIG. 2. illustration of the two-dimensional joint probability density function 
for loading and strength. 

Fig. 2 also shows the so-called design point which is the design on failure surface where 
the joint probability density function attains the maximum value, i.e. the most probable 
point of failure. 

Unfortunately, the jpdf is seldom known. However, the variables can often be assumed 
independent (non-correlated) in which case eq. (7) is given by the n-fold integral 

(9) 

where Jx, are the marginal probability density function of the variables Xi. The amount 
of calculations involved in the multi-dimensional integration eq. (9) is enormous if the 
number of variables, n, is larger than say 5. 

If only two variables are considered, say Rand S, then eq. (9) simplifies to 

P1 = j j fn(r) fs(s) dr ds 
R$S 

5 
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which by partial integration can be reduced to a single integral 

(11) 

where FR is the cumulative distribution function for R. Formally the lower integration limit 
should be -oo but is replaced by 0 since, in general, negative strength is not meaningful. 

Eq. (11) can be explained as the product of the probabilities of two independent events, 
namely the probability that S lies in the range x, x+dx (i.e. fs(x)dx) and the probability 
that R < x (i .e. FR(x)), cf. Fig. 3. 

X 

CO 

=Pt = JrR (x) fs(x)dx 
0 ~0 

~~s.r,x 

FIG. 3 . illustration of failure probability in case of two independent variables, 
Sand R. 

3.2 Level II methods 

3.2.1 Linear failure functions of normal-distributed random variables 

In the following is given a short introduction to calculations at level II. For a more detailed 
description see Hallam et al. (1977) and Thoft-Christensen and Baker (1982). Only the 
so-called first-order reliability method (FORM) where the failure surface is approximated 
by a tangent hyberplane at some point will be discussed. A more accurate method is 
the second-order reliability method (SORM) which uses a quadratic approximation to the 
failure surface. 

Assume the loading S(x) and the resistance R(x) for a single failure mode to be statistically 
independent and with density functions as illustrated in Fig. 3. The failure function is 
given by eq. (3) and the probability of failure by eq. {10) or eq. (11). 

However, these functions are in many cases not known but might be estimated only by 
their mean values and standard deviations. If we assume S and R to be independent 
normally distributed variables with known means and standard deviations, then the linear 
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failure function 9 = R- S is normally distributed with mean value, 

J.Lg = J.LR - J.Ls (12) 

and 

standard deviation, u9 = ( uk + u~) o.s (13) 

The quantity (9- J-t9 ) ju9 will be unit standard normal and consequently 

Pt = prob[g :0 0] = /J,(x)dx = <li (
0 :,~'•) = <li(-,8) 

-oo 

(14) 

where 

(15) 

is a measure of the probability of failure and is denoted the reliability index (Cornell1969), 
cf. Fig. 4 for illustration of {3. Note that {3 is the inverse of the coefficient of variation and 
is the distance in terms of number of standard deviations from the most probable value of 
9 (in this case the mean) to the failure surface, 9 = 0. 

g<O 
Failure 

Area= P1 

g>O 
Safe domalne 

0 

j,. {lug 

FIG . 4. illustration of the reliability index. 

If R and S are normally distributed and "correlated" then eq. (14) still holds but u9 is 
given by 

(16) 

where PRS is the correlation coefficient 

Cov[R, S] E [(R- J.LR) (S- J-ts)] PRS = = _:....;.___..;_~---=-~ 
URUS URUS 

(17) 

R and S are said to be uncorrelated if fRS = 0. 
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Besides the illustration of {3 in Fig. 4 a simple geometrical interpretation of {3 can be 
given in case of a linear failure function 9 = R - S of the independent variables R and 
S by a transformation into a normalized coordinate system of the random variables R' = 
(R- JLR) /uR and S' = (S- JLs) /us, cf. Fig. 5. 

s s' 
g=r-s=O 

r r' 

FIG. 5 . illustration of (3 in normalized coordinate system. 

With these variables the failure surface 9 = 0 is linear and given by 

R'uR- S'CJs + /LR -p.s = 0 (18) 

By geometrical considerations it can be shown that the shortest distance from the origin 
to this linear failure surface is equal to 

(19) 

in which eqs. (12) and (13) are used. 

3.2.2 Non-linear failure functions of normal-distributed random variables 

If the failure function 9 = g (.X) is non-linear then approximate values for p9 and u9 can 
be obtained by using a linearized failure function . 

Linearization is generally performed by Taylor-series expansion about some point retain­
ing only the linear terms. 

However, the values of p9 and u9 , and thereby also the value of {3, depend on the choice of 
linearization point. Moreover, the value of {3 defined by eq. (15) will change when different 
but equivalent non-linear failure functions are used. 

In order to overcome these problems a transformation of the basic variables X -
(XI, x2, ... 'Xn) into a new set of normalized variables z = (Z~, z2, .. . 'Zn) is per-
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formed. For uncorrelated normal distributed basic variables X the transformation is 

Z . _xi- J.Lx; 
~ -

<7X; 
(20) 

in which case JiZ; = 0 and <7z; = 1. By this linear transformation the failure surface g = 0 
in the x-coordinate system is mapped into a failure surface in the z-coordinate system 
which also divides the space into a safe region and a failure region, cf. Fig. 6. 

Mopping into normalized coordinate system 

region Linearized 
failure 
surface 

allure surface 
g(x)=o 

Safe region Safe x, 

z 1 

Failure region 

Failure surface 
9 (z)=o 

FIG. 6. Definition of the Hasofer and Lind reliability index, f3HL· 

Fig. 6 introduces the Hasofer and Lind reliability index f3HL which is defined as the 
distance from origo to the nearest point, D, of the failure surface in the z-coordinate 
system. This point is called the design point. The coordinates of the design point in the 
original x-coordinate system are the most probable values of the variables X at failure. 
(3 H L can be formulated as 

( 

n )0.5 
f3HL = min L z[ 

g(z)=O i=l 
(21) 

The special feature of f3HL as opposed to (3 is that f3HL is related to the failure "surface" 
g (z) = 0 which is invariant to the failure function because equivalent failure functions 
result in the same failure surface. 

The calculation of f3HL and the design point coordinates can be undertaken in a number 
of different ways. An iterative method must be used when the failure surface is non-linear. 
In the following a simple method is introduced. 

Let B denote the distance from the origin to any point at the failure surface given in the 
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normalized coordinate system 

{ 
(} = [t zl] t 

t=l 

g(zbzz, ... ,zn) = 0 

(22) 

Construct the multiple function (Lagrange function) 

F = B + I<t g 

(23) 

where I<1 is an unknown constant (multiplier). 

Maximum or minimum of(} occurs when 

{ 

aaF = [zf + z~ + ... + z~rt. Zi + J(l aag = 0 i = 1, 2, ... 'n 
~ ~ 

g (zb Zz, . • . , Zn) = 0 
(24) 

Assume that only one minimum exists and the coordinates of the design point D are given 
by 

(25) 

Then 

1 

Bmin = f3HL = [~ (f3HLai)
2
]

2 
and consequently 

n 

2: a~= 1 (26) 
i=l 

Eq. (24) becomes 

(27) 

or 

(28) 
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Inserting eq. (28) into eq. (26) gives 

]{ = [t (8g)2] t 
i=l OZi 

(29) 

The a-values defined by (25) are often called sensitivity factors (or influence factors) 
because a~ provides an indication of the relative importance on the reliability index f3HL of 
the random variable xi. If a~ is small it might be considered to model xi as a deterministic 
quantity equal to the median value of Xi. In such case the relative change in the reliability 
index by assuming xi deterministic can be approximated by 

f3HL (Xi : deterministic) 1 
~--~~------~~~~-r==== 

f3HL (Xi : random) - )1- at (30) 

The corresponding change in failure probability can be found from eq. (14). Eq. (30) is 
used for the evaluation of a simplification of a failure function by reducing the number of 
random variables. 

The sensitivity of f3HL to change in the value of a deterministic parameter bi can be 
expressed by 

df3HL 1 Og --
d bi I< Bbi 

(31) 

where I< is given by eq. (29) and the partial derivative of g with respect to bi is taken in 
the design point. 

Eq. (31) is useful when it is considered to change a deterministic parameter (e.g. the 
height of wave wall) into a stochastic variable. 

EXAMPLE 1 

Consider the hydraulic stability of a rock armour layer given by the Hudson equation 
formulated as the failure function, cf. eqs. (1) and (2) 

1 

g =A~ Dn (I<n cota)3- H~ (32) 

all the parameters are regarded uncorrelated random variables Xi, except I<n which sig­
nifies the failure criterion, i.e. a certain damage level here chosen as 5% displacement 
corresponding to I<n ~ 4. The factor A is also a random variable signifying the uncer­
tainty of the formula. 

All random variables are assumed normal distributed with known mean values and stan­
dard deviations, cf. Table 1. The normal distribution can be a bad approximation for 
H& which is usually much better approximated by an extreme distribution, e.g. a Weibull 
or Gumbel distribution as will be discussed later. The normal distribution of Hs is used 
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here due to the simplicity involved but might be reasonable in case of depth limited wave 
conditions. 

Table 1. Basic variables. 

t x, J.lX; ux, coefficient of variation 
ux.f J.tx, 

1 A 1 0.18 18% 
2 Dn 1.5 m 0.10 m 6.7% 
3 H~ 4.4 m 0.70 m 16% 
4 ~ 1.6 0.06 3.8% 
5 cot a 2 0.10 5.0% 

The failure surface corresponding to the failure function (32) reads for Kn = 4 

or 
1 

x1 x4 X2 Xl1.59 - x3 = o (33) 

By use of the transformation eq. (20) the failure surface in the normalized coordinate 
system is given by 

1 

(1 + 0.18 Zt) (1.6 + 0.06 z4) (1.5 + 0.10 z2) (2 + 0.10 zs)3 1.59- ( 4.4 + 0. 70 z3) = 0 

In order to make the calculations in this illustrative example more simple we neglect the 
small variational coefficients of ~ and cota and obtain 

1 

(1 + 0.18 z1 ) • 1.6 · (1.5 + 0.10 z2) · 23 · 1.59- (4.4 + 0.70 z3 ) = 0 . (34) 

or 

0.864 Zt + 0.32 Z2 + 0.058 ZtZ2- 0.70 Z3 + 0.40 = 0 (35) 

f.l -0.40 • 
fJ H L = -:-::-:-:---::-:-:-----::-:-----:-----:--:--

0.864at + 0.32a2 + 0.058a1a2f3HL- 0.70a3 

By use of eq. (28) 

1 
C¥1 - - ]( (0.864 + 0.058 f3HLC¥2) 

12 
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1 
a2 - ]( (0.32 + 0.058 f3HLat) 

0.7 
a3 = 

]( 

By eq. (29) 

]{ = V(0.864 + 0.058f3HLa2)2 + (0.32 + 0.058f3HLa1 )
2 + (0.7)2 

The iteration is now performed by choosing starting values for f3HL , ab a 2 and a 3 and 
calculating new values until small modifications are obtained. This is shown in Table 2. 
The convergence is faster if a positive sign is used for a-values related to loading variables 
and a negative sign is used for a-values related to resistance variables. 

Table 2. 

Iteration No. 

start 1 2 3 

f3HL 3.0 0.438 0.342 0.341 
]( 1.144 1.149 1.149 
al -0.50 -0.744 -0.747 -0.747 
a2 -0.50 -0.263 -0.266 -0.266 
a3 0.50 0.612 0.609 0.609 

The probability of failure is then 

P, =<I> ( -f3HL) =<I> ( -0.341) = 0.367 

The design point coordinates in the normalized z coordinate system are 

(zf, zg, zg) - (f3HLat, f3HLa2, f3HLa3) 

- ( -0.255, -0.091, 0.208) 

Expression ( 26) f3 H L = (f. ( zf) 2) t provides a check on the design point coordinates. 

Using the transformation 

X d d · = ''·X· + ux.z· 1 r 1 • t 

and the values of f.LX;, ux, given in Table 1 the design point coordinates in the original x 
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coordinate system are found to be 

(xt, x~, xg) = (0.954, 1.491, 4.546) 

The relative importance of the random variables to the failure probability is evaluated 
through the a 2-values. Table 3 shows that the uncertainty related to Dn is of minor 
importance compared to the uncertainties on A and Hs . 

Table 3. 

1 
2 

3 

-0.747 
-0.266 

0.609 

a~(%) 

55.8 
7.1 

37.1 
100.0 

1.50 •) 
1.04 
1.26 •) 

•) The assumption of validity only for small a-values is not fulfilled 

0.831 •) 
0.989 
0.899 •) 

If all5 parameters in the Hudson formula was kept as random variables with mean values 
and standard deviations as given in Table 1 then the corresponding values would be as 
shown in Table 4. 

Table 4. 

a~(%) 

1 A - 0.705 49.7 1.41 •) 
2 Dn -0.275 7.6 1.04 
3 Hs 0.631 39.8 1.29 •) 
4 Ll -0.154 2.3 1.01 
5 cot a -0.068 0.5 1.00 

100.0 

•) The assumption of validity only for small a -values is not fulfilled 

P1 (X; : deterministic) 
P1 (x; : random) 

0.857 •) 
0.986 
0.896 •) 
0.999 
1.000 

It is clearly seen why Ll and cota can be regarded as constants. 

If the normally distributed basic variables X are correlated the procedure given above can 
be used if a transformation into non-correlated variables Y is performed before normalizing 
the variables (Thoft-Christensen et al. 1982). 

14 
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3.2.3 Non-linear failure functions containing non-normal distributed random 
variables 

It is not always a reasonable assumption to consider the random variables normally dis­
tributed. This is for example the case for parameters such as H, characterizing the sea 
state in long-term wave statistics. H, will in general follow extreme distributions (e.g. 
Gumbel and Weibull) quite different from the normal distribution, and cannot be de­
scribed only by the mean value and the standard deviation. 

For such cases it is still possible to use the reliability index f3HL but an extra transfor­
mation of the non-normal basic variables into normal basic variables must be performed 
before f3HL can be determined as described above. 

A commonly used transformation is based on the substitution of the non-normal distribu­
tion of the basic variable Xi by a normal distribution in such a way that the density and 
distribution functions Jx, and Fx, are unchanged at the design point. 

If the design point is given by xt, x~, ... , x~ then the transformation reads 

(36) 

where J.Lx, and u'x, are the mean and standard deviation of the approximate (fitted) normal 
distribution. 

From eq. (36) is obtained 

~ (<P-1 (Fx, (x1))) 
fx, ( xf) 

J.L'x, = xf - <P-1 
( Fx, ( xf)) u'x, 

Eq. (36) can also be written 

Solving with respect to xf gives 

(37) 

(38) 

The iterative method presented above for calculation of f3HL can still be used if for each 
step of iteration the values of u'x, and J.Lx, given by eq. (37) are calculated for those 
variables where the transformation (36) has been used. 

15 
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For correlated random variables the transformation into non-correlated variables is used 
before normalization. 

3.2.4 Time-variant random variables 

The failure functions within breakwater engineering are generally of the form 

(39) 

where R represents the resistance variables and H3 , W and Tm are the load variables 
signifying the wave height, the water level and the wave period. The random variables are 
in general time-variant. The calculated reliability is related to the life time of structure. 
For load variables, such as H3 , the uncertainty increases with longer life time. On the 
other hand, the resistance parameters, such as concrete strength, is deteriorating. For full 
discussion on time-variant random variables, reference is made to Burcharth (1993). 

4 Failure probability analysis of failure mode systems 

It is clear from Fig. 1 that a breakwater can be regarded as a system of components 
which can either fail or function. Due to interactions between the components, failure 
of one component may impose failure of another component and even lead to failure of 
the system. A so-called fault tree is often used to clarify the relations between the failure 
modes. 

A fault tree describes the relations between the failure of the system (e.g. excessive wave 
transmission over a breakwater protecting a harbour) and the events leading to this fail­
ure. Fig. 7 shows a simplified example based on some of the failure modes indicated in 
Fig. 1. 

A fault tree is a simplification and a systematization of the more complete so-called cause­
consequence diagram which indicates the causes of partial failures as well as the interac­
tions between the failure modes. An example is shown in Fig. 8. 

The failure probability of the system, e.g. the probability of excessive wave transmission 
in Fig. 7, depends on the failure probability of the single failure modes and on the corre­
lation and linking of the failure modes. 

The failure probability of a single failure mode can be estimated by the methods described 
in chapter 3. Two factors contribute to the correlation, namely physical interaction, such 
as sliding of main armour caused by erosion of a supporting toe berm, and correlation 
through common parameters like H3 • The correlations caused by physical interactions are 
not yet quantified. Consequently, only the common-parameter-correlation can be dealt 
with in a quantitative way. However, it is possible to calculate upper and lower bounds 
for the failure probability of the system. 
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FIG . 7. Example of simplified fault tree for a. breakwater. 

Hydraulic boundary conditions (waves, water levels, etc.) 

Venting 

Damage to berths, 
brldgos, cranes 
reclaimed areca 
on leeward side 

I 
I 

Slip circle 
olldo roar 
slope 

Core. aubsoll 
oottloment 

Damage to ohlps, 
moorings, etc. 
due to wave 
dlslurl>anco 

y 

I 
I 

T 
Cost benefit analysis 

I 
I 

Slip clrcln 
slide front 
slope 

y 
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FIG . 8. Example of cause-consequence diagram for a rubble mound breakwater. 
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A system can be split into two types of fundamental systems, namely series systems and 
parallel systems, Fig. 9. 

Series system -----m---ITJ- -0----

Parallel system 

FIG. 9. Series and parallel systems. 

Series systems 

In a series system failure occurs if any of the elements i = 1, 2, . . . , n fails. 
The upper and lower bounds of the failure probability of the system, P1s are 

Upper bound Pfs = 1- (1- P,1 ) (1 - Pn) ... (1 - PJn) ( 40) 

Lower bound Pf5 = max Pfi (41) 

where max Pji is the largest failure probability among all elements. The upper 
bound correponds to no correlation between the failure modes and the lower 

n 

bound to full correlation. Eq. ( 40) is sometimes approximated by Pf5 = I: PJi 
i=l 

which is applicable only for small PJi because Pfs should not be larger than 
one. 

The OR-gates in a fault tree corresponds to series components. Series components are 
dominating in breakwater fault trees. Really, the AND-gate in Fig. 7 is included for 
illustration purpose and is better substituted by an OR-gate. 

Parallel systems 

A parallel system fails only if all the elements fail. 

Upper bound Pfs = min Pfi ( 42) 

Lower bound Pfs = P11 · P12 . . . Pfn (43) 

The upper bound corresponds to full correlation between the failure modes 
and the lower bound to no correlation. 
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The AND-gates in a fault tree correspond to parallel components. 

In order to calculate upper and lower failure probability bounds for a system it is convenient 
to decompose it into series and parallel systems. Fig. 10 shows a decomposition of the 
fault tree, Fig. 7. 

Erosion of 1oe 12\ 
benn 1.2; 

Sea bed scour (!} 

FIG . 10. Decomposition of the fault tree Fig. 8 into series and parallel systems. 

The real failure probability of the system P1s will always be in between Pfs and Pfs 
because some correlation exists between the failure modes due to the common sea state 
parameters, e.g. H 8 • 

It would be possible to estimate P1s if the physical interactions between the various failure 
modes were known and described by formulae and if the correlations between the involved 
parameters were known. However, the procedure for such correlations are very complicated 
and are in fact not yet fully developed for practical use. 

The probability of failure cannot in itself be used as the basis for an optimization of a 
design. This is because an optimization must be related to a kind of measure (scale) which 
for most structures is the economy, but other measures such as loss of human life (without 
considering some cost of a life) are also used. 

The so-called risk, defined as the product of the probability of failure and the econ~mic 
consequences is used in optimization considerations. The economic consequences must 
cover all kind of expenses related to the failure in question, i.e. cost of replacement, 
down-time costs etc. 

5 Uncertainties related to parameters determining the 
reliability of the structure 

Calculation of reliability or failure probability of a structure is based on formulae describing 
its response to loads and on information about the uncertainties related to the formulae 
and the involved parameters. 

Basically, uncertainty is best given by a probability distribution. Because the distribution 
is rarely known it is common to assume a normal distribution and a related coefficient of 
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variation 

1 u standard deviation 
o-=-=-------

1-L mean value 
(44) 

as the measure of the uncertainty. 

The word uncertainty is here used as a general term referring both to errors, to random­
ness and to lack of knowledge. 

5.1 Uncertainty related to failure mode formulae 

The uncertainty of a formula can be considerable. This is clearly seen from many dia­
grams presenting the formula as a nice curve shrouded in a wide scattered cloud of data 
points (usually from experiments) which are the basis for the curve fitting. Coefficients of 
variation of 15-20% or even larger are quite normal. 

The range of validity and the related coefficient of variation should always be considered 
when using a formula. 

5.2 Uncertainty related to environmental parameters 

The sources of uncertainty contributing to the total uncertainties in environmental design 
values are categorized as: 

1. Errors related to instrument response (e.g. from accelerometer buoy and visual 
observations) 

2. Variability and errors due to different and imperfect calculations methods (e.g. wave 
hind cast models, algorithms for timeseries analysis) 

3. Statistical sampling uncertainties due to short-term randomness of the variables 
(variability within a stochastic process, e.g. two 20 min. records from a stationary 
storm will give two different values of the significant wave height) 

4. Choise of theoretical distribution as a representative of the unknown long-term dis­
tribution (e.g. a Weibull and a Gum bel distribution might fit a data set equally well 
but can provide quite different values of a 200-year event). 

5. Statistical uncertainties related to extrapolation from short samples of data sets to 
events of low probability of occurrence. 

6. Statistical vagaries of the elements 

It is beyond the scope of this contribution to discuss in more detail the mentioned uncer­
tainty aspects related to the environmental parameters. Reference is given to Burcharth 
(1989). 
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5.3 Uncertainty related to structural parameters 

The uncertainties related to material parameters (like density) and geometrical parameters 
(like slope angle and size of structural elements) are generally much smaller than the 
uncertainties related to the environmental parameters and to the design formulae. 

6 Introduction of a partial coefficient system for im­
plementation of a given reliability in the design 

The following presentation explains in short the partial coefficient system developed and 
proposed by Subgroup-F under the PIANC PTC II Working Group 12 on Rubble Mound 
Breakwaters. For more details reference is made to Burcharth (1991). 

6.1 Introduction to partial coefficients 

The objective of the use of partial coefficients is to assure a certain reliability of the struc­
tures. 

The partial coefficients, /i, are related to characteristic values of the stochastic variables, 
Xi,ch· In conventional civil engineering codes the charateristic values of loads and other 
action parameters are often chosen to be an upper fractile (e.g. 5%), while the character­
istic values of material strength parameters are chosen to be the mean values. The values 
of the partial coefficients are uniquely related to the applied definition of the characteristic 
values. 

The partial coefficients, /i, are usually larger than or equal to one. Consequently, if we 
define the variables as either load variables Xfoad (as for example H 3 ) or resistance vari­
ables X[es (as for example the block volume) then the related part ial coefficients should 
be applied as follows to obtain the design values 

X
design - load xloo.d 
i - li ' i,ch 

( 45) 

x~e.sign -
' 

The magnitude of /i reflects both the uncertainty on the related parameter Xi, and the 
relative importance of xi in the failure function. A large value, e.g. /H. = 1.4, indicates 
a relatively large sensitivity of the failure probability to the significant wave height, H8 . 

On the other hand, /i ~ 1 indicates no or negligible sensitivity in which case the partial 
coefficient should be omitted. It is to be stressed that the magnitude of /i is not - in a 
mathematical sense - a stringent measure of the sensitivity of the failure probability to 
the parameter, xi. 
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When the partial coefficients are applied to the characteristic values of the parameters in 
eq. (2) we obtain the design equation, i.e. the definition of how to apply the coefficients. 

The partial coefficients can be related either to each parameter or to combinations of the 
parameters (overall coefficients). In the first case we obtain t he design equation 

( )

1/3 
G _ Zeh fleh Dn, eh K coto:eh _ H > O 

- D /H:1 :J,eh _ 
/z /!:1 /Dn /eota 

or (46) 

D > 1/3 H:J,eh 
n,eh- /z/L:J./Dn/eota/H, Z A ]( t 

eh L...l.eh D CO O:eh 

In the second case we could for example have only /H, and an overall coefficient /z related 
to the first term on the right band side of eq. (2) . The design equation would then be 

G Zeh ( )1/3 =- fleh Dn,eh Kncoto: -!H.Hs,eh ?: 0 
/z 

or (47) 

D > Hs,eh 
n, eh _ /z /H. 1/3 

Zch fl ch (Kn coto:ch) 

Eqs. ( 46) and ( 4 7) express two different "code formats". By comparing the two equations 
it is seen that the product of the partial coefficients is independent of the chosen format, 
other things equal. It is desirable to have a system which is as simple as possible, i.e. 
as few partial coefficients as possible, but without invalidating the accuracy of the design 
equation beyond acceptable limits. 

Fortunately, it is very often possible to use overall coefficients, like /z in eq. ( 4 7), without 
loosing significant accuracy within the realistic range of combinations of parameter values. 
This is the case for the system proposed in this paper where only two partial coefficients, 
/H. and /z, are used in each design formula. 

Usually several failure modes are relevant to a design. The relationship between the failure 
modes are characterized either as series systems or parallel systems. A fault tree can be 
used to illustrate the complete system. The partial coefficients for failure modes being 
in a system with failure probability, P1 are different from the partial coefficients for the 
single failure modes with the same failure probability, P1. Therefore, partial coefficients 
for single failure modes and multi failure mode systems are treated separately. 

6.2 Overall concept of the proposed partial coefficient system 

In existing civil engineering codes of practise, e.g. for steel and concrete structures, it is a 
characteristic of them that 
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• partial coefficients are related to combinations of basic variables rather than to each 
of them in order to reduce the number of coefficients. 

• the partial coefficients reflect the safety level inherent in a large number of well proven 
designs. Two sets of coefficients covering permanent and preliminary structures are 
usually given, but the related average probabilities of failure are not specified. In 
other words, it is not possible by means of the normal structural codes to design a 
structure to a predetermined failure probability. 

However, it is not advisable to copy this concept in safety recommendations for rubble 
mound breakwaters for the following reasons: 

• For coastal structures and breakwaters there is no generally accepted tradition which 
reflects one or more levels of failure probability. On the contrary it is certain that the 
safety level of existing structures varies considerably and is often very low. Besides, 
it is very difficult to evaluate the safety level of existing coastal structures and break­
waters because of lack of information, especially on the environmental conditions, 
e.g. the water level variations and the wave climate. Consequent ly, it is not possi­
ble to produce sets of partial coefficients which, in a meaningful way, are calibrated 
against existing designs. 

• Due to the very nature of coastal engineering where design optimization dictates 
considerable variations in the safety level of the various structures it is necessary 
(advisable) to have sets of partial coefficients which correspond to various failure 
probabilities. In other words the designer and the client decide on t he basis of 
optimization and cost benefit analyses that the structure should be designed for 
a specific safety level (for example 20% probability of failure (PJ = 20%) within 
a structural lifetime of T = 80 years , where failure is defined as a certain degree 
damage). The code should then contain a set of partial coefficients corresponding to 
this failure probability. 

• Because the quality of information about the long term wave climate (the domi­
nating load) varies from very unreliable (uncertain) wave statistics based on few 
uncertain data sets to very reliable statistics based on many years of high quality 
wave recordings and hindcast values it is necessary that the partial coefficients must 
be a function of the quality of the available information on the wave climate. This 
means that the statistical uncertainty due to limited number of wave data and errors 
in the wave data should be implemented. 

Extensive calculations, performed at University of Aalborg, of partial coefficients for ar­
mour layer stability formulae demonstrated that it was possible to develop a concept which 
satisfies these demands. 

The partial coefficients /i were determined from a so-called level II reliability analysis. 
The applied computer programmes BWREL (Break Water RELiability programme) and 
BWCODE (Break Water CODE) were developed at the University of Aalborg by Dr. 
John Dalsgaard S~rensen especially for the reliability analysis of breakwaters. For further 
explanation reference is made to Burcharth (1991). 
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6.3 Partial Coefficient System Format for Single Failure Modes 

For each failure mode only two partial coefficients /H, and "tz are used, cf. the example 
given by eq. (47). The partial coefficient are determined from formulae. Three different 
concepts for these formulae have been evaluated and the following were chosen as being 
acceptable with respect to deviations from the target probability of failure. 

where 
AT Ha is the central estimate of the T-year return period value of Ha, 

where T is the structural lifetime (T = 20, 50 and 100 years 
were used for the code calibration) . /H, is applied to f{[ (the 
characteristic value of Ha, cf. the design equations). 

fJ;T is the central estimate of the 3T-year return period value of H9 • 

A Tp, 
Hs is the central estimate of Ha corresponding to an equivalent re-

turn period Tp
1 

defined as the return period corresponding to a 

probability P1 that fJ;PJ will be exceeded during the structural 
lifetime T . Tp1 is calculated from the encounter probability for-

mula Tp
1 

= (1- (1- P1 )~) -l , cf. Fig. 11. 

u~H. is the variational coefficient of a function FH, modelled as a factor 
on Hs. FH, signifies the measurement errors and short term 
variability of Ha and has the mean value 1.0. The statistical 
uncertainty on Ha is not included in FH,. 

N is the number of Ha data, used for fitting the extreme distribu­
tions. The statistical uncertainty depends on this parameter. 

ka, kf3 and ka are coefficients which are determined by optimization. 
ks ~ 0.05 for all failure modes. The ka and the kf3 values are 
given in Tables 5-8. 

(48) 

(49) 

The first term in eq. ( 48) gives the correct / H, provided no statistical uncertainty and 
measurement errors related to Ha are present. The middle term in eq. ( 48) signifies the 
measurement errors and the short term variability related to the wave data. The last term 
in eq. (48) signifies the statistical uncertainty of the estimated extreme distribution of Hs. 
The statistical uncertainty depends on the total number of wave data, N, but not on the 
length of the period of observation, as might be expected. The 10 largest values of Ha over 
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a 15 years period provides a much more reliable estimate of the extreme distribution than 
the 10 largest values of H. over 1 year. However, in the statistical analysis it is assumed 
that the data samples are equally representative of the true distribution. In other words 
it is assumed that the data, besides being non-correlated, are sampled with a frequency 
and over a length of time which ensures that periodic variations (e.g. seasonal) are not 
biasing the sample. The designer must be aware of these restrictions. 

If the extreme wave statistics is not based on N wave data, but for example on estimates of 
Hs from information about water level variations in shallow water, then the last term in eq. 
( 48) disappears and instead the value of u~H. must account for the inherent uncertainty. 

Years Return period, R 

1 o' 1 ~ 

_j_--r--5~ 
103~~--~~-F~~~+---10~ 

_j,..--r-- 20~ 
__.......~~-;--- 40~ p, Encounter probability, 

1 o 2 u~--=:;:f--::::F;;..±::::=t== ggi p = 1 - c 1 - k r 

10°~~--~--~--~--~--~~ 
0 20 40 60 80 100 Years 

FIG. 11. Encounter probability, i.e. the probability p that the R-year return 
period event will be exceeded during aT-year structural life. 
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6.4 Example of Design equations and Recommended Values of 
kcr and kp 

The values of k01 and k13 which have been obtained by carrying out optimization for each 
failure modes are presented as well as the related design equations in Tables 5-8. Note 
that limitations related to the equations are not given here. 

Table 5. Main armour hydraulic stability. 

Formula Design equation kcx k/3 

Hudson, rock ;z tl.Dnso (Kdcota) 113 ~ /H,H[ 0.036 151 

Van der Meer, rock 

Plunging waves l 6 2so.2 po.1s tl.D cotao.s 5o.2s N-o.1 > 1 HT /z • n50 m z _ H, 3 0.027 38 

Surging waves lso.2 p-0.13 tlD cotao.s-P 8 -o.sP N-o.1 > 1 HT 
/z n50 m z _ H, s 0.031 38 

Van der Meer 

Tetrapods 1 ( N°·
5 

) -0 2 T 
lz 3. 75~ + 0.85 Sm · tlDn ~ I H,H3 

0.026 38 

cota = 1.5 

Van der Meer 

Cubes 1 ( N°·
4 

) o 1 T 
lz 6.7Nf:s + 1.0 s~ · tlDn ~ IH,Hs 0.026 38 

coto: = 1.5 

Burcharth 

Dol os __!_. tlD ( 4 7 - 72r )cp - D 113 N-0·1 > 1 HT 0.025 38 n n- 2 z - H, s 
lz 

coto: = 1.5 

r Dolos waist ratio 
r.p packing density 
D relative number of units displaced 
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Table 6. Hydraulic stability of low crested rock breakwaters. 

Formula Design equation k(){ k/3 

Van der Meer, rock As for main armour with factor 

[ R ( S t·5] -l fi = 1.25 - 4.81fT ~ 0.035 42 

applied to Dnso 

Table 7. Hydraulic stability of rock toe berm. 

Formula Design equation k(){ k/3 

Van der Meer, rock 1 ( h ) 1.
43 

T 
lz 8. 7 T /j.flnsO ~ "YH.Hs 0.087 100 

Table 8. Run-up on rock armoured slopes. 

Formula Design equation k(){ k/3 

Hunt for (cotat1 s~0·5 < 1.5 
1.. Rua-1cotas0 ·5 > /H HT 
/z m - • If 

0.036 44 

for (cotat 1 s~0·5 > 1.5 
1.. Ru b-1 [cota s0

·
5t > 1 HT 0.018 36 'Yz m - H . s 

6.5 Example of the use of the Partial Coefficient System 

The following example will illustrate how the partial coefficient system is applied for design 
purpose. 

Objective: 

Determination of the average mass, or the nominal diameter Dnso, 
of quarry rock armour corresponding to the following design condi­
tions: 

Case 1. Moderate to severe damage with a probability P1 = 
0.2 within a structural life of T = 50 years. 
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Case 2. Very severe damage (failure) with a probability P1 = 
0.2 within a structural life of T = 100 years. 

Case 3. Moderate to severe damage with a probability P1 = 
0.1 within a structural life of T = 100 years. 

The Van der Meer formulae for rock given in Table 5 are assumed 
valid. 

Design parameters: 

Densities: Rock 2.8 t/m3
, water 1.03 t/m3

, 1:1 = 1.72 
Slope: cota = 1.5, porosity P = 0.4 
Wave climate: Weibull distribution of H! with the site specific coefficients 

(a,f3,H;) = (1.39, 1.06, 0.44) determined by fitting to a hind­
casted H.-data set consisting of the N = 50 largest values within 
a 12 years period, i.e. ,\ = 50/12 = 4.17. aP,H, is estimated to 
0.2 for the hindcasted Hs values. Wave steepness sm = 0.04, 
number of waves Nz = 2500. 

Damage: 
Moderate to severe damageS= 6, very severe damage (failure) 
s = 14. 

Procedure: 

The procedure and the partial coefficent formulae described in section 6.3 are used. 

Calculations: 

In case of a Weibull distribution the central estimate of the significant wave height 
with an average return period of T years is given by 

h; = H; +f3(exp[ln(ln(,\T))/a]) = 0.44+ 1.06(exp[ln(ln(4.17T))/1.39]) 

The equivalent return period is given by Tp
1 

= (1 - (1 - P1 )"~) -l 
From this is obtained 

Case T (year) PI Tp
1 

(year) H'[ (m) b;T (m) H;P, (m) 

1 50 0.2 225 3.98 4.49 4.67 
2 100 0.2 449 4.30 4.80 4.97 
3 100 0.1 950 4.30 4.80 5.29 

From Table 5 (for plunging waves) ka = 0.027 , kp = 38 

From the formulae 
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and the Van der Meer design equation is obta~ned 

Case /H. /Z Dnso (m) Average mass ( t) 

1 1.23 1.04 1.58 11.0 
2 1.22 1.04 1.43 8.1 
3 1.35 1.06 1.91 19.5 

The example illustrates how easy it is to calculate the size of the armour for various design 
conditions. The system facilitates economical optimization of a design. 

The system can be used also for the evaluation of the failure probability of existing struc­
tures. 
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