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ON TRACES OF GENERAL DECOMPOSITION SPACES

MORTEN NIELSEN

ABSTRACT. The decomposition space approach is a general method to construct
smoothness spaces on Rd that include Besov, Triebel-Lizorkin, modulation, and α-
modulation spaces as special cases. This method also handles isotropic and an-
isotropic spaces within the same framework.

In this paper we consider a trace theorem for general decomposition type smooth-
ness spaces. The result is based on a simple geometric estimate related to the struc-
ture of coverings of the frequency space used in the construction of decomposition
spaces.

1. INTRODUCTION

Smoothness spaces such as the Besov, Modulation, and Triebel-Lizorkin spaces
play an important role in approximation theory and harmonic analysis. Important
applications of such spaces, and of smoothness spaces in general, include the study
of (partial) differential equation and signal processing (compression, de-noising etc.).

Decomposition spaces were introduced by Feichtinger and Gröbner [7] and Fe-
ichtinger [6], and are based on structured coverings of the frequency space Rd . In
this context, the classical Triebel-Lizorkin and Besov spaces correspond to dyadic
coverings, see [20]. However, many other covering of the frequency space can be
considered leading to new smoothness spaces. For example, by choosing structured
"polynomial" coverings we obtain so-called α-modulation spaces, see [11].

An approach to constructing stable frames for decomposition smoothness spaces
was introduced in [2, 3]. The approach in [2, 3] is quite general and a multitude of
isotropic and anisotropic spaces are covered by the construction, which is based on
simple geometric coverings.

One important application of smoothness spaces is to the study of partial-dif-
ferential and pseudo-differential operators. Such operators on Besov and Triebel-
Lizorkin spaces have been studied by many authors. For example, the Besov case
was considered by Gibbons [10] and Bourdaud [4], while the Triebel-Lizorkin case
was studied by Päivärinta [15] and Bui [17]. The anisotropic case was considered by
Yamazaki [21, 22]. PDOs have also been studied on spaces of Besov type based on
non-dyadic frequency splittings. In particular, boundedness of such operators on
modulation spaces has been considered by many authors, see e.g. [5, 12, 16, 19].

Key words and phrases. Trace operator, α-modulation space, Besov space, Triebel-Lizorkin space.
1



ON TRACES OF GENERAL DECOMPOSITION SPACES 2

Partial differential equations are often studied in the context of boundary value
problems. For such problems, the so-called trace operator plays an important role,
see [13, 20]. In this paper we study the trace operator acting on multivariate smooth-
ness spaces constructed by the decomposition method.

Let us formally define the trace operator. Since the trace operator acts pointwise,
we have to be somewhat careful with the definition. Here we follow standard proce-
dure and use a denseness argument to make sure that everything is well-defined. Let
d ≥ 2 and for x = (x1, x2, . . . , xd ) ∈ Rd , we denote x ′ = (x1, . . . , xd−1). For any (quasi-)
Banach function space X (Rd ) defined on Rd , with the Schwartz class S (Rd ) dense
in X , the trace operator is first defined for f ∈ S (Rd ) by restricting f to the hyper-
plane {x ∈ Rd : x = (x ′,0)}. That is, (Tr f )(x ′) = f (x ′,0), x ′ ∈ Rd−1. Now, suppose Y is a
(quasi-) Banach function space defined on Rd−1, and we have a constant C > 0 such
that

‖Tr f ‖Y ≤C‖ f ‖X , f ∈S (Rd ).

Then we simply extend Tr to all of X by a denseness argument.
The trace operator on various smoothness spaces has been studied by many au-

thors. For Besov and Triebel-Lizorkin spaces, see [1, 9, 20], and for modulation, α-
modulation and Besov spaces the operator has been considered in [8].

The structure of this paper is as follows. In Section 2 we define the decomposition
type smoothness spaces following a review of the machinery needed to construct
such spaces. It is necessary to go into some details about the construction of the
smoothness spaces in order to be able to analyze the action of the trace operator.
Section 3 contains our main result on the trace operator. The result is based on a
simple geometric estimate derived directly from the very construction of the spaces.
Examples are given throughout Sections 2 and 3, where we focus on the class of α-
modulation spaces that include Besov and modulation spaces as special cases.

2. DECOMPOSITION-TYPE SMOOTHNESS SPACES

In this section we give a brief description of the decomposition type smoothness
spaces of Triebel-Lizorkin and modulation type introduced in [3]. A more detailed
study of such spaces and associated discrete decompositions can be found in [2, 3],
see also [14] for a construction of compactly supported frames for such spaces.

The construction is based on the following three steps.

• Construct a structured covering of the frequency space Rd . The structure of
the covering then determines the nature of the associated smoothness space.
For example, coverings obtained by translating a fixed set generate so-called
modulation spaces, while dyadic type coverings generate Besov and Triebel-
Lizorkin spaces.

• Define a suitable resolution of the identity on Rd compatible with the cov-
ering of Rd . That is, a countable collection of smooth functions {ϕk } with∑

k ϕk = 1.
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• Used the resolution of identity to define spaces of modulation/Besov type and
Triebel-Lizorkin type.

First we start by introducing a method to generate (possibly anisotropic) coverings
ofRd that eventually will serve as support sets for the resolution of identity. The start-
ing point is to introduce an anisotropic quasi-distance on Rd and Rd−1, respectively.

2.1. Anisotropies and quasi-distances on Rd and Rd−1. Throughout this paper we
assume that the dimension d ≥ 2 is fixed. An anisotropy on Rd is defined to be a
vector a = (a1, a2, . . . , ad ) of strictly positive numbers, which we assume is normalize
such that

∑d
j=1 ai = d . For t ≥ 0, the d ×d-anisotropic dilation matrix δa(t ) is defined

by δa(t ) = diag(t a1 , . . . , t ad ).
We now introduce the standard quasi-norm | · |a associated with a.

Definition 2.1. Define the function | · |a : Rd → R+ by |0|a := 0, and for ξ ∈ Rd \{0}, by
letting |ξ|a be the unique solution t to the equation |δa(t )| = 1.

One can verify (see [18]) that there is a constant Ca ≥ 1 such that

(2.1) |ξ+η|a ≤Ca[|ξ|a +|η|a], ∀ξ,η ∈Rd .

Moreover, it can be verified that

|ξ|a ³
d∑

j=1
|ξ j |1/a j , ξ ∈Rd .

The bracket associated with | · |a is defined by

(2.2) 〈ξ〉a := 1+|ξ|a, ξ ∈Rd .

Finally, we define the balls (essentially ellipsoids) Ba(ξ,r ) := {ζ ∈Rd : |ξ−ζ|a < r }. It
can be verified that |Ba(ξ,r )| = r dωa

d , where ωa
d := |Ba(0,1)|, so (Rd , | · |A,ξ. ) is a space

of homogeneous type with homogeneous dimension d .

Remark 2.2. An even more general setup can be considered where δt is the one-
parameter group generated by a matrix A with positive eigenvalues, see [3]. However,
the present slightly less general setup turns out to be well-suited for our proposed
study of the trace operator.

Since our focus is on the trace operator, we also introduce the truncated anisotropy
a′ = (a1, a2, . . . , ad−1). In a similar fashion, a′ defines a quasi-norm | · |a′ on Rd−1, and
writing ξ= (ξ′,ξd ) ∈Rd−1 ×R, we notice that uniformly in ξ ∈Rd ,

|ξ|a ³ |ξ′|a′ +|ξd |1/ad .

In particular, for any ξ= (ξ′,0) with ξ′ ∈Rd−1, and t ∈R, we have uniformly that

(2.3) |ξ|a ³ |ξ′|a′ , |(0, t )|a ³ |t |1/ad .
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2.2. Anisotropic structured coverings. Now we first introduce so-called admissible
coverings and a method to generate them, see [2, 6]. These coverings are then used
to construct a suitable resolution of the identity which are then used to define the
Triebel-Lizorkin type spaces and the associated modulation spaces.

Definition 2.3. A set Q := {Qk }k∈Zd of measurable subsets Qk ⊂Rd is called an admis-
sible covering if Rd =∪k∈Zd Qk and there exists n0 <∞ such that #{ j ∈Zd : Qk ∩Q j 6=
;} ≤ n0 for all k ∈Zd .

To generate an admissible covering we will use a suitable collection of Ba-balls,
where the radius of a given ball is a so-called moderate function of its center.

Definition 2.4. A function h :Rd → [ε0,∞) for ε0 > 0 is called moderate if there exists
constants ρ0,R0 > 0 such that |ξ−ζ|a ≤ ρ0h(ξ) implies R−1

0 ≤ h(ζ)/h(ξ) ≤ R0.

In this paper we shall always assume that any moderate function is increasing in
the sense that

(2.4) h(ξ) ≥ h(ζ) whenever |ξ|a ≥ |ζ|a.

With a moderate function h, it is then possible to construct an admissible covering
by using balls, see [6, Lemma 4.7] and [3, Lemma 5].

Lemma 2.5. Given a moderate function h with constants ρ0,R0 > 0, there exists a
countable admissible covering C := {Ba(ξk ,ρh(ξk ))}k∈N for ρ < ρ0/2, and there exists
a constant 0 < ρ′ < ρ such that the sets in C are pairwise disjoint.

The proof of the Lemma is straightforward. One picks a maximally disjoint cover-
ing of the type C := {Ba(ξk ,ρh(ξk ))}k∈N with ρ < ρ0/2 (using, e.g., Zorn’s Lemma) and
checks that this covering satisfies the requirements.

Example 2.6. Let 0 ≤α≤ 1. Then

(2.5) h(ξ) := 〈ξ〉αa
is moderate on Rd . The covering {Qk }k given by Lemma 2.5 satisfies the geometric
constraint

|Qk | ³ 〈ξ〉dα
a , ξ ∈Qk ,

uniformly in k. Therefore, we refer to {Qk }k as an α-covering. For α = 0 we obtain a
uniform covering, while forα= 1 we obtain a dyadic covering. We obtain polynomial
type coverings for 0 < α < 1 that form the foundation for defining the so-called α-
modulation spaces. We shall return to this example several times below.

By using that BA(ξk ,ρ′h(ξk )) are disjoint it can be shown that Ba(ξk ,2ρh(ξk )) also
give an admissible covering. Notice that the covering C from Lemma 2.5 is generated
by a family of invertible affine transformations applied to Ba(0,ρ) in the sense that

Ba(ξk ,ρh(ξk )) = TkBa(0,ρ), Tk := δa(tk ) ·+ξk ,

where tk := h(ξk ). This observation is essential for the construction since the Fourier
transform is well-behaved under an affine change of variable.
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Remark 2.7. Geometrically, a covering of the type given by Lemma 2.5 consists of
ellipsoids. In some cases, a covering by generalized rectangles may be preferred. This
can easily be obtained by observing that there exist 0 < a < b <∞ such that

[−a, a]d ⊆Ba(0,ρ) ⊆ [−b,b]d .

Then {Tk ([−b,b]d )}k is such a covering by rectangles.

Given a structured covering C on Rd , there is an easy way to construct a derived
covering C ′ on Rd−1. We simply put

(2.6) C ′ = {Q ′ := supp(χQ (x ′,0)) : Q ∈C ,χQ (·,0) 6= 0}.

We notice that the structure of C is preserved in the following sense. If p :Rd →Rd−1

is the projection operator p((x ′, t )) = x ′, and Q = δa(tk )([−b,b]d )+ξk , then

(2.7) Q ′ = δa′(tk )([−b,b]d−1)+p(ξk ).

2.3. Bounded admissible partition of unity. We can now generate our resolution of
the identity, and for technical reasons we shall require it to satisfy Definition 2.8.

Let us mention that throughout this paper, the Fourier transform F is defined and
normalized as follows, (F f )(ξ) := ∫

Rd f (x)e−2πi x·ξd x, f ∈ L1(Rd ).

Definition 2.8. Let C := {TkBA(0,ρ)}k∈N be an admissible covering ofRd from Lemma
2.5. A corresponding bounded admissible partition of unity (BAPU) is a family of
functions {ϕk }k∈N ⊂S (Rd ) satisfying:

(a) supp(ϕk ) ⊆ TkBa(0,2ρ), k ∈N.
(b)

∑
k∈Nϕk (ξ) = 1, ξ ∈Rd .

(c) supk∈N |TkBa(0,2ρ)|1/p−1‖F−1ϕk‖Lp (Rd ) <∞, ∀p ∈ (0,1].

A standard trick for generating a BAPU for C is to pick Φ ∈ C∞(Rd ) non-negative
with supp(Φ) ⊆Ba(0,2ρ) and Φ(ξ) = 1 for ξ ∈Ba(0,ρ). One can then show that

Φk (ξ) :=
Φ(T −1

k ξ)
∑

j∈Zd Φ(T −1
j ξ)

defines a BAPU for C .
Since the objective is to study the trace operator, we also need to introduce func-

tion spaces on Rd−1 that are suitable for capturing the action of the trace operator.
The following simple observation provides us with a BAPU on Rd−1 that will be suit-
able for such a purpose. Writing ξ= (ξ′,ξd ) ∈Rd−1 ×R, we notice that

(2.8) {ϕk (ξ′) :=Φk (ξ′,0)|Φk (·,0) 6= 0}k∈N
defines an associated BAPU on Rd−1, with support set C ′ := {supp(ϕk )}k that is sub-
ordinate to the covering C ′ considered in (2.6). That is, we pick the subset of the res-
olution of the identity with support that intersects the hyperplane {(x ′,0) : x ′ ∈Rd−1}.

With a BAPU in hand we can now define the Triebel-Lizorkin type spaces and the
associated modulation spaces.
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Definition 2.9. Let h be a moderate function satisfying

(2.9) C1〈ξ〉γ1
a ≤ h(ξ) ≤C2〈ξ〉γ2

a , ξ ∈Rd ,

for some 0 < γ1 ≤ γ2 < ∞. Let C be a admissible covering of Rd from Lemma 2.5,
{ϕk }k∈N a corresponding BAPU and ϕk (D) f :=F−1(ϕkF f ).

• For s ∈ R, 0 < p <∞, and 0 < q ≤∞, we define F s
p,q (Rd ) as the set of distribu-

tions f ∈S ′(Rd ) satisfying

‖ f ‖F s
p,q (Rd ) :=

∥∥∥
( ∑

k∈N
|h(ξk )sΦk (D) f |q

)1/q∥∥∥
Lp

<∞.

• For s ∈R, 0 < p ≤∞, and 0 < q <∞, we define M s
p,q (Rd ) as the set of distribu-

tions f ∈S ′(Rd ) satisfying

‖ f ‖M s
p,q (Rd ) :=

( ∑

k∈N

∥∥h(ξk )sΦk (D) f
∥∥q

Lp

)1/q
<∞.

If q =∞, then the lq -norm is replaced by the l∞-norm.

It can be shown that F s
p,q (Rd ) depends only on h (and not on C ) up to equivalence

of the norms (see [3, Proposition 5.3]), so the Triebel-Lizorkin type spaces are well-
defined and similar for the modulation spaces. Furthermore, they both constitute
quasi-Banach spaces, and for p, q <∞, S is dense in both (see [3, Proposition 5.2]).
The fact that S is dense in the respective spaces is essential for us to be able to define
the trace operator in Section 3.

The modulation and Triebel-Lizorkin spaces with comparable parameters are quite
similar as the following embedding property shows for 0 < p <∞, see [3, Proposition
5.7],

(2.10) M s
p,min{p,q}(R

d ) ,→ F s
p,q (Rd ) ,→ M s

p,max{p,q}(R
d ), 0 < q ≤∞.

We will use (2.10) in the sequel to derive trace results for the Triebel-Lizorkin type
spaces from the results we obtain for the modulation spaces.

2.4. Derived smoothness spaces on Rd−1. Suppose we have a moderate function h
on Rd with structured admissible covering C and associated BAPU {Φk }. Then we
can easily introduce derived smoothness spaces F s

p,q (Rd−1) and M s
p,q (Rd−1) on Rd−1

by considering the restricted moderate function h′(x ′) := h(x ′,0) associated with the
derived covering C ′ of Rd−1, see (2.6). An associated BAPU {φk } on Rd−1 is given by
(2.8). The spaces associated with this particular setup are denoted F s

p,q (Rd−1) and

M s
p,q (Rd−1), respectively.

Example 2.10. Given an anisotropy a on Rd , consider h(ξ) = 〈ξ〉αa for some 0 ≤α≤ 1,
with an associated covering C of Rd given by Lemma 2.5. This defines the so-called
anisotropic α-modulation spaces denoted by Fα,s

p,q (Rd ) and Mα,s
p,q (Rd ), respectively.
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Now, clearly we have h′(ξ′) = (1+ |ξ′|a′)α, ξ′ ∈ Rd−1. Let Q ′ ∈ C ′, with Q ′ derived
from Q ∈C , see (2.6). We claim that uniformly for ξ′ ∈Q ′

|Q ′| ³ (1+|ξ′|a′)(d−ad )α = (1+|ξ′|a′)(d−1)
d−ad
d−1 α.

First notice that (ξ′,0) ∈Q, so

|Q| ³ (1+|(ξ′,0)|a)dα ³ (1+|ξ′|a′)dα.

Then we use the observation (2.7) to conclude. Hence the derived covering C ′ is a
β-covering on Rd−1 with β=α · (d −ad )/(d −1). So in cases where ad = 1, such as the
isotropic setup, we have β=α and there is no "corrective" factor.

Hence, with this particular setup, the derived function spaces onRd−1 are Fβ,s
p,q (Rd−1)

and Mβ,s
p,q (Rd−1), respectively.

3. THE TRACE OPERATOR ON DECOMPOSITION SPACES

With the decomposition type smoothness defined in the previous section, we now
turn our attention to the trace operator defined for f ∈S (Rd ) by (Tr) f (x ′) = f (x ′,0),
x ′ ∈Rd−1.

Our goal is to obtain a general trace result that applies to (almost) all decomposi-
tion smoothness spaces. However, for this to be possible, we can obviously only rely
on properties that are common to all of these spaces.

Of particular interest to us is the construction of structured coverings of Rd . For
our trace results, we need the following simple geometric observation. Suppose the
covering of Rd is generated by the affine transforms {δa(tk ) ·+ξk }k∈N. Then for a fixed
dilation parameter tl , l ∈N, we let

(3.1) Tl = |ξ|a, for ξ ∈Rd chosen such that h(ξ) = tl .

We claim that there is a constant C such that uniformly in l ,

(3.2)
∑

k:tk≤tl

t d
k ≤C T d

l .

To verify this claim, we pick any tk ≤ tl . Let ξk be the center of the Ba-ball Bk associ-
ated with tk . Since h is increasing, see (2.4), we have |ξk |a ≤ |ξ|a = Tl . It follows by the
moderation of h that for any ζ ∈ Bk , we have

|ζ|a ≤Ca(|ζ−ξk |a +|ξk |a) ≤C (ρ′tk +Tl ) ≤C ′Tl .

Hence, the pairwise disjoint union ∪{k:tk≤tl }Ba(ξk ,ρ′tk ) is contained in Ba(0,C ′Tl ),
and (3.2) follows immediately from this fact by a volume argument.

Example 3.1. Let 0 < α≤ 1. For h(ξ) := (1+|ξ|a)α, we observe that ξ ∈ Rd with |ξ|a =
t 1/α

l implies that h(ξ) ³ tl . Hence, uniformly in l ,
∑

k:tk≤tl

t d
k ≤C T d

l ³ t d/α
l .

This simple observation will be put to use in Corollary 3.4.
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Before we state the main result, we need to review one result on a Peetre maximal
function adapted to the anisotropy a.

Suppose Ω⊆Rd . Then we let

LΩp (Rd ) := { f ∈ Lp (Rd ) | supp( f̂ ) ⊆Ω}.

We have the following result.

Proposition 3.2. ( [3, Corollary 3.4]) Suppose 0 < p < ∞ and 0 < q ≤ ∞, and let
Ω = {TkC }k∈N be a sequence of compact subsets of Rd generated by a family {Tk =
δtk ·+ξk }k∈N of invertible affine transformations on Rd , with C a fixed compact subset
of Rd . If 0 < r < p, then there exists a constant K such that

(3.3)
∥∥ sup

z∈Rd
〈δa(tk )z〉−d/r

a | fk (·− z)|
∥∥

Lp (Rd ) ≤ K ‖ fk‖Lp (Rd ), ∀k, fk ∈ LTk (Ω)
p (Rd ).

We can now state our main result.

Proposition 3.3. Let a = (a1, . . . , ad ) ∈ Rd
+ be an anisotropy on Rd , and let h be an

associated moderate function satisfying (2.9). We let C be an admissible covering ofRd

associated with h that is generated by the affine transformations {Tk := δa(tk )·+ξk }k∈N.

Suppose there exist constants M ,β > 0 such that Tl ≤ M tβ/d
l for l ∈ N, where Tl is

defined by (3.1). Then for 0 < p, q < ∞, let sp = max{0, (d − ad )(1/p − 1)}, and put
s = d/q − sp > 0. Then we have the continuous embedding

(3.4) Tr : Mβ/q+ad /p
p,min{1,p,q}(R

d ) → M s
p,q (Rd−1),

where the smoothness space on Rd−1 is defined in Section 2.4.

Proof. Let us fix a BAPU {Φk }k∈N on Rd associated with C . First we notice that for
x = (x ′, xd ) ∈Rd−1 ×Rwith (0, xd ) ∈Ba(0, t−1

k ),

(3.5) |Φk (D) f (x ′,0)| ≤ sup
z∈Rd

〈δa(tk )z〉−d/r
a |Φk (D) f (x − z)|.

Now, (0, xd ) ∈ B(0, t−1
k ) implies that |xd | ≤ ct−ad

k , see (2.3). Hence, with 0 < r < p,

‖Φk (D) f (x ′,0)‖p

Lp (Rd−1)
≤ c ′t ad

k

∫

|xd |≤ct
−ad
k

∫

Rd−1
| sup

z∈Rd
〈δa(tk )z〉−d/r

a |Φk (D) f (x − z)||p d x ′d xd

≤ c ′t ad
k ‖ sup

z∈Rd
〈δa(tk )z〉a

−d/r
B |Φk (D) f (x − z)|‖p

Lp (Rd )

≤ c ′′t ad
k ‖Φk (D) f )‖p

Lp (Rd )
,(3.6)

where we used Proposition 3.2 in the last step.
Now we pick f ∈S (Rd ). The strategy is first to make a Littlewood-Paley decompo-

sition of f using the BAPU {Φk }k and then we use this decomposition in the definition
of modulation type smoothness space, see Definition 2.9, to study the action of the
trace operator. Notice that f = ∑

k Φk (D) f with convergence in e.g. L2(Rd ). Now, let
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{φk }k be the associated BAPU on Rd−1. We let Fx ′ denote the (partial) Fourier trans-
form acting on the variable x ′ ∈Rd−1, and F−1

ξ′ denotes its inverse. Then,

(F−1
ξ′ φk ′Fx ′ f )(x ′,0) =

∑

l∈N
F−1
ξ′ (φk ′Fx ′Φl (D) f )(x ′,0)

=
∑

l∈N
(F−1

ξ′ φk ′)∗ (Φl (D) f )(x ′,0)

Notice that supp(Φk ′) ⊂ B × I , with B ⊂Rd−1 and I ⊂R, implies that

supp[Fx ′Φk (D)(x ′,0)] ⊂ B.

This observation implies that there is a constant K <∞ such that

(F−1
ξ′ φk ′)∗ (Φl (D) f )(·,0) = 0

whenever tl ≤ K tk ′ . Therefore,

(3.7) (F−1
ξ′ φk ′Fx ′ f )(x ′,0) =

∑

l∈N
χ{tk′≤K tl }(F

−1
ξ′ φk ′)∗ (Φl (D) f )(x ′,0).

Now we have to consider a number of cases depending on the particular values of p
and q .

Case 1. 1 ≤ p <∞. In this case sp = 0 and s = d/q . We notice that by construction,
supn ‖F−1

ξ′ φn‖L1(Rd−1) <∞. Hence, for 1 ≤ p <∞ we can apply Young’s inequality to
(3.7) to conclude that

‖(F−1
ξ′ φk ′Fx ′ f )(x ′,0)‖Lp (Rd−1) ≤

∑

l∈N
χ{tk′≤K tl }‖Φl (D) f )(x ′,0)‖Lp (Rd−1)

≤
∑

l∈N
χ{tk′≤K tl }t

ad /p
l ‖Φl (D) f )‖Lp (Rd ),

where we used (3.6) in the last estimate. Next we have to consider two different argu-
ments depending on the value of q . First suppose 0 < q ≤ 1. Then we have,

‖ f (·,0)‖M s
p,q (Rd−1) ³

( ∑

k ′∈N
t sq

k ′ ‖φk ′(D) f (x ′,0)‖q

Lp (Rd−1)

)1/q

.
( ∑

k ′∈N
t sq

k ′

( ∑

l∈N
χ{tk′≤K tl }t

ad /p
l ‖Φl (D) f )‖Lp (Rd )

)q)1/q

=
( ∑

l∈N

∑

k ′∈N
χ{tk′≤K tl }t

sq
k ′ (t ad /p

l ‖Φl (D) f )‖Lp (Rd ))
q
)1/q

(3.8)

.
( ∑

l∈N

(
tβ/q+ad /p

l ‖Φl (D) f )‖Lp (Rd )

)q
)1/q

³ ‖ f ‖
M

β/q+ad /p
p,q (Rd )

.
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where we used that sq = d , and the estimate (3.2), in (3.8). Now we turn to the case,
1 < q <∞, We have, using Minkowski’s inequality,

‖ f (·,0)‖M s
p,q (Rd−1) ³

( ∑

k ′∈N
t sq

k ′ ‖φk ′(D) f (x ′,0)‖q

Lp (Rd−1)

)1/q

.
( ∑

k ′∈N

( ∑

l∈N
t s

k ′χ{tk′≤K tl }t
ad /p
l ‖Φl (D) f )‖Lp (Rd )

)q)1/q

.
∑

l∈N

( ∑

k ′∈N

(
t s

k ′χ{tk′≤K tl }t
ad /p
l ‖Φl (D) f )‖Lp (Rd )

)q)1/q

.
∑

l∈N
t ad /p+β/q

l ‖Φl (D) f )‖Lp (Rd )

³ ‖ f ‖
M

β/q+ad /p
p,1 (Rd )

,

where we again used that sq = d and the estimate (3.2). This concludes the case
1 ≤ p <∞.

Case 2. 0 < p < 1. We now turn to the case 0 < p < 1 which has to be treated dif-
ferently. For 0 < p < 1, we notice that ‖F−1

ξ′ φk ′‖Lp (Rd−1) ³ |supp(φk ′)|1−1/p uniformly

in k ′, which follows from Definition 2.8.(c), adjusted to the derived covering {φk } for
Rd−1. Moreover, supp(φk ′) ⊆ δa′(tk ′)Q + ζk ′ , with Q a fixed compact subset of Rd−1

independent of k ′. Hence, by these facts and by calling on [20, §1.5.3], the generic
term in (3.7) can be estimated by

‖(F−1
ξ′ φk ′)∗ (Φl (D) f )(x ′,0)‖Lp (Rd−1). t (d−ad )(1/p−1)

k ′ ‖(Φl (D) f )(x ′,0)‖Lp (Rd−1).

Hence, from (3.7) we obtain

‖(F−1
ξ′ φk ′Fx ′ f )(x ′,0)‖p

Lp (Rd−1)
.

∑

l∈N
χ{tk′≤K tl }t

(d−ad )(1−p)
k ′ ‖Φl (D) f )(x ′,0)‖p

Lp (Rd−1)

.
∑

l∈N
χ{tk′≤K tl }t

(d−ad )(1−p)
k ′ t ad

l ‖Φl (D) f )‖p

Lp (Rd )
,

where we used (3.6) in the last estimate. It follows that

‖ f (·,0)‖M s
p,q (Rd−1) ³

( ∑

k ′∈N
t sq

k ′ ‖φk ′(D)(x ′,0)‖q

Lp (Rd−1)

)1/q

.
( ∑

k ′∈N
t sq

k ′

{ ∑

l∈N
χ{tk′≤K tl }t

(d−ad )(1−p)
k ′ t ad

l ‖Φl (D) f )‖p

Lp (Rd )

}q/p)1/q
.(3.9)
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We consider two cases. First suppose q ≤ p. Then, using that `q ,→ `p in (3.9),

‖ f (·,0)‖M s
p,q (Rd−1).

( ∑

k ′∈N
t sq

k ′
∑

l∈N
χ{tk′≤K tl }[t (d−ad )(1/p−1)

k ′ t ad /p
l ‖Φl (D) f )‖Lp (Rd )]

q
)1/q

≤
( ∑

l∈N

[ ∑

k ′∈N
χ{tk′≤K tl }t

sq
k ′ t q(d−ad )(1/p−1)

k ′

]
[t ad /p

l ‖Φl (D) f )‖Lp (Rd )]
q
)1/q

.
( ∑

l∈N
[tβ/q+ad /p

l ‖Φl (D) f )‖Lp (Rd )]
q
)1/q

³ ‖ f ‖
M

β/q+ad /p
p,q (Rd )

,

where we have used that sq +q(d −ad )(1/p −1) = d and the estimate (3.2).
Now, suppose q > p. Then by Minkowski’s inequality

‖ f (·,0)‖M s
p,q (Rd−1).

( ∑

k ′∈N

{
t sp

k ′
∑

l∈N
χ{tk′≤K tl }t

(d−ad )(1−p)
k ′ t ad

l ‖Φl (D) f )‖p

Lp (Rd )

}q/p) p
q

1
p

≤
( ∑

l∈N

[ ∑

k ′∈N
χ{tk′≤K tl }t

sq
k ′ t q(d−ad )(1/p−1)

k ′

]p/q
[t ad /p

l ‖Φl (D) f )‖Lp (Rd )]
p
)1/p

≤
( ∑

l∈N
[tβ/q

l t ad /p
l ‖Φl (D) f )‖Lp (Rd )]

p
)1/p

³ ‖ f ‖
M

β/q+ad /p
p,p (Rd )

,

where we again used that sq +q(d −ad )(1/p −1) = d and the estimate (3.2).
This completes the proof since S (Rd ) is dense in M s

p,q (Rd ) and Tr by definition is
defined by an extension argument. �

We now apply Proposition 3.3 to the example h = 〈·〉αa .

Corollary 3.4. Let a = (a1, . . . , ad ) be an anisotropy on Rd . For 0 <α≤ 1 and 0 < p, q <
∞, let sp = max{0, (d −ad )(1/p −1)} and put s = d/q − sp . Suppose h = 〈·〉αa . Then for
the α-modulation spaces, we have

(3.10) Tr : Mα,s/α+ad /p
p,min{1,p,q}(R

d ) → Mβ,s
p,q (Rd−1),

where β=α · (d −ad )/(d −1).

Proof. Follows from Proposition 3.3 together with Examples 2.10 and 3.1. �
Remark 3.5. The Corollary does not cover the Modulation space case since our geo-
metric argument breaks down for α = 0. For trace results for modulation spaces,
see [8].

4. EMBEDDINGS AND THE TRACE OPERATOR

The result given by Proposition 3.3 imposes a strong link between the parameters
s and q . This is due to the technique we apply in the proof and the fact that we only
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know how to handle sums of the type (3.2). However, we can use an embedding result
to relax the dependence between s and q but at the cost of an increased smoothness
parameter.

The following embedding result was proved in [3]

Lemma 4.1. Let a = (a1, . . . , ad ) ∈ Rd
+ be an anisotropy on Rd , and let h be an associ-

ated moderate function satisfying (2.9). Suppose the admissible covering used to define
M s

p,q0
(Rd ) is generated by T = {Tk = δa(h(ξk )) ·+ξk }k . Let 0 < q1 ≤∞ and suppose s0

is a constant such that {h(ξk )−s0 }k ∈ `q1 . Then

M s+s0
p,q0

(Rd ) ,→ M s
p,q1

(Rd )

for all 0 < q0 ≤∞.

Remark 4.2. One possible concern is the applicability of Lemma 4.1 in the general
setting. However, it is not difficult to verify that any set of affine transformations
{Tk = δh(ξk ) ·+ξk }k generated by a moderate function h using Lemma 2.5 satisfies

0 < inf
m 6=n

|ξm −ξn |.

It follows that for any moderate function h satisfying h(ξ) ≥C〈ξ〉κa for some κ> 0, ξ ∈
Rd , there exists a constant β such that {h(ξk )−β}k ∈ `1. The exact value of β depends
strongly on h. For example, for h = 〈·〉αa , we have β → 0 as α → 1− and β → ∞ as
α→ 0+.

We can now combine the embedding result with Proposition 3.3 to obtain the fol-
lowing.

Corollary 4.3. Let a = (a1, . . . , ad ) ∈ Rd
+ be an anisotropy on Rd , and let h be an asso-

ciated moderate function satisfying (2.9). We let C be an admissible covering of Rd

associated to h that is generated by the affine transformations {Tk := δa(tk ) ·+ξk }k∈N.

Suppose there exist constants M ,β > 0 such that Tl ≤ M tβ/d
l for l ∈ N, where Tl is

defined by (3.1). Then for 0 < p, q < ∞, let sp = max{0, (d − ad )(1/p − 1)}, and put
s = d/q − sp > 0. Suppose t0 is a constant such that {h(ξk )−t0 }k ∈ `min{1,p,q}. Then for
0 < q0 ≤∞, we have the continuous embedding

(4.1) Tr : Mβ/q+ad /p+t0
p,q0

(Rd ) → M s
p,q (Rd−1),

where the smoothness space on Rd−1 is defined in Section 2.4.

Proof. Follows from Proposition 3.3 and Lemma 4.1. �
The trace operator can obviously also be considered on the related Triebel-Lizorkin

type spaces. Here we appeal to embedding results of the type (2.10) combined with
Proposition 3.3 to obtain results of this type. With the same notation as in Corol-
lary 4.3, and 0 < p, q <∞, we notice that (2.10) combined with Lemma 4.1 gives the
continuous embeddings,

Fβ/q+ad /p+t0
p,q (Rd ) ,→ Mβ/q+ad /p+t0

p,max{p,q} (Rd ) ,→ Mβ/q+ad /p
p,min{1,p,q}(R

d ),
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where t0 is a constant such that {h(ξk )−t0 }k ∈ `min{1,p,q}. This leads to the following
trace result, which concludes the paper.

(4.2) Tr : Fβ/q+ad /p+t0
p,q0

(Rd ) → M s
p,q (Rd−1),

with parameters as in Corollary 4.3.

Remark 4.4. An alternative approach to results of the type (4.2) is to repeat the proof
of Proposition 3.3 and use the pointwise estimate (3.5) directly in conjunction with a
vector valued version of Proposition 3.2. A vector valued estimate of this type can be
found in [3, Corollary 3.4].
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