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Compressed Sensing with Rank Deficient
Dictionaries

T. L. Hansen, D. H. Johansen, P. B. Jørgensen,
K. F. Trillingsgaard, T. Arildsen, K. Fyhn and T. Larsen

Department of Electronic Systems, Aalborg University, Denmark
Email: tha@es.aau.dk

Abstract—In compressed sensing it is generally assumed that
the dictionary matrix constitutes a (possibly overcomplete) basis
of the signal space. In this paper we consider dictionaries that
do not span the signal space, i.e. rank deficient dictionaries.
We show that in this case the signal-to-noise ratio (SNR) in
the compressed samples can be increased by selecting the rows
of the measurement matrix from the column space of the
dictionary. As an example application of compressed sensing
with a rank deficient dictionary, we present a case study of
compressed sensing applied to the Coarse Acquisition (C/A) step
in a GPS receiver. Simulations show that for this application the
proposed choice of measurement matrix yields an increase in SNR
performance of up to 5 − 10 dB, compared to the conventional
choice of a fully random measurement matrix. Furthermore, the
compressed sensing based C/A step is compared to a conventional
method for GPS C/A.

I. INTRODUCTION

The framework of compressed sensing (CS) has received
much research interest in recent years, see e.g. [1] and [2].
Compressed sensing allows signals to be sampled below the
Nyquist rate (subsampled) while still allowing for reconstruc-
tion. To do this, it is required that the signal has a sparse
representation in some known dictionary Φ ∈ CN×Q. Then
we can write the noisy signal z ∈ CN×1 as

z = Φx + w, (1)

where w ∈ CN×1 is i.i.d. zero-mean noise (typically Gaussian
distributed) and x ∈ CQ×1 is a sparse vector, i.e. it has
very few non-zero entries, ||x||0 � Q. A measurement
matrix, Θ ∈ CM×N , which satisfies certain requirements, is
chosen to obtain the sub-sampled (compressed) measurements
y ∈ CM×1

y = Θz. (2)

As M � N the number of samples is significantly reduced.
From the sub-sampled signal y, a sparse estimate of x can be
found by solving the optimization problem [2]:

min
x
||x||1 s.t. ||y −Ax||2 < ε (3)

where we have defined the compressed dictionary A = ΘΦ
and ε is a small fixed constant. Solving (3) is known as
reconstruction. Several iterative greedy algorithms exits, which
finds a sparse x, e.g. [3], [4].

In CS it is desired that the A = ΘΦ matrix satisfies
the Restricted Isometry Property (RIP), as this gives certain

guarantees for successful reconstruction. It has been shown
that choosing the measurement matrix Θ as a random matrix
such as Gaussian or Bernoulli matrices gives an A matrix
which satisfies RIP with high probability. Such measurement
matrices are therefore widely deployed [5], [6]. The dictionary
Φ must be chosen such that the signal of interest is sparse,
when the columns of the dictionary are used as the basis of
representation. Often a square non-singular matrix is used,
e.g. a discrete Fourier matrix. In this case the columns of Φ
constitute a basis of CN×1. In other cases Φ is fat (Q > N )
and constitutes an over-complete dictionary of CN×1. In both
cases, the dictionary has full row-rank. In this paper, we
explore the application of CS to cases where the dictionary
is rank deficient, i.e. it does not have full row rank and thus
its columns does not span CN×1. Specifically, it is found that
choosing the rows of the measurement matrix as a random
combination of the columns in the dictionary, increases the
Signal-to-Noise Ratio (SNR) in the compressed samples. It
is shown by simulations that this in turn results in better
reconstruction performance.

We present one example of a CS application, where a rank
deficient dictionary arises; the Coarse Acquisition (C/A) step
in a receiver for the Global Positioning System (GPS). CS
is here applied with the hope of achieving a reduction in
computational complexity. GPS is based on Code Division
Multiple Access (CDMA) and in the C/A step the received
signal must be correlated with a very large number of locally
generated Pseudo Random Noise (PRN) sequences. We take
a software defined radio approach and assume that the GPS
signal is sampled above the Nyquist rate and the C/A is
subsequently performed exclusively in software. The C/A step
can then be posed as a sparse decomposition problem. In [7]
compressed sensing was used as a preprocessor to reduce the
computational complexity of sparse decompositions of audio
and speech signals. This preprocessing consists of applying a
measurement matrix digitally and then the sparse decompo-
sition is obtained directly from performing the reconstruction
given by (3). With this in mind, we apply CS as a preprocessor
to GPS C/A. In this case a rank deficient dictionary matrix
is obtained, because the columns contain the above Nyquist
rate sampled signal. Another approach of applying CS to a
GPS system is given in [8], where the measurement matrix is
applied in analog hardware.

The paper is structured as follows. In Section II we present
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a signal model for the considered dictionary matrix. From this
the measurement matrix is derived in section III. Section IV
describes the application of compressed sensing to GPS C/A.
Numerical simulations on the GPS system are presented in
Section V followed by conclusions in Section VI.

II. SIGNAL MODEL

In the following we elaborate on the signal model in (1)
to clearly specify the considered scenario, in which a special
structure of the measurement matrix will enhance the SNR.

The considered dictionary Φ ∈ CN×Q can be either square
(N = Q) or fat (Q > N ). We start by introducing the
dictionary using its SVD

Φ = UΣVH, (4)

where U ∈ CN×N and V ∈ CQ×Q are unitary matrices and
Σ ∈ CN×Q is a matrix with the singular values in descending
order on its diagonal. The column space of Φ is equal to
the span of those columns in U, which correspond to nonzero
singular values. We now consider dictionaries with K singular
values that are approximately zero. Hence the dictionary can
be represented well by a low rank approximation. Had the
singular values been exactly zero, the dictionary would be
rank deficient. The following derivations are however also
true for singular values that are approximately zero. Define
the matrices Uhigh ∈ CN×(N−K), Ulow ∈ CN×K , Σhigh ∈
C(N−K)×(N−K) and Σlow ∈ CK×K such that

U = [Uhigh Ulow] , Σ =

[
Σhigh 0 0

0 Σlow 0

]
, (5)

where 0 is the zero matrix. The matrices Uhigh and Σhigh are
therefore associated with the N −K singular values that are
significant, and Ulow and Σlow the K singular values that are
approximately zero. From this we define the two subspaces
Shigh and Slow by the bases Uhigh and Ulow. It is noted that
these subspaces are orthogonal. The SVD can therefore be
written as

Φ = UhighΣhighV
H + UlowΣlowVH. (6)

Since singular values in Σlow are approximately zero, the
dictionary Φ is well approximated by only the first term in
(6). In the special case where Φ is rank deficient, the second
term disappears since Σlow is the zero matrix.

It is now assumed that the signal of interest is perfectly
represented as Φx, and hence the noisy signal z can be written
as in (1). The vector x ∈ CQ×1 is considered as a zero-
mean random sparse vector, where the entries are uncorrelated
and identically distributed. As the vector x is sparse, each
entry is distributed such that it has a value of zero with high
probability. The specific distribution of the entries in x is not
important, as we are only interested in the covariance matrix
of x given by

Cxx = σ2
xI ∈ RQ×Q, (7)

where σ2
x denotes the variance of each entry in x and I denotes

the identity matrix. It is noted that although the variance is the

same for all elements in x, the vector is still assumed to be
sparse.

The noise vector w in (1) is assumed to be i.i.d. zero-mean
with covariance matrix

Cww = σ2
wI ∈ RN×N , (8)

where σ2
w is the variance of the noise samples.

III. SELECTING THE MEASUREMENT MATRIX

In the following it is shown that choosing the rows of the
measurement matrix in the space spanned by the dictionary,
yields a larger SNR in the compressed samples, compared to
random Gaussian or Bernoulli matrices. This result is similar
to the random sample kernels derived in [8] for GPS C/A using
analog compressed sensing. This result is different from what
is conventional in CS, where completely random matrices are
typically used and the following thus presents a performance
improving technique.

Consider the i’th compressed sample which is defined
according to (1) and (2) as

yi = ΘiΦx + Θiw for i = 0, . . . ,M − 1, (9)

where Θi ∈ C1×N denotes the i’th row of the measurement
matrix Θ. In the compressed sample yi, the average power of
the signal of interest is E

[
|ΘiΦx|2

]
and the noise power is

E
[
|Θiw|2

]
, thus we define the SNR of the i’th sample as

SNRyi
(Θi) =

E
[
|ΘiΦx|2

]

E [|Θiw|2]
=

E
[
ΘiΦxxHΦHΘH

i

]

E
[
ΘiwwHΘH

i

]

=
ΘiΦCxxΦHΘH

i

ΘiCwwΘH
i

=
σ2
x

σ2
w

ΘiΦΦHΘH
i

ΘiΘH
i

. (10)

We assume that achieving a high SNR for each compressed
sample yields better reconstructions. This assumption is jus-
tified by simulation in the case study of GPS C/A. Therefore
we seek conditions for the row Θi such that SNRyi

is high.
Additionally, the rows of the measurement matrix Θi must
be linearly independent such that each compressed sample
contains different information.

The fraction in (10) is known as a Rayleigh quotient [9].
It attains a maximum value equal to the largest eigenvalue
λmax of ΦΦH when Θi is the eigenvector corresponding
to λmax. The Rayleigh quotient can similarly be minimized
to the smallest eigenvalue λmin when Θi is the eigenvector
corresponding to λmin. In general, when Θi is equal to an
eigenvector of ΦΦH, the Rayleigh quotient is equal to the
corresponding eigenvalue.

Now, we write ΦΦH in terms of the SVD given by (4) as

ΦΦH = UΣVHVΣHUH = UΛUH, (11)

where Λ = ΣΣH. This can be seen to be the Eigenvalue
Decompostion (EVD) of ΦΦH, with eigenvectors as columns
in U and eigenvalues on the diagonal of the matrix Λ. The
column space of ΦΦH is equal to the span of those columns
in U, which corresponds to nonzero eigenvalues. As these are
the same as the nonzero singular values of Φ (consider that



Λ = ΣΣH), the column space of ΦΦH is thus equal to the
column space of Φ. The EVD of ΦΦH can also be written in
terms of Uhigh and Ulow similarly to (6) as

ΦΦH = UhighΛhighU
H
high + UlowΛlowUH

low, (12)

where Λhigh = ΣhighΣ
H
high and Λlow = ΣlowΣH

low.
Suppose now that Θi is chosen as an arbitrary row vector

in C1×N . As the union of Slow and Shigh spans CN any vector
in C1×N can uniquely be decomposed into

Θ̂i = glowUH
low + ghighU

H
high, (13)

where glow ∈ C1×K and ghigh ∈ C1×(N−K). Inserting Θ̂i into
(10) yields

SNRyi(Θ̂i) =
σ2
x

σ2
w

Θ̂iΦΦHΘ̂H
i

Θ̂iΘ̂H
i

=
σ2
x

σ2
w

glowΛlowgH
low + ghighΛhighg

H
high

glowgH
low + ghighgH

high
. (14)

We reach (14) by inserting (12) and (13) and by noting that
UH

lowUhigh and UH
highUlow are zero matrices.

We now show that Θi = ghighU
H
high yields a better SNR than

using Θ̂i as normally done [5]. By noting that all eigenvalues
of Λhigh are strictly larger than Λlow, it can now be shown that

SNRyi
(Θ̂i) =

σ2
x

σ2
w

glowΛlowgH
low + ghighΛhighg

H
high

glowgH
low + ghighgH

high

<
σ2
x

σ2
w

ghighΛhighg
H
high

ghighgH
high

= SNRyi
(Θi), (15)

is satisfied if

glowΛlowgH
low

glowgH
low

<
ghighΛhighg

H
high

ghighgH
high

. (16)

This inequality is satisfied since both sides of the inequality
are Rayleigh quotients. Hence the left hand side has maximum
equal to the largest eigenvalue in Λlow and the right hand side
has minimum equal to the smallest eigenvalue of Λhigh.

The inequality in (15) implies that using Θi yields a
better SNR than Θ̂i. Therefore Θi should be chosen in the
subspace Shigh. It follows that the measurement matrix can be
represented as

Θ = GUH
high, (17)

where G ∈ CM×(N−K) is a matrix chosen such that A = ΘΦ
satisfies RIP. It is now assumed that choosing G as a random
Gaussian matrix makes A satisfy RIP. This is justified by the
theorems from compressed sensing, which state that choosing
Θ as a random Gaussian matrix makes A satisfy RIP with
high probability.

However, as UH
high is often not available directly, the fol-

lowing two approaches can be used for selecting a suitable
measurement matrix that is on the form given by (17) without
using the eigenvectors of ΦΦH explicitly. In the following
approaches, the matrices G1 ∈ CM×Q and G2 ∈ CM×N are
chosen as random Gaussian matrices.

1) It is noted that the space spanned by Shigh is approxi-
mated by the column space of Φ. Hence an appropriate
choice of the measurement matrix is

Θ = G1Φ
H (18)

= G1VΣlow︸ ︷︷ ︸
Glow

UH
low + G1VΣhigh︸ ︷︷ ︸

Ghigh

UH
high. (19)

This matrix is approximately on the form given by (17)
since the entries Glow are low compared to Ghigh. This
choice of measurement matrix is used in the case study
in Section IV.

2) By choosing the measurement matrix as

Θ = G2UhighU
H
high, (20)

the compressed dictionary is given by

A = ΘΦ = G2UhighU
H
high(UhighΣhigh + UlowΣlow)VH

= G2UhighΣhighV
H ≈ G2Φ, (21)

where the last approximation follows since the dic-
tionary is low rank approximated well by only the
significant eigenvalues in Σhigh. The matrix A now has
a structure similar to what is normal in CS. It is noted
that UhighU

H
high can be formed by the matrix product

UbU
H
b where Ub is any orthonormal basis of Shigh.

The proposed measurement matrix can be interpreted as fol-
lows; when calculating the compressed samples y, the Nyquist
samples z are orthogonally projected onto the subspace Shigh
whereafter the compressed measurements are generated by
multiplication with a random fat matrix G2. In the projection,
all signal energy in the subspace Slow is removed. Since most
energy of the signal of interest is in the subspace Shigh only a
small amount of signal energy is removed. On the other hand,
the noise energy is equally spread onto all eigenvectors U,
hence a large amount of noise energy is removed.

IV. APPLICATION TO COARSE ACQUISITION STEP OF A
GPS RECEIVER

In this section we investigate the application of the CS
framework to the C/A step of a software defined GPS receiver.
This is an example of a system in which the dictionary
becomes rank deficient, because the signal is oversampled. See
[10] for an implementation of such a receiver. The ultimate
goal of applying CS in a GPS receiver, is to reduce the
computational requirements of the C/A step. In this paper we
are however not investigating the computational complexity in
detail, as we are more concerned with whether it is possible
to apply CS to this application and what are the effects of the
choice of measurement matrix.

A. GPS Signal Model

Each satellite transmits two signals designated as L1 and
L2 with carrier frequencies of 1572.42 MHz and 1227.6 MHz
respectively. The L2 signal is used for military purposes and
is therefore not considered in the following.



For the L1 signal each satellite is assigned a unique Gold
code [11], which in GPS is known as C/A codes. These C/A
codes exhibit low correlation between each other and between
time-shifts of the same code. Each satellite transmits a low-
rate (50 Hz) data signal, which is modulated by the high-rate
(1.023 MHz) C/A code. As the C/A codes are of length 1023,
they are repeated every 1 ms. There are 32 different C/A codes
in use but at any given time only a subset of these are within
the field of view of the GPS receiver [12]. Due to a high
velocity difference between the satellites and the receiver,
a significant Doppler shift is introduced. The satellites and
receiver are not synchronized in time, hence the phase of each
transmitted C/A code (code phase) is unknown. The purpose
of the C/A step is to identify which satellites are within the
field of view and to determine the Doppler shift and code
phase of these.

Navigation data and the C/A codes are modulated onto the
in-phase component of the L1 frequency, while navigation data
and the so-called P-code are modulated onto the quadrature
component of the same carrier frequency. The P-code is a
pseudo random noise sequence and its transmit power is 3 dB
lower than that of the C/A code. For the C/A step of a
GPS receiver only the C/A code is of any interest and the
P-code is therefore considered as co-channel noise. As the
power of the P-code is typically lower than the noise floor
of the receiver, it is ignored. When needed, the P-code can be
extracted from the noise due to the processing gain of CDMA.
The navigation data modulated onto the in-phase component
is neither included in the model. It is thus assumed that no
navigation data shifts occur during the C/A step. This is fair
as the duration of one navigation data bit is much longer than
the time-span over which the C/A step is performed. In a real
receiver there exist techniques to handle the situation where a
data shift occur in the signal-duration where the C/A step is
performed [10].

The ideally received baseband signal from the s’th satellite
is thus modelled to solely consist of the C/A code spreading
waveform, denoted as g(s)(t). It is periodic with 1 ms and can
be written as

g(s)(t) =
∞∑

k=−∞
ĝ(s)(t− kTchipN1), (22)

where ĝ(s) is the contribution from one period, N1 = 1023
is the length of the C/A code and Tchip = 1

1.023MHz is the
duration of one chip. The contribution from one period is given
by

ĝ(s)(t) =

N1−1∑

n=0

c(s)[n] · v(t− nTchip), (23)

where c(s)[n] ∈ {−1, 1} is the bipolar C/A code of length
N1, and v(t) is the impulse response of the channel including
transmit and receive filters. Assuming a signal linear receiver,
its frequency response is given by

V (f) = Rt(f) ·Rx(f) ·H(f), (24)

where the transmit filter Rt(f) is modeled as an ideal sharp
cut-off low-pass filter with a one-sided bandwidth of at least
10.23 MHz [12], and the channel frequency response H(f) is
constant since multipath effects are not considered. The receive
filter Rx(f) is dominating and is modeled as an ideal low-pass
filter with a one-sided bandwidth equal to half the sampling
frequency fs. It is also acting as anti-aliasing filter.

Under the effects of channel attenuation, Doppler shift,
time delay, Additive White Gaussian noise (AWGN) and after
downconversion to baseband, the summed signal from all
satellites in complex baseband representation is given by

z(t) =

S−1∑

s=0

α(s)g(s)
(
t− t(s)cd

)
exp
[
j
(
ω
(s)
d t+ θ(s)

)]
+ w(t),

(25)

where α(s) is the channel attenuation from the s’th satellite to
the receiver, t(s)cd is the time delay or code phase of the C/A
code for the s’th satellite, ω(s)

d is the Doppler frequency for
the s’th satellite, θ(s) is the phase of the carrier at the receiver
and w(t) is complex-valued additive white Gaussian noise.

B. Coarse Acquisition as a Sparse Decomposition Problem

The problem of C/A is to determine the Doppler shift ω(s)
d

and the code phase t(s)cd in (25) for each satellite. The signal
model does not have an obvious sparse structure that can be
exploited for formulation of the sparse decomposition problem
since the parameters t(s)cd and ω

(s)
d are considered unknown,

continuous-valued constants. To identify a sparse structure
these values are quantized similarly to the procedure in [8].
Denote the number of different Doppler shifts as D and the
number of different equally spaced code phases as L. In worst
case the Doppler shift can deviate up to ±10 kHz, and it is in
most cases sufficient to know the Doppler frequency in steps
of 500 Hz [10]. In this case D = 2 10000

500 + 1 = 41. For a code
phase resolution of 1 chip, L = 1023 which is the length of
the C/A code. The signal model is approximated as follows

z(t) ≈
S−1∑

s=0

D−1∑

d=0

L−1∑

`=0

g(s)(t−`Tc)·exp
[
j
(
Dd ·∆ω · t+ θ(s)

)]

· α(s,d,`) + w(t), (26)

where D = {−20,−19, . . . , 19, 20} is the set defining possible
Doppler shifts along with the step size ∆ω = 2π500 rad

s , Tc =
1ms
L is the step size for the code phase and α(s,d,`) is the

amplitude associated with the s’th satellite, the d’th Doppler
shift and the `’th code phase. Note that α(s,d,`) only has one
non-zero element for each s, because the amplitude of each
satellite only pertains to one Doppler shift and one code phase.
This is what makes the signal have a sparse representation.
Rewriting (26) as

z(t) ≈
S−1∑

s=0

D−1∑

d=0

L−1∑

`=0

φ(s,d,`)(t) · x(s,d,`) + w(t), (27)
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Fig. 1. Conceptual illustration of coarse acquisition. The received signal z[n]
is correlated with the C/A codes under all combinations of code phases and
Doppler-shifts. The number of correlators is SDL, where S is the number of
C/A codes, D is the number of Doppler-shifts and L is the number of code
phases considered. The largest correlation values signify the present satellites,
their Doppler-shift and code phase values.

where

φ(s,d,`)(t) = g(s)(t− `Tc) · exp[jDd ·∆ω · (t− `Tc)] , (28)

x(s,d,`) = α(s,d,`) · exp[jDd ·∆ω · `Tc] · exp
[
jθ(s)

]
,

(29)

shows that the approximation of z(t) is sparse with respect to
the basis functions φ(s,d,`)(t), since α(s,d,`) is only nonzero
for a few triplets (s, d, `). 1 The GPS C/A problem can be
solved by finding the triplets for which α(s,d,`) is nonzero.

Since it is desired to solve the problem in the digital domain,
we sample the signal z(t) with a sample frequency fs = 1

Ts

and thereby define the following vectors:

z = [z(t0), · · · , z(tN−1)]T ∈ CN×1 (30)

φ(s,d,`) = [φ(s,d,`)(t0), · · · , φ(s,d,`)(tN−1)]T ∈ CN×1 (31)

w = [w(t0), · · · , w(tN−1)]T ∈ CN×1, (32)

where N is the number of obtained samples and tn = n · Ts.
Denote the dictionary matrix Φ ∈ CN×SDL that has columns
given by φ(s,d,`) for all combinations of s, d and `

Φ =
[
φ(0,0,0),φ(0,0,1), · · · ,φ(S−1,D−1,L−1)

]
. (33)

The dictionary Φ is fat since SDL � N . The sparse signal
model can now be expressed in matrix form:

z ≈ Φx + w, (34)

with sparse x ∈ CSDL×1 given by

x =
[
x(0,0,0), x(0,0,1), · · · , x(S−1,D−1,L−1)

]T
. (35)

The naive way to find x is by correlating the received
signal with the SDL combinations of C/A codes, Doppler
frequencies and code phases as depicted in Fig. 1. This method
is computationally heavy due to the large number of correlators
(SDL = 1 342 176 ). The computations can be performed
more efficiently using a Fast Fourier Transform (FFT) based
approach known as Parallel Code Phase Search (PCPS) [10].

1Implementation detail: The inclusion of −jDd ·∆ω · `Tc into (28) allows
us to write a dictionary as a concatenation of partial circulant matrices (we
define a circulant matrix as in [13]). A circulant matrix is diagonalizable by the
Fourier matrix, which facilitates faster matrix-vector multiplication. Solving
the problem in (3) iteratively can thus be implemented more efficiently.

0 2000 4000 6000 8000 10000
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|λ
i|

Magnitude of Eigenvalues of ΦΦH

Fig. 2. Magnitude of eigenvalues (sorted) of ΦΦH, for a dictionary Φ
generated according to (33) with S = 32, D = 41, L = 1023, N = 10230
and sampling frequency fs = 5.115 MHz.

V. SIMULATIONS & RESULTS

In order to assess the performance of the proposed measure-
ment matrix and the compressed sensing based C/A scheme
we carry out a numerical simulation2. First we show that the
dictionary is indeed rank deficient. To do this, the signal is
sampled with a sample frequency 5 times the chipping rate,
fs = 5 · 1.023 MHz. We sample two periods of the C/A code
which corresponds to N = 10 230 samples. From this the
dictionary is constructed and the eigenvalues of ΦΦH are
calculated. The magnitudes of these eigenvalues are shown
in Fig. 2. It is clearly seen that only a few of the eigenvalues
of ΦΦH are significant. From (11) follows that the singular
values of Φ is the square root of the eigenvalues of ΦΦH.
Therefore, only a few of these singular values are significant
and Φ is thus rank deficient.

To solve the optimization problem in (3) efficiently, we use
the state-of-the-art reconstruction algorithm CoSaMP [4] elab-
orated with the concept of model-based CS [14]. The model-
based approach is basically restricting the CoSaMP algorithm
to not produce more than one nonzero element of x for each
C/A-code. To reduce the computational requirements for the
simulations all random matrices are implemented as random
circulant matrices. That is, the first column is generated as
random Gaussian and the remaining columns are found as
circulant shifts of this. In [15] simulations show that in many
cases this does not affect the reconstruction performance.

Throughout all numerical experiments the performance of
the system is evaluated through its ability to correctly identify
present satellites and their corresponding Doppler shift and
code phase. We define the success rate performance metric as
the ratio of correctly identified satellites to the total number
of satellites present. A satellite is correctly identified if its
estimated Doppler frequency is 0.6 · ∆ω = 300 Hz from the
reference frequency and its estimated code phase is within 0.6·
Tchip ≈ 587 ns from the reference code phase. The factor of 0.6
is somewhat arbitrarily chosen, such that two adjacent search
steps are considered successful, when the true parameter falls
in between these two.

2To comply with the reproducible research paradigm, the (Python based)
source code used for the simulations can be found online at
http://sparsesampling.com/globecom2012
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Fig. 3. Success rate versus C
N0

for different Nyquist sample frequencies. For
the compressed sensing based approach, 984 compressed samples are used.
Parallel Code Phase Search (PCPS) is utilizing all Nyquist samples from a
2 ms signal. Approximated 99 % confidence intervals are shown.

The used measure for channel noise is the carrier-to-noise-
density ratio C

N0
[Hz], where C is the average power of

the passband signal and N0 is the noise spectral density.
Typically C

N0
ranges from 35 to 55 dBHz [16]. The signal

from one satellite is generated in complex baseband with an
average sample power Ps. The noise is a zero-mean discrete
white process where the amplitudes have a complex Gaussian
distribution. It can be shown that the variance σ2

W of the
complex noise is given by

Ps

σ2
W

=
C

N0

1

fs
. (36)

For each simulation the signals with equal power is gener-
ated for 8 different satellites randomly chosen from the set
{0, . . . , 31}. When running the simulations the reconstruction
algorithm is given the number of satellites present in the signal.
Each data point is averaged over 100 simulations, each with a
new randomly generated signal and measurement matrix Θ.

To illustrate the effect of choosing a measurement matrix
according to the result in Section III, two choices of the
measurement matrix are used; Θ = GΦH and Θ equal
to a random Gaussian matrix of dimensions M × N with
independent entries. The result of this simulation is shown for
different sampling frequencies in Fig. 3. First of all it is noted
that the conventional method of Parallel Code Phase Search
(PCPS) performs equally well for all simulated sampling
frequencies. The same is the case for Θ = GΦH. However
when using Θ equal to a Gaussian matrix, the ability to
identify the correct support of the signal decreases with the
sampling frequency. The proposed measurement matrix thus
significantly improves performance and this is expected to
generalize for all cases where rank deficient dictionaries are
used. It is noted that the proposed compressed sensing based
approach to GPS C/A does not perform as well as PCPS.
The proposed approach might however still find applications
in receivers which are known to operate in the high SNR

region, if the computational requirements can be reduced. In
this paper we have not explored the very important aspect
of the computational requirements for the proposed method
compared to conventional methods such as PCPS.

VI. CONCLUSION

In this paper we have considered rank deficient dictionaries
in the context of compressed sensing. We have shown that
to increase the SNR in the compressed samples, the rows
of the measurement matrix have to be chosen within the
subspace spanned by the dictionary. Through a case study of
compressed sensing applied to the C/A step in a GPS receiver,
the proposed measurement matrix is shown to increase perfor-
mance compared to the usual choice of a random measurement
matrix. This is expected to generalize for all applications of
compressed sensing with rank deficient dictionaries.

The case study demonstrated that compressed sensing can
be applied to the C/A step of a GPS receiver. It is subject of
further research to investigate if a reduction of computational
requirements can also be achieved.
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