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Abstract:

This deliverable is a preliminary report on the activities towards multi-link channel models.
It summarizes the activities and achievements of investigations of WP1 Task 1.2 in the first
year of the project. In this deliverable work focuses on the characterization of the cross-
correlation of multi-link large scale parameters, such as rms delay spread, from outdoor to
indoor scenarios and for different carrier frequencies. Furthermore indoor radio propagation
in in-room scenarios is considered and first modeling approaches, potantially suitable for
multi-link channels are presented. A sparse estimator of the dominant multipath components
in the response of the radio channel is also proposed.
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EXECUTIVE SUMMARY

In this deliverable the intermediate research results, conducted in WHERE2 WP1, for the
purpose of characterizing the multi-link radio channel are presented. This deliverable is
structured in two parts, a body part that provides a summary of the reported activities orga-
nized topic-wise, and an appendix containing all related publications and reports produced
within WP1. The latter documents are meant to provide the readers with more detailed
information on the activities if needed or wanted.

The body part of the deliverable summarizes in Section 2 a measurement campaign
conducted by DLR and AAU. The purpose of the campaign is the characterization of radio
channels for cooperative localization and the validation of reverberant in-room channels.
The data is not part of the WHERE2 project but is extensively used and analyzed within
the project. The extensive measurement report can be found in Appendix A.1. First results
using these measurements are also included in this deliverable.

First results of the characterization of the cross-correlation of multi-link large scale pa-
rameters are summarized in Section 3. The work so far has focused on the characterization
of delay dependent large scale parameters and the range estimation error due to the non-line
of sight bias. These investigations were done specifically for multi-link channels and for
multi-carrier frequencies for the outdoor-to-indoor channel. Detailed information on this
topic can be found in the Appendices A.2 and A.3.

Section 4 summarizes recent on-going work on reverberant in-room radio channel mod-
els. A distance-dependent delay-power spectrum model of in-room channels is considered.
The proposed model is used to characterize various distance dependent parameters such
as the received signal strength, mean delay and rms delay spread. The model allows for
the prediction of these parameters for in-room multi-link scenarios. Furthermore, this sec-
tion contains a model that describes the response of the indoor radio channel. The model’s
uniqueness is the consideration of the so-called avalanche effect. The structure of the model
allows for an efficient implementation of multi-link channels. Details on these models can
be found in the Appendices A.4 and A.5.

A sparse radio channel parameter estimator is summarized in Section 5. The avalanche
effect observed in measurements makes it extremely difficult to reliably estimate parameters
of multipath components. The presented method allows for the joint estimation of the pa-
rameters and the number of dominant multipath components. The method is also crucial for
delay-power-profile based fingerprinting. A detailed description of the estimation algorithm
can be found in Appendix A.6.

The presented results and the ongoing activities presented in this deliverable, together
with the results and ongoing activities on non-stationary channels of deliverable D1.4 as well
the investigations on ray-tracing tools in deliverables D1.5 and D1.6, form the basis for the
characterization of a multi-link channel model.
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1 INTRODUCTION

As already identified in Annex I “Description of Work” of the WHERE2 project descrip-
tion [1], the positioning accuracy achievable with global navigation satellite systems can be
greatly improved by usage of additional terrestrial mobile radio standards. This results in a
combination of various standards in the form of heterogeneous multi-link systems. To char-
acterize multi-link channels, for both localization and communication purposes, research in
the WHERE2 project focuses on 1) the characterization of the statistical dependency be-
tween channel links, 2) the characterization of the transition of outdoor-to-indoor, 3) the
non-stationarity and time variance, and 4) development of signal processing techniques that
enable to conduct the investigations in items 1) to 3).

Typical channel models for radio communications and localization purposes, proposed
sofar, only considered single-link propagation. Lately, in radio communication systems, the
focus shifted towards multi-link systems but localization aspects are, if at all, only scarcely
considered in these research activities. This is due to the different purpose in radio commu-
nications, namely the statistical description of the radio channel for evaluation of transceiver
systems. The research activities in WHERE2 WP1 address these deficiencies and work is
on-going towards a description of multi-link channel models for localization purposes.

In the following the intermediate research results, conducted in WHERE2 WP1, for the
purpose of characterizing the multi-link radio channel are presented. This report is structured
in two parts, a body part that provides a summary of the reported activities organized topic-
wise, and an appendix containing all related publications and reports produced within WP1.
The latter documents are meant to provide the readers with more detailed information on the
activities if needed or wanted.

Section 2: A description of a measurement campaign conducted by DLR and AAU is pro-
vided. The purpose of the campaign is the characterization of radio channels for co-
operative localization and the validation of reverberant in-room channels. First results
using these data are already presented in this deliverable.

Section 3: Results on the correlation of large scale parameters of outdoor-to-indoor multi-
link radio channels are summarized. The focus is on the correlation of time dispersive
parameters in the multi-link and multi-carrier-frequency case and the bias of the time
of arrival estimates of the first component, due to non-line of sight situations.

Section 4: This section presents recent and on-going work on in-room radio propagation
channel models. A distance-dependent delay-power spectrum model of in-room chan-
nels is considered. The proposed model is used to characterize various distance depen-
dent parameters such as the received signal strength, mean delay and rms delay spread.
The model allows for the prediction of these parameters for in-room multi-link sce-
narios. A model that describes the response of the indoor radio channel is summarized
in Section 4.3. The model’s uniqueness is the consideration of the so-called avalanche
effect. The structure of the model allows for an efficient implementation of multi-link
channels.

Section 5: The sparse radio channel parameter estimation is addressed. The avalanche ef-
fect observed in measurements makes it extremely difficult to estimate reliably param-
eters of multipath components. The presented method allows for the joint estimation
of the parameters and the number of dominant multipath components. The method is
also crucial for delay-power-profile based fingerprinting.

Section 6: Conclusions.
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Appendix A: The appendix contains a collection of already published or soon to be pub-
lished articles or reports produced within the WHERE2 project. This collection con-
tains more detailed information on the various sections in the deliverable.
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2 MULTI-LINK AND REVERBERANT CHANNEL MEASUREMENT CAM-
PAIGN

A measurement campaign, not part of the WHERE2 project, with the focus on indoor multi-
link and reverberant in-room channels was conducted by DLR and AAU. The measurement
data is used from both parties within the WHERE2 project and can be shared with other
partners upon request.

The measurement campaign has two main goals. Firstly to validate models for in-room
channels including reverberation effects and secondly to provide measurement data for coop-
erative localization methods. First results using these data are already presented in this deliv-
erable. For the measurement campaign the measurement platform for time-variant wireless
channels from DLR, introduced in WHERE2 D1.4, was used. The high spatial resolution of
the platform allows for combining several transmitter positions to a virtual array. Together
with the circular receiver array, this enables a bi-directional channel characterization.

Reverberant Channel Measurement: Towards the end of the previous WHERE project
a delay-power spectrum model based on the observations from measurements was
proposed. Previous measurement campaigns e.g. in the WHERE project, were not
fully suitable for validation of the model due to limited amount of data in the spa-
tial domain. Thus for the validation of the proposed model it is necessary to have
transmitter-receiver distances covering almost all possible distances in the room. The
data should also allow for the development of further models accounting for the phys-
ical mechanisms leading to the reverberation phenomena. Thus several experiments,
for instance with closed and opened windows or people placed around the conference
table, were conducted.

Cooperative Localization Measurement: There is to our knowledge no measurement data
for cooperative localization available, which contains detailed information on the
transmitter and receiver positions, the antenna pattern and their rotation. We have
defined scenarios that cover both LoS and NLoS links between transmitter and re-
ceiver. The choice of transmitter and receiver locations offer a robust approach for
distance-based evaluation.

The obtained measurement data was already utilized in Section 4.1 and will be further used
to evaluate multi-link and time variant channel parameters. A detailed description of the
measurement campaign is provided in Appendix A.1.
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3 CROSS CORRELATIONS OF MULTI-LINK LARGE SCALE PARAMETERS

Augmenting global navigation satellite systems (GNSSs) based positioning with signals of
opportunity improves the position accuracy compared to a GNSS-only solution. The sig-
nals of terrestrial mobile radio standards can be exploited in addition to GNSS signals. A
promising augmentation approach is to apply time based localization to terrestrial radio sig-
nals which provide considerably higher received power levels compared to GNSS [2]. Usu-
ally, the links between the mobile terminal and the anchor nodes or base stations are blocked
(e.g., by walls or buildings). Moreover the geometrical conditions are worse such that the
mobile terminal position can not be resolved accurately. Cooperative positioning, using time
of arrival measurements from multiple peer-to-peer links, has been proposed to improve the
performance in terms of accuracy and coverage problems.

The wireless channel has a significant impact on localization based on time measure-
ment. The position error is directly related to the range estimation error of individual radio
links. This section presents the evaluations of channel parameters in terms of mean delay,
delay spread, and positioning related parameter non line of sight (NLoS) bias.

The focus in Section 3.1 is on correlation of time dispersive parameters in the multi-link
and multi carrier frequency case. In Section 3.2 the bias, due to non-line of sight situations,
of the time of arrival estimates of the first component is studied for the same outdoor-to-
indoor measurements.

3.1 Time Dispersion Parameters

The mean delay and rms delay spread are usually of interest for evaluation of time dispersion
characteristics. The multi-link rms delay spread and mean delay for different carriers at
2.45GHz and 5.2GHz are addressed in Appendix A.2 based on a comparison measurement.
In this measurement the accurate transmitter and receiver location information are available.
From the results, the outdoor reflections, showing up as clustered structure in the channel
impulse response (CIR), introduce significant impact on the delay spread. Moreover it is
noticeable that rms delay spread or mean delay do not appear to be significantly different at
2.45GHz and 5.2GHz. Besides, the obtained power delay profiles (PDPs) for both bands
show the similar shapes. Therefore, the delay spread should be similar. This observation is
important since channel models, relying on the rms delay spread for generating wideband
CIRs are therefore able to use the same statistics at different carrier frequencies.

For multi-link scenarios, the inter-link time dispersion parameter correlations is an open
issue, especially in the scope of cooperative networks. Similarly to the estimation in Ap-
pendix A.3, the inter-link correlation coefficient can be obtained for time dispersion param-
eters to evaluate the correlations. Based on the measurement described in Section 2 for
indoor cooperative scenarios, it is interesting to investigate the multi-link cross correlation
of the time dispersion parameters.

3.2 Positioning Related Parameters – NLoS Bias

One of the channel characteristics affecting the range estimation error is the positive bias on
the first detectable path (FDP). This occurs in situations where the geometric line-of-sight
(GLoS) path is blocked. This bias, i.e. the difference between the geometrical distance from
the transmitter to the receiver and the propagation distance of the first detectable path is
known as the non line-of-sight (NLoS) bias. This bias results in errors of the ranging esti-
mates. Without loss of generality, the NLoS bias could be regarded as a large scale parameter
for localization similar as the path loss, K factor, and delay spread in communication.

In order to obtain the characteristics of NLoS bias, analysis based on real channel mea-
surement is desired. The GLoS distance can be obtained by using the tachymeter system.
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For those scenarios where the link between transmitter and receiver is blocked, to determine
the position of the transmit antenna a tachymeter giving a nominal accuracy in the sub-cm
domain was utilized. A similar accuracy is achieved for the receive antenna by using a rotary
encoder mounted on the motor of the model railway. The GLoS distance can be calculated
straightforward by measuring the coordinates of transmitter and receiver. Concerning the
delay of FDP, a super-resolution algorithm, namely SAGE, is used to estimate the channel
parameters. Thereafter, the NLoS bias can be obtained.

Based on the measurement described in Section 3.1, we obtained results that show that
there are no significant differences of NLoS bias between both carrier frequencies. These
results are presented in more detail in Appendix A.2. Moreover to study the multi-link
NLoS bias, the correlation coefficients of the NLoS bias between different transmit antenna
positions indicate no correlation between NLoS biases from different links as shown in Ap-
pendix A.3. However, it is still an open issue to evaluate the inter-link NLoS bias correlation
in the cooperative scenarios based on the indoor measurement presented in Section 2. In the
indoor scenarios is the number of inter-links larger than in usual cellular networks.
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4 REVERBERANT CHANNELS

This section considers indoor radio propagation of reverberant channel scenarios. The re-
search is motivated by observations of the delay-power spectrum in research literature. In
Section 4.1 a distance dependent delay-power spectrum model of in-room channels is con-
sidered. The proposed model is used to characterize various distance dependent parameters
such as the received signal strength, mean delay and rms delay spread. A model to de-
scribe the response of the indoor radio channel, which generates similar delay-power spectra
as the model in Section 4.1, is summarized in Section 4.3. The model’s uniqueness is the
consideration of the so-called avalanche effect.

4.1 Modeling the Delay Power Spectrum of Reverberant In-Room Channels

Experimental observations [5, 6] of the behavior of the delay-power spectrum for reverberant
in-room channels show that the tail of the delay-power spectrum exhibits the same constant
exponential decay regardless of the transmitter and receiver positions. Furthermore, a peak
at the early part of the delay-power spectrum is strong at short transmitter-receiver distances
and gradually vanishes as the distance increases. A similar behavior is observed in room
acoustics [7] and electromagnetic fields in cavities [8].

Based on the observations from [5, 6], we propose in Appendix A.4 a model for the dis-
tance dependent delay-power spectrum with a “dominant” and a “reverberant” component.
The dominant component represents the early part of the delay-power spectrum consist-
ing of a directly propagating component and possible first-order reflections from the floor,
ceiling and walls. The reverberant component represents the multitude of higher order re-
flections in the room which yield the diffuse tail of the delay-power spectrum. The model
allows to predict the path loss, the mean delay and the rms delay spread as a function of
transmitter-receiver distance via closed form expressions. Predictions of the model are in
good agreement with experimental observations. A comparison to the widely used log-
distance path loss model shows that the log-distance model blends the contribution of the
dominant and reverberant component. As such the path loss exponent is below the free
space path loss exponent. Furthermore, we observed that the log-distance path loss model
for short distances overestimates the path loss were as for other distances the path loss is
underestimated. The proposed model shows good agreement over the full distance range.
Additionally the proposed model allows for the description of the mean delay and rms delay
spread versus distance, which could be used as additional parameters in radio localization.

The proposed model for the delay-power spectrum in Appendix A.4 can be used for any
transmitter receiver position in the room. It allows for prediction of the distance dependent
path loss, mean delay and rms delay spread for multi-link channels. Current preliminary
observations indicate that one obtains for the same room different path loss exponents for
the log-distance model from measurements where mobile (eg. receiver) moves freely but
the anker (eg. transmitter) is positioned at different locations in the room, eg. the center
of the room or close to a corner. However this has yet to be verified by experimental data.
Furthermore, it is of interest to explore the distance dependency of other parameters such
as higher order moments of the delay power spectrum, kurtosis or for instance the Rice
factor from the proposed delay-power spectrum model. Another open issue is the coupling
between neighboring rooms which would allow the extension of the predictions of the model
to neighboring rooms.

4.2 Modeling the Reverberation for In-room Channels

The reverberation time, which is the decay rate of the exponentially decaying tail of the
delay power spectrum, plays an important role in radio localization. As is shown in Ap-
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pendix A.4 the reverberation time influences several distance dependent parameters used in
radio localization such as for instance the received signal strength, or the mean delay and
rms delay spread. The distance dependent behavior of the delay-power spectrum shows that
for a specific transmitter-receiver distance region, denoted as reverberation region, the early
dominant peak can no longer be distinguished from the exponential tail. The reverberation
time plays a vital part in characterizing the start and end points of the reverberation region.
In delay dependent distance estimation often the strongest peak in the power delay profile
is detected and considered as the geometric line of sight. Such an approach will lead to
strongly biased distance estimates for distances in the reverberation region where the peak
is part of the exponential tail. As we can see from these few examples it is of great interest
for radio localization to model and estimate the reverberation time.

In room acoustics [7] a reverberation effect in the room describes the decay rate of the
tail of the delay-power spectrum. The well known room acoustic models of Sabine and
Eyring express the relation between the reverberation time and geometry in terms of the
average wall absorption coefficient. In [6] the Sabine model was considered for indoor
radio propagation. Results such as average wall absorption or the decay rate are presented.
However, a thorough experimental model validation is missing. The Eyring model is used
in [5] to predict the reverberation time. The used average wall absorption coefficient for the
prediction is calculated from the electromagnetic properties of wall materials. The predicted
and measured delay-power spectra are in good agreement. Unfortunately the power values
were normalized before the comparison of the delay-power spectra.

For validating the model assumptions of the reverberation effect, we conducted an ex-
periment within the measurements described in Section 2 with various numbers of open
windows in a room. Opening the windows should alter the average wall absorption coeffi-
cient of the room. This in turn will result in a change of the decay rate of the reverberant
component in the room. Preliminary results of the predicted decay rates show a good agree-
ment to the experimentally obtained values for open windows. However these preliminary
results need further investigation to confirm the validity of the assumptions for radio signals.
Additional open issues concerning the decay rate are for instance the influence of additional
absorbers in the room eg. the human body, possible effects due to coupling from neighboring
rooms, and the changes of the decay rate for various room sizes.

4.3 Graph Based Modeling of Reverberant Multi-link Channels

It has been observed from measurements of channels [10] that the spatially averaged channel
impulse response for single-link in-room scenarios exhibits an avalanche effect: The earliest
signal components, which appear well separated in time, are followed by an avalanche of
components arriving with increasing rate of occurrence, gradually merging into a diffuse tail
with exponentially decaying power.

In Appendix A.5 we follow a new approach to design a model of the channel response
which includes recursive scattering and thereby inherently accounts for the exponential
power decay and the avalanche effect. The environment is modeled in terms of a propa-
gation graph in which vertices represent transmitters, receivers, and scatterers, while edges
represent propagation conditions between vertices. A closed form expression of the channel
transfer function valid for any number of interactions is derived. We discuss an example
where interactions are assumed to cause no time dispersion and thus delay occurs only due
to propagation in between scatterers. For this example, a stochastic model of the propaga-
tion graph is stated based on which realizations of the channel transfer function and impulse
response are generated for numerical evaluation. The results reveal that the graph’s recursive
structure yields both an exponential power decay and an avalanche effect in the generated
impulse responses.
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The propagation graph modeling framework and associated analytical results proposed
in Appendix A.5 also encompass MIMO and multi-link systems. An appealing asset of the
modeling framework is that the computational complexity is dominated by the number of
scatterers rather than the number of transmitter-receiver links. However, it is an open issue
to amend the stochastic example model presented in Appendix A.5 to incorporate multiple
links. Such an amendment will enable the study of avalanche effects in multi-link channels
via numerical simulations. An additional open issue is the validation of such multi-link
models using measurement data.

4.4 Stochastic Model of Avalanche Processes in Reverberant Multi-link Channels

The delay dispersion of radio signals is an important effect, which impacts e.g. the accu-
racy of time of arrival-based (TOA-based) range estimators. For TOA-based estimation, the
early part of the channel impulse response is particularly important, as this part governs the
estimation errors. Radio channel models relying on a random spikes representation of the
channel impulse response are commonplace for wideband and ultrawideband communica-
tions. State of the art models rely on essentially the same principle developed by Turin et al.
[12] during the 1970s: The received signal consists of a linear combination of delayed copies
of the transmitted signal. The delays are modeled according to a stochastic point process of
varying kinds. Common to all models of this type is that assumptions on the intensity (or
arrival rate) must be made.

The avalanche effect observed in measurements of indoor reverberant channels [10] in-
dicate that the arrival rate for the signal components should increase with the delay, while
the power of each component should decrease in order to allow for an exponentially de-
caying overall delay-power spectrum. The increasing arrival rate may impact localization
applications relying on range estimates derived from estimated propagation delays (such as
TOA, DTOA systems). The original model by Turin et al. relies on a Poisson point process
of which the intensity function is obtained via extensive measurement campaigns. Sim-
ilarly, the delay point process in the celebrated Saleh-Valenzuela model and its derivatives
are based on a Cox-process, where the intensity parameters are obtained from measurements
[13]. Unfortunately, the extraction of the arrival rate from measurements is non-trivial, and
error prone, especially in indoor scenarios where reverberation effects prevail. This hassle
is no less when considering multi-link channels.

It is therefore of interest to explore the connection between the geometric properties of
the radio propagation environment (e.g. a single room, or a building) and the arrival rate.
There are several related open issues: Determination of the connection between geometry of
the propagation environment and the arrival rate; statement of stochastic models accounting
for this connection; and extension of Turin-based models to multi-link channels. Finally, an
interesting open issue is the directional properties of the reverberant channels.
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5 SPARSE VARIATIONAL BAYESIAN (VB) EXTENSION OF THE SAGE
ALGORITHM

When applying high resolution algorithms to the estimation of wireless multipath channels
from multidimensional channel measurements, an accurate determination of the number of
dominant multipath components is required in order to reproduce the channel behavior in a
realistic manner – an essential driving mechanism for the design and development of next
generation MIMO-capable wireless communication and localization systems.

In Appendix A.6 a sparse Variational Bayesian (VB) extension of the SAGE algorithm
[15] for the high resolution estimation of the parameters of relevant multipath components
in the response of frequency and spatially selective wireless channels is proposed. The ap-
plication context of the algorithm considered is parameter estimation from channel sounding
measurements for radio channel modeling purpose.

The new sparse VB-SAGE algorithm extends the classical SAGE algorithm in several
respects: by monotonically minimizing the variational free energy, i) distributions of the
multipath component parameters can be obtained instead of parameter point estimates and
ii) the estimation of the number of relevant multipath components and the estimation of
the component parameters are implemented jointly. The sparsity is achieved by defining
parametric sparsity priors for the weights of the multipath components.

The Gaussian sparsity priors are revisited within the new VB-SAGE framework and ex-
tensions of the sparsity results for complex Laplace priors are investigated. The structure
of the new VB-SAGE algorithm allows for an analytical stability analysis of the update ex-
pression for the sparsity parameters. This analysis leads to fast, computationally simple, yet
powerful, adaptive selection criteria applied to the single multipath component considered
at each iteration. The selection criteria are adjusted on a per-component-SNR basis to better
account for model mismatches, e.g. diffuse scattering, calibration and discretization errors,
allowing for a robust extraction of the relevant multipath components.

The performance of the sparse VB-SAGE algorithm and its advantages over conven-
tional channel estimation methods are demonstrated in synthetic SIMO time-invariant chan-
nels; the algorithm has also been applied to real measurement data in a MIMO time-invariant
context.

The future extension of the sparse VB-SAGE algorithm should target variational Bayesian
estimation of additive white noise and estimation of diffuse multipath part of the channel re-
sponse. Diffuse multipath contributions can be represented as non-white additive noise with
zero mean and covariance matrix that models temporal and spatial structure of diffuse com-
ponents. Variational methods can be applied to optimally estimate this covariance matrix
from measurement data, thus effectively providing a framework for extending the sparse
VB-SAGE algorithm to the estimation of diffuse multipath components.
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6 CONCLUSIONS

This intermediate deliverable summarizes the ongoing activities of T1.2 in WHERE2 WP1
on the topic of multi-link channel models. The focus in this deliverable is put on the charac-
terization, i.e. measurement, modeling and parameter estimation, of indoor and outdoor-to-
indoor single- and multi-link channels.

An indoor measurement campaign for characterizing the radio channel for cooperative
localization (multi-link channels) and reverberant in-room channels was introduced in Sec-
tion 2. The measurement campaign was an initiative of DLR and AAU. The data is not part
of the WHERE2 project but is extensively used and analyzed within the project. Results
using these measurements are included in this deliverable.

First results of the characterization of the cross-correlation of multi-link large scale pa-
rameters were presented in Section 3. The work so far focused on the characterization of
delay dependent large scale parameters and the range estimation error due to the non-line
of sight bias. These investigations were done specifically for multi-link channels and for
multi-carrier frequencies for the outdoor-to-indoor channel.

Indoor propagation was considered in Section 4 for single room scenarios. Motivated
from measurement observations, a model for the delay-power spectrum, allowing to char-
acterize several distance dependent large scale parameters such as received signal strength,
mean delay and rms delay spread, was presented. A model for the channel response, which
includes the avalanche effect, was presented too.

In Section 5 a method to estimate jointly the number and the parameters of relevant
multipath components was proposed. Such methods are specifically useful when estimating
relevant parameters from channel responses exhibiting an avalanche effect.

The presented results and including future activities are the basic foundation for the de-
scription of a multi-link channel model. Together with the results for non-stationary channels
of D1.4 and investigations with ray-tracing tools in D1.5 and D1.6, a description for multi-
link channel models for localization purposes will be prepared and continuously shared with
the other work packages in WHERE2.
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A APPENDIX

The appendix contains a collection of articles and reports with detailed information to the
summaries of the different sections in this deliverable, which are results of the WHERE2
project. Table 1 lists titles of the following sections in the appendix.

Table 1: Overview of the collection of papers and reports.

Appendix Title Page

A.1 Measurements for Validation of Models for Reverberant
and Cooperative Channels

16

A.2 Outdoor-to-Indoor Channels at 2.45 GHz and 5.2GHz for
Geolocation Applications

60

A.3 Multiple-Links NLoS Error Evaluations for Geolocation
Channel Modelling

66

A.4 Model for the Path Loss of In-room Reverberant Channels 72
A.5 Modeling of Reverberant Radio Channels Using Propaga-

tion Graphs
78

A.6 Sparse Variational Bayesian SAGE Algorithm with Appli-
cation to the Estimation of Multipath Wireless Channels

90
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A.1 Measurements for Validation of Models for Reverberant and Cooperative Chan-
nels

The internal measurement report from the AAU-DLR measurement campaign can be found
on the next pages.
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CHAPTER 1

MOTIVATION AND PURPOSE
FOR THE MEASUREMENT

CAMPAIGN

The measurement campaign has two main motivations. One motivation is to pro-
vide measurement data to validate models for in-room channel models including
reverberation effects and the other motivation is to provide measurement data for
cooperative localization methods.

1.1 Motivation for Validation of In-room Reverberant Model

A path loss model was developed based on observations of the behavior of the delay
power spectrum. Previous measurement campaigns e.g. in theWHERE project, are
not fully suitable for validation due a limited amount of data in the spatial domain.
For the validation of the proposed model it is necessary to have transmitter receiver
distances covering almost all possible distances in the room. Furthermore the data
should allow for spatial averaging at the transmitter and receiver side in order to
minimize the influence of small scale fading on the path loss.

One further motivation is to use the experimental data to findout or confirm the
physical reasoning for the observed reverberation behavior. The data should also
allow for the development of further models accounting for reverberation phenom-
ena.

1.2 Motivation for the Cooperative Localization Measure-
ments

There is to our knowledge no measurement data for cooperative localization avail-
able. We have defined scenarios that cover a. LoS and b. NLoS links between

5
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Figure 1.1: Measurement team. (From left to right: Steinboeck G., Jost T., Wang
W., Raulefs R. and Pedersen T.)

transmitter and receiver. The three tracks of the train cover potential positions
from three sides. This offers a robust approach for distance-based evaluations.

1.3 Measurement Team

The measurements were conducted in cooperation between theInstitute for Com-
munication and Navigation from German Aerospace Center (DLR) and the Navi-
gation and Communication Section of Aalborg University (AAU). The people in-
volved during the planing phase of the measurements were Ronald Raulefs and
Wei Wang from DLR and Bernard Fleury, Troels Pedersen, and Gerhard Stein-
boeck from AAU.

During the measurement campaign the main actors were ThomasJost, Ronald
Raulefs, and Wei Wang from DLR. From AAU Troels Pedersen and Gerhard Stein-
boeck participated in the measurements. The team was supported by numerous
other people during measurements, e.g. people taking photos or participating in
the experiment described in Section 5.2.3. The measurementteam is shown in
Fig. 1.1.
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CHAPTER 2

ENVIRONMENT

2.1 Measurement Environment

We consider an office environment at DLR premises. A floor planis shown in
Fig. 2.1. The building has 3 story heights above ground floor and a basement. The
rooms considered are on the ground floor. The main focus was onthe meeting
room indicated as R4, because it was the largest room available. Fig. 2.2 shows
the meeting room R4, and two offices R3 and R2. At a room height of 2.78 m is a
intermediate ceiling of approx. 2 cm hard “mineral wool” slabs . The mineral wool
slabs are mounted with metal frames to concrete ceiling withapproximately 30 cm
distance. The floor was wooden with concrete underneath. Theouter walls mainly
consist of windows with metallic coating occasionally interrupted by concrete pil-
lars. The inner walls are drywalls and are the same for all inner walls. There are
white boards in each room with the size of 1.8×1.2m2.

The transmitting antenna was mounted for the measurements on a model train
at a height of 1.26 m. We considered two tracks of the model train in the meeting
room R4, indicated with T1 and T2 and one track in in the office R3 labeled as T3.

The circular receiver antenna array with 8 elements was placed on several po-
sitions in the three rooms marked with red crosses. The receiver positions labeled
with Rp1 to Rp9 are measured from all tracks and are at a heightof 1.1 m. For
the cooperative localization 10 additional receiver positions labeled as T1Rp1 to
T1Rp5 and T2Rp1 to T2Rp5 at a height of 1.2 m were added. The channel was
measured for these positions only with track T3 and T1 or T2 respectively.

Doors and windows are closed during the measurements, otherwise indicated.

The positions of white boards, heaters, windows, pillars, table, the receiver
coordinates and several other things with respect to the walls have been measured
as well. The results are indicated in Fig. 2.4.

The distance to the tree line outside of the building (see e.g. Fig. 4.2 in the
windows) is approximately 22 m.
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Figure 2.1: Ground floor of the DLR building. The red rectangle outlines rooms
R2, R3 and R4 considered in the measurement campaign.
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Figure 2.2: DLR premises for the measurement campaign.
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2.2 Measuring Distances

The receiver and transmitter positions have been measured with a tachymeter and
the coordinates are available in different formats. The moving of the transmit-
ter was recorded with the tachymeter. In addition during themeasurements were
odometer pulses recorded with the channel sounder receiverunit.

The model railway is running on a cogwheel to prevent wheel slipping. The
HEDL 5540 rotary encoder mounted on the model train engine counts the engine
turns by giving 500 impulses per full rotation. This allows determining the odome-
ter factor defined as the number of impulses per meter from measurements. To
obtain this value,K = 21 train runs have been performed with traveled distancemk

and counted encoder impulsesnk for each runk = 1, ...,K. The odometer factorρ
is calculated as the sample mean

ρ =
1
K

K

∑
k=1

nk

mk
. (2.1)

Based on theK measurements,ρ is determined as 105212.52 m−1. It indicates
that the rotary encoder counts around 105212 impulses per traveled meter. This
translates into≃ 105 impulses for a traveled distance of 1mm. In general a rotary
encoder with less impulses per motor turn might be used, withthe drawback of
less spatial resolution. An estimate ˆm of the traveled distance can be calculated
straightforward as

m̂k =
nk

ρ
. (2.2)

The estimation errorζk betweenm̂k and the true distancemk normalized tomk

is defined as

ζk =
m̂k−mk

mk
. (2.3)

Taking all K measurements into account a mean errorµ = −0.0024 mm/m with
standard deviationσ = 0.2266mm/m is obtained as shown in Fig. 2.3. By storing
the number of rotary encoder impulses synchronously with each measured CIR
snapshot, since the start of the train movement, a traveled distance for each CIR
snapshot can be obtained in a straightforward manner.

Unfortunately, the channel sounder raw data file format provides not the recorded
number of odometer pulses. Instead a distance value with theconfigured number of
pulses per meter is stored. The channel sounder has a limitation on the number of
odometer pulses (100000) per meter. Thus one can calculate the corrected moved
distancedtrue along the track since the start of a measurement run as:

dtrue =
INav

Ireal
·dNav, (2.4)

whereINav was set to the maximum possible number of odometer pulses (100000)
in the channel sounder,Ireal corresponds to above obtainedρ = 105212 anddNav is
the distance recorded in the measurement data. The values ofdNav andINav can be
retrieved from the raw data files using the Matlab function RSKNav from MEDAV.
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Figure 2.3: Estimation error of the distance for theK = 21 measurements obtained
with ρ = 105212.
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Figure 2.4: Measurements of the environment taken during the measurement cam-
paign.
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CHAPTER 3

CHANNEL SOUNDING
EQUIPMENT

3.1 Channel Sounder and Setup

In the diagram of Fig. 3.1 is the general measurement setup shown. The three
channel sounder units (transmitter, receiver and clock generator) were placed out-
side of room R4 in the corridor. The transmitter antenna was placed on a model
train moving along T1, T2, or T3. During movement the train odometer creates
pulses which are recorded from the receiver unit and stored together with the mea-
surement data. The receiver unit of the channel sounder controls the multiplexer of
the receive antennas.

3.1.1 Synchronization of Transmitter and Receiver

The transmitter and the receiver were both connected via same type of coaxial
cables of length approximately 60 m with the rubidium clock generator unit of the
channel sounder.

3.1.2 Transmitter Measurement Setup

The transmitter setup is shown in Fig. 3.1. The transmit antenna is mounted on
a rail road car of a model train is shown in Fig. 3.8b. The height of the transmit
antenna is 1.26 m.

3.1.3 Receiver Measurement Setup

The antennas were connected with short cables to the inputs of the multiplexer
(see e.g. Fig. 3.2). The output of the multiplexer was connected with a 9 m long
low-loss RF-cable SUCOFLEX 100 from Huber&Suhner with attenuation of 6 dB,
labeled as “Z10A” to a 10 dB attenuator (R1) which was directly connected to
the input of the low noise amplifier (LNA). The LNA has a gain of50 dB. The
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Figure 3.1: Overview of the measurement setup for Tx and Rx.
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Figure 3.2: Receiver measurement setup.

noise figure of the LNA is about 1.5 dB and the effective bandwidth of the LNA
is 120 MHz. The attenuator R1 from Rohde & Schwarz was used to prevent satu-
ration of the LNA input for very short distances between transmitter and receiver.
Directly on the output of the LNA was the attenuator R2 similar as R1 from Rohde
& Schwarz (10 dB) connected to prevent saturating the RF input of the channel
sounder. From R2 a short coaxial cable (1 m) was used to connect to the receiver
input of the channel sounder. The attenuator R1 was removed for measurements
when the Tx and Rx were separated in different rooms in order to keep a high SNR
for those measurements.

3.1.4 Receive Antenna Array and Multiplexer

In Fig. 3.3 is the topview of the receiver array shown. The zero direction of the
array is from the center towards antenna 1. The center of the array is the coordinate
system. The antennas are equidistantly spaced (45◦) on a circle with diameter of
75.18 mm. The receiver antenna 1 was connected to multiplexer port 1, antenna
2 to port 2, and so forth for all antennas. The cable connections from the antenna
array to the multiplexer are shown in Fig. 3.4c. A laser pointer was mounted on
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Figure 3.3: Rx antenna array topview. The 0◦ symbol in the drawing marks the 0◦

direction of the antenna array.

the array pointing into the 0◦ direction. This laser pointer was used in order to
rotate the array such that the 0◦ direction is parallel to the wall along the corridor
(opposite of the windows) as indicated in Fig. 2.2. The antenna array and the
multiplexer were mounted on a tripod. A height of either 1.1 mor 1.2 m to the
upper edge of the ground plane was used during the measurements.

The utilized time division multiplexer was manufactured byVAD GmbH in
Dresden, Germany. This multiplexer contains a 8-of-1 pin diode switch with
impedance matching inputs. In other words, if one antenna (channel) is switched
on, thus connected to the out gate, the other seven antennas (channels) are closed
and loaded with 50Ω. The matched impedance at off-channels with 50Ω ensures
that there are no reflections from these antennas. A validation test on the multi-
plexer in the lab at DLR confirms the specifications of the multiplexer datasheet
described above.

Antenna Array Calibration

Generally, if the array’s position is known, with a sufficient amount of measured
steering vectors, it is possible to identify the antenna calibration matrix and multi-
plicative constants by solving the nonlinear least squaresproblem.

The calibration for the antenna array is performed in a free space like environ-
ment at DLR. Referred to the carrier frequency, a narrow bandsignal was trans-
mitted through a non-reflecting propagation channel. This means only one LoS
path is expected during the calibration measurement. The environment ensures
far field waves impinging on the antenna array, and mainly only one line of sight
component exits. The transmit antenna and receive antenna were approximately
20 mseparated from each other.

Fig. 3.5 gives the definition of the incoming angels utilizedin the calibration
measurement. The arrow in the plot represents the impingingwave, and the corre-
sponding azimuth angleα and elevation angleβ definitions for the provided coor-
dinate system are depicted. During the calibration measurement, the antenna array
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(a) (b)

(c)

Multiplexer

(d)

Figure 3.4: (a) connection of the cables and the antennas shown from the
bottom of the array; (b) view from the side of the array and cables; subref-
fig:switchrxantcables connection of the cables to the multiplexer; (d) to the left,
the multiplexer and receiver antenna array on the tripod - tothe right the model
train with the transmit tower.
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Figure 3.5: Definition of the incoming angles.

Figure 3.6: Rotation of antenna array to change the incomingazimuth angle.

was rotated in vertical plane with 5◦ steps to change the incoming azimuth angle.
The array was rotated in the horizontal plan in 5◦ steps to change the incoming
elevation angle as shown in Fig. 3.6 and Fig. 3.7. The azimuthangle was taken
from 0 to 355◦. For each azimuth angle, the antenna array was rotated in elevation
from 0 to 90◦.

3.1.5 Transmit Antenna

Transmit antenna: Huber&Suhner Type SOA 5600/360/3/20/V1 [1] mounted on
a circular groundplane of diameter 235.16 mm. The antenna was mounted on the
tower of the model train at a height of 1.26 m measured from thefloor to the upper
edge of the groundplane.

17
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Figure 3.7: Rotation of antenna array to change the incomingelevation angle.

(a) (b)

Figure 3.8: (a) shows the Hubner&Suhner transmit antenna mounted on the
groundplane disc. (b) shows the transmit antenna mounted onthe tower of the
model train at the height of 1.26 metre.
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3.2 Sounder Settings

In Table 3.2 are the used sounder settings summarized.

3.2.1 Sounding Signal

The duration of the sounding signal isTTx = 12.8µs . The measurement bandwidth
is 120 MHz, withNc = 1536 frequency tones. The inter-tone spacing is 78.125kHz.

3.2.2 Sounding Mode

The sounder was operating in the Fast Doppler (FD) and time grid mode. The
timing scheme of the sounder is shown in Fig. 3.9.

The duration of the sounding pulse is denoted byTTx. The multiplexer sequen-
tially switches theNRx elements of the receive antenna array. For each element
measured, two sounding pulses are transmitted, thus the time durationTRx between
the start of the measurement of two antenna elements is

TRx = 2·TTx (3.1)

The time duration of a measurement cycle in which all receiveantennas are mea-
sured once, is

Tcycle = NRx ·TRx = 2NRxTTx (3.2)

In “Fast Doppler mode” the sounder measures a “burst” ofNburst cycles consecu-
tively. The duration of one burst is

Tburst= Nburst·Tcycle = 2NRxNburstTTx (3.3)

After each burst the sounder stores the recorded data and a break is for data storage
is inserted. After the data is stored, the next burst is measured. Thus the time
interval between consecutive bursts are

Trep = NrepTburst (3.4)

= 2NRxNburstNrepTTx (3.5)

for some constantNrep which is calculated by the sounder based on its hardware
constraints.

Let the data acquired during one sensing period of a single antenna element be
called a sub-channel sample. Then theith sample is acquired at center time

ti = (i−1 modNRxNburst)TRx +
⌊

i
NRxNburst

⌋
Trep, i = 1,2,3, . . . (3.6)

The ith sample is acquired from the antenna element with index

m(i) = i modNRx, i = 1,2,3, . . . (3.7)

During one burst, the transmitter moves

dburst= vTxTburst≈ 0.0035λ, (3.8)

and in between each burst it moves

drep = vTxTrep≈
λ

8.8
. (3.9)
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Table 3.1: Timing Scheme Settings

Parameter Symbol Value

Number of receive antennas NRx 8
Number of cycles per burst Nburst 20
Number of bursts in the burst repetition time Nrep 32
Transmit pulse length TTx 12.8µs
Interval between consecutive Rx measurementsTRx = 2TTx 25.6µs
Burst duration Tcycle = 16TTx 204.8µs
Burst duration Tburst= 320TTx 4 096µs
Burst repetition time Trep = 10240TTx 131.072 ms

Rx Ant 1

Tx

Rx Ant 2

Rx Ant 3

Rx Ant 5

Rx Ant 4

Rx Ant 6

Rx Ant 8

Rx Ant 7

1 2 20 1 2 20

Tcycle=2*8*12.8 µs=204.8 µs

Trep=131.072 ms

TTx=12.8 µs

Tburst=4096 µs

TRx=25.6 µs

t1 t2 t3 ...

Figure 3.9: Timing schema used for the measurements.

Table 3.2: Setting of the channel sounder.

Parameter Value

Carrier frequencyfc [GHz] 5.2
BandwidthB [MHz] 120
Number of sub-carriersNc 1536
Carrier separation∆ f [kHz] 78.125
Tx velocity [m/s] ≈0.05
Odometer pulse correctionIreal 105212.523942
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CHAPTER 4

RECORDING OF SPHERICAL
PANOGRAPHS

During the preparation time panographs were made (full 360◦ in azimuth and full
180◦ in co-elevation) for all receiver positions at the height ofthe Rx antennas. The
panographs show the whole scene viewed from each of the receiver positions. This
allows for overlaying direction estimates on the photos.

One way of creating panographs with 360◦× 180◦ is to use multiple rows and
columns of photos to “stitch” one big panograph. The photos should overlap and
should have enough features in the overlapping area to alignthe images in an auto-
matic stitching process. For the purpose of creating a minimal number of images,
a very short focal length, resulting in large viewing anglesis preferred. We used
the website [2] to get the viewing angle for the used focal length and the size of the
image sensor of the camera. The viewing angles allow to calculate the number of
images needed for the 360◦× 180◦ panograph.

4.1 Equipment and Stitching Software

For the purpose of creating panoramic images, specifically indoors where objects
are very close, it is important to align the cameras “nodal” point precisely to the
center of rotation. This is important in order to have near and far objects aligned
in different images taken from different viewing angles. Incase of misalignment
ghostly artifacts of the object can appear on different positions in the panograph
and the stitching process can fail. Note, in case the focal length on the camera is
changed, the nodal point changes too.

In order to mount the camera in its nodal point and to rotate the camera cor-
rectly in azimuth and elevation, we used the panorama systemVR-System 6/8 from
Novoflex (see Fig. 4.1). To find the nodal point of the camera system and to adjust
it correctly with the panorama system, we used the method described [3].

The used camera is a Nikon D5000 with a crop factor of 1.5 (image sensor
size 15.8×23.6 m2). The camera was equipped with a AF-S DX Nikkor 18-55 mm
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1:3,5-5,6G VR lens system. The focal length of the lens system was set to 18 mm.
The resulting field of view is in portrait orientation 47.4◦× 66.7◦. We chose a 30◦

step size in azimuth leading to 40% overlap of the images. In elevation we chose
to take 5 rows in total. One row in the azimuth plane (0◦elevation) and four rows
with ±30◦ elevation and±60◦ resulting in approximately 50% overlap.

For the stitching process we used the software “Stitcher Unlimited 2009” from
Autodesk. The software allows for the creation of 360◦× 180◦ panographs from
multiple rows and columns of images. The software supports multiple output for-
mats. One of the formats creates a panograph with a equi-rectangular coordinate
system for azimuth and elevation angles. This allows for easy mapping of e.g.
directional Bartlett-spectra on the panograph.

4.2 Calibration and Use of Panographs

For calibration purpose and for stitching purpose colored posters were used. All
posters show a numbered grid to assist in the stitching process. The right lower
corner of the red posters is used for reference purposes. This corner is at the height
of the receive antenna. Furthermore the distances in the room to the right lower
corner of the red posters were measured. This allows to calculate reference angels
from the receiver position to these posters. In addition known objects or other
features (corners) of the room can be used to calculate reference angles. This
allows to easily find the 0◦ direction (azimuth and elevation) in the panographs.
The stitching software automatically adjusts the elevation angle to zero degree.
This angle can be refined with the reference corner of the red posters, if necessary.
The 0◦ azimuth is coarsely adjusted with the stitching software based on the known
0◦ direction such that the center of the image corresponds to 0◦ in azimuth and
elevation.

After this adjustment in the stitching software we export the panograph in an
equi-rectangular coordinate system for azimuth and elevation.

The size of the panograph in pixels corresponds to an image with ±180◦ in
azimuth and±90◦ in elevation. When importing the image into Matlab we map
the image size in pixels to a coordinate system in degrees. A refinement of the
0◦ azimuth direction using the reference points is done by simple shifts of the
image. The resulting calibrated images are stored for lateruse in Matlab with the
0◦ direction in the center of the image. The filenames of the calibrated images for
the use in Matlab are listed in Table 4.1. An example image is shown in Fig. 4.2.
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(a) (b)

(c) (d)

Figure 4.1: The panorama system VR-System 6/8 mounted on thetripod in (a) and
with the camera in (b),(c), and (d). In (d) the setting of the focal length can be seen.
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Figure 4.2: Spherical panoramic photo from Rp1 perspective. A equi-rectangular
coordinate system for azimuth and elevation is used. The center of the image cor-
responds to 0◦ in azimuth and elevation.

Table 4.1: Panograph file names.

Receiver Position Coarse adjustment Calibrated file
with high resolution for Matlab usage

Rp1 rp1highres.jpg rp1matlab.jpg
Rp2 rp2highres.jpg rp2matlab.jpg
Rp3 rp3highres.jpg rp3matlab.jpg
Rp4 rp4highres.jpg rp4matlab.jpg
Rp5 rp5highres.jpg rp5matlab.jpg
Rp6 rp6highres.jpg rp6matlab.jpg
Rp7 rp7highres.jpg rp7matlab.jpg
Rp8 rp8highres.jpg rp8matlab.jpg
Rp9 rp9highres.jpg rp9matlab.jpg
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EXPERIMENTS

5.1 Experiments for Validation of In-room Path loss Model

The purpose of these measurements is the evaluation of the in-room reverberant
channel model. For this evaluation it is necessary to have measurements with dis-
tances between Tx and Rx ranging from the smallest possible distance to the largest
distance possible in the room. Thus the Rx is positioned in the room corners and
the tracks for the Tx pass closely by the Rx. By choosing at theRx a circular an-
tenna array and placing the Tx on the model train, spatial averaging is possible for
the evaluation of the path loss model. Furthermore the use ofthe circular array al-
lows the creation of virtual Rx antenna patterns in order to evaluate the differences
for localization with different virtual Rx antenna orientations.

5.1.1 Experiment 1.1: Noise Measurement

This experiment consists of a short measurement where the Txis switched off and
only “noise” at the receiver is measured. This should provide information on any
present interference from e.g. the WiFi networks and allowsto estimate the noise
level. This obtained noise level might be different from theone later during the
measurements due to the maximum dynamic range of the system.

5.1.2 Experiment 1.2: Path loss measurements for Rp1 to Rp9

For each of the indicated receiver position Rp1 to Rp9 are measurements conducted
when the model train (transmitter) moves along the tracks T1and T2. No people
are in R4. People are working in R2 and R3. The used Tx tower height is 1.3 m.

5.1.3 Experiment 1.3: Static Measurements

Four static measurements for the receiver position Rp4 are conducted. The four
positions of the transmitter are the start and end points of track T1 and track T2.

These measurements are control measurements to see if the environment can
be considered static.
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5.2 Reverberation Effect Experiments

In this experiment we conduct measurements with open windows or people present
in the room. The windows are metal coated and when they are opened we expect
a different reverberation in the room. By opening the windows we alter one wall
of the room from low “absorption” (strong reflections from the windows) to high
“absorption” coefficients (no reflections from the open window). Thus a lower
power level for the reverberant field is expected.

The inner-walls of the building are drywalls and their attenuation (absorption)
is unknown. It is unclear if the observed reverberation effect in the meeting room
is generated by the room itself or by the larger structure of the building. If a change
in the reverberation due to opening the windows in the neighboring rooms is ob-
served, we conclude that the larger structure of the building creates the reverbera-
tion effect.

The underlying idea of the reverberation is based on reflections in the room
with an average absorption coefficient. By adding persons tothe room, the average
absorption coefficient should change, thus the reverberation effect should change.
We make the hypothesis that this alters the reverberant fieldin the room.

5.2.1 Experiment 2.1: Open Windows in Room R4

We use for the measurements track T1 for the transmitter. Thereceiver locations
are Rp1 to Rp4. We conduct multiple measurements with different number of open
windows until all windows in the room are open.

5.2.2 Experiment 2.2: Open Windows in Room R2 to R4

All windows in rooms R2, R3 and R4 are opened and we conduct measurements
for the receiver locations Rp2 to Rp4 and the transmitter moving along track T1.

5.2.3 Experiment 2.3: Absorption of Human Bodies in the Room

Measurements are conducted with people in the meeting room sitting around the
conference table. The receiver positions Rp2 to Rp4 are usedfor tracks T1.

5.3 Cooperative Localization Experiments

The purpose of these measurements is to provide measurementdata for analyzing
the multi-link radio channel for localization purposes. Inroom R4 the measure-
ments are conducted for line of sight situations. Additional measurements from
the neighboring rooms R2 and R3, corresponding to non-line of sight situations,
are conducted as well.

5.3.1 Experiment 3.1: Cooperative Localization

Los Multi-link Measurements: Room R4 covers a scenario with only coopera-
tive LoS links. We use the train track T1 with Rp1 and Rp2 and vice versa T2
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with Rp3 and Rp4 from the experiment described in Section 5.1.2. This set is ex-
tended by five additional points on the opposing track. The train track T[1,2] and
the T[1,2] P[1..5] points were all measured with the same antenna height. With
this we can investigate a mirroring effect as both measurements have the same
conditions with the same sampling distances on both sides. The measurements
for the points Rp[1..5] provide the possibilities to use a set of reference points for
modeling anchors with perfect position information.

NLoS Multi-link Measurements: In room R3 a 3rd track and two more addi-
tional reference points (Rp6 and Rp7) are added. The 3rd track T3 allows to mea-
sure NLoS effects for the cooperative links established in room R4 together with
a robust approach by using distance-based measurements. The robust approach
is guaranteed as the geometrical constellation of the tracks (T3 vs. T[1,2]) is or-
thogonal to each other. The additional reference points Rp6and Rp7 have LoS
conditions to the track T3 to differ between having only LoS (R3) and NLoS (R4).
This is further extended to room R2 and the points Rp8 and Rp9.The link between
track T3 and Rp8 can be considered as strong NLoS (weak LoS) case, as the ma-
terial in between transmitter and receiver is not concrete.The link between track
T3 and Rp9 is blocked by a metallic white board and thus a weak NLoS link is
expected.

5.4 Fluorescent Tube Experiment

5.4.1 Experiment 4.1: Fluorescent Tube

In previous measurement campaigns was reported that switched on fluorescent
tubes create a time varying channel. An experiment at fixed transmitter and re-
ceiver positions is conducted to test this phenomenon in thegiven environment.
The continuous radio channel is measured. In the few first seconds of the mea-
surements, the fluorescent tubes are switched off and after acouple seconds the
fluorescent tubes are switched on.

5.5 Measurement Protocol

In the following we summarize the measurement process and note exceptions which
happened during the experiments. We refer the reader to Fig.2.2, which shows a
schematic of the measurement environment and to Fig. 4.2 showing a spherical
panorama image from Rp1. The measurements are identified as scenarios num-
bered from 0.00 to 6.03, for practical reasons. Scenarios can be part of multiple
experiments. A mapping of the scenarios to the corresponding experiments can be
found in Table 5.1.

5.5.1 Measurement of Noise (Experiment 1.1)

A measurement of the noise was conducted before the measurements of the differ-
ent scenarios were done. The measurement was conducted withthe receiver at Rp4
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and with the transmitter at the start position of T1. The maingoal of this measure-
ment was to see the input on the receiver when the transmitteris turned off. This
should help to identify if there are any WiFi networks transmitting and if there are
any other disturbing sources in the measured band width. Furthermore it should
provide an indication of the noise power. Before this measurement was recorded,
a detailed check of the noise power, the signal power and the AGC settings was
done. Adjustments such as adding the LNA and tests with different attenuators
were conducted to optimize for the full range of the AGC and toachieve as much
SNR over all transmitter and receiver positions as possible.
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Table 5.1: Mapping of Scenarios to Experiments.
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0.00 AAUDLR2010noise01 x

1.01 AAUDLR201001 01 T1 Rp1 x x
...

...
...

...
1.09 AAUDLR201001 09 T1 Rp9 x x
1.10 AAUDLR201001 10 T1 T2p1 x

...
...

...
1.14 AAUDLR201001 14 T1 T2p5 x

2.01 AAUDLR201002 01 T2 Rp1 x x
...

...
...

...
2.09 AAUDLR201002 09 T2 Rp9 x x
2.10 AAUDLR201002 10 T2 T1p1 x

...
...

...
2.14 AAUDLR201002 14 T1 T1p5 x

3.01 AAUDLR201003 01 T3 Rp1 x
...

...
...

3.9 AAUDLR201003 20 T3 Rp9 x
3.10 AAUDLR201003 10 T3 T1p1 x

...
...

...
3.14 AAUDLR201003 14 T3 T1p5 x
3.15 AAUDLR201003 15 T3 T2p1 x

...
...

...
3.19 AAUDLR201003 19 T3 T2p5 x
3.20 AAUDLR201003 20 T3 Rp6 x

4.01 AAUDLR201004 01 T1 Rp1 x
4.02 AAUDLR201004 02 T1 Rp2 x
4.03 AAUDLR201004 03 T1 Rp3 x

5.01 AAUDLR201005 01 T1 Rp4 win1 x
...

...
...

5.04 AAUDLR201005 04 T1 Rp4 win1234 x
5.05 AAUDLR201005 05 T1 Rp1 win1 x

...
...

...
5.08 AAUDLR201005 08 T1 Rp1 win1234 x
5.09 AAUDLR201005 09 T1 Rp2 win1 x

...
...

...
5.12 AAUDLR201005 12 T1 Rp2 win1234 x
5.13 AAUDLR201005 13 T1 Rp3 win1 x

...
...

...
5.16 AAUDLR201005 16 T1 Rp3 win1234 x

6.01 AAUDLR201006 01 T1 Rp3 win1to9 x
6.02 AAUDLR201006 02 T1 Rp4 win1to9 x
6.03 AAUDLR201006 03 T1 Rp2 win1to9 x
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Table 5.2: Noise Measurement for Experiment of Section 5.1.1 .
Scen. # Tx Rx Pos. Comments Calibration File Filename

0.00 Track (suffix “.KOR”) (suffix “.000.DLR1DSK”)

0.00 T1 Rp4 [1] AAUDLR2010cal 01 AAUDLR2010 noise01

Comments:

[1] 20 s were recorded with transmitter switched off.
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5.5.2 Measurements of Scenario 1

The measurements of scenario 1 consist of all measurements with the transmitter
on track T1 with the receiver positions Rp1 to Rp9 and the positions T2Rp1 to
T2Rp5. The room was empty and all windows were closed. The measurement
team was standing outside in the corridor during the measurement process. The
measurements of scenario 1.01 to 1.09 correspond to the experiment described in
Section 5.1.2. The measurements of scenario 1.09 to 1.14 areintended for co-
operative localization experiments and correspond to the experiment described in
Section 5.3.

Table 5.3: Measurements for Transmitter on Track T1.
Scen. # Tx Rx Pos. Comments Calibration File Filename

Track (suffix “.KOR”) (suffix “.000.DLR1DSK”)

1.01 T1 Rp1 AAUDLR2010cal 01 AAUDLR2010 01 01 T1 Rp1
1.02 T1 Rp2 AAUDLR2010cal 01 AAUDLR2010 01 02 T1 Rp2
1.03 T1 Rp3 [4] AAUDLR2010cal 01 AAUDLR2010 01 03 T1 Rp3
1.04 T1 Rp4 [5] AAUDLR2010cal 01 AAUDLR2010 01 01 T1 Rp4
1.05 T1 Rp5 [1],[6] AAUDLR2010cal 03 AAUDLR2010 02 05 T1 Rp5
1.06 T1 Rp6 [2] AAUDLR2010cal 03 AAUDLR2010 01 06 T1 Rp6
1.07 T1 Rp7 AAUDLR2010cal 03 AAUDLR2010 01 07 T1 Rp7
1.08 T1 Rp8 AAUDLR2010cal 03 AAUDLR2010 01 08 T1 Rp8
1.09 T1 Rp9 AAUDLR2010cal 01 AAUDLR2010 01 09 T1 Rp9
1.10 T1 T2p1 AAUDLR2010cal 01 AAUDLR2010 01 10 T1 T2p1
1.11 T1 T2p2 AAUDLR2010cal 01 AAUDLR2010 01 11 T1 T2p2
1.12 T1 T2p3 AAUDLR2010cal 01 AAUDLR2010 01 12 T1 T2p3
1.13 T1 T2p4 AAUDLR2010cal 01 AAUDLR2010 01 13 T1 T2p4
1.14 T1 T2p5 AAUDLR2010cal 01 AAUDLR2010 01 14 T1 T2p5

Comments:
[1] All measurements with Rp5 were measured at the end of the Tx T1 and T2 measurements, because the Rx
needed to be moved from tripod to the table.
[2] Was measured after all measurements in R4 with T1 and T2 were finished.
[3] Change of the Rx height from 110 cm to 120 cm.
[4] Plastic strips mounting the Rx antenna MUX loosened. It needed to be tightened again. New stronger plastic
strips were used.
[5] Scenario 1.04 was saved with the wrong file name. Manual fixafterwards.
[6] Scenario 1.05 was saved with the wrong filename. Manual fixafterwards.

Figure 5.1: Mounting of the Rx array and the multiplexer on the table for the
receiver position Rp5.
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5.5.3 Measurements of Scenario 2

The measurements of scenario 2 consist of all measurements with the transmitter
on track T2 with the receiver positions Rp1 to Rp9 and the positions T1Rp1 to
T1Rp5. The room was empty and all windows were closed. The measurement
team was standing outside in the corridor during the measurement process. The
measurements of scenario 2.01 to 2.09 correspond to the experiment described in
Section 5.1.2. The measurements scenario 2.09 to 2.14 are intended for cooperative
localization and are described in Section 5.3.

Table 5.4: Measurements for Transmitter on Track T2.
Scen. # Tx Rx Pos. Comments Calibration File Filename

Track (suffix “.KOR”) (suffix “.000.DLR1DSK”)

2.01 T2 Rp1 AAUDLR2010cal 02 AAUDLR2010 02 01 T2 Rp1
2.02 T2 Rp2 AAUDLR2010cal 02 AAUDLR2010 02 02 T2 Rp2
2.03 T2 Rp3 AAUDLR2010cal 02 AAUDLR2010 02 03 T2 Rp3
2.04 T2 Rp4 AAUDLR2010cal 02 AAUDLR2010 02 04 T2 Rp4
2.05 T2 Rp5 AAUDLR2010cal 03 AAUDLR2010 02 05 T2 Rp5
2.06 T2 Rp6 AAUDLR2010cal 03 AAUDLR2010 02 06 T2 Rp6
2.07 T2 Rp7 AAUDLR2010cal 03 AAUDLR2010 02 07 T2 Rp7
2.08 T2 Rp8 AAUDLR2010cal 03 AAUDLR2010 02 08 T2 Rp8
2.09 T2 Rp9 AAUDLR2010cal 02 AAUDLR2010 02 09 T2 Rp9
2.10 T2 T2p1 AAUDLR2010cal 02 AAUDLR2010 02 10 T2 T1p1
2.11 T2 T2p2 AAUDLR2010cal 02 AAUDLR2010 02 11 T2 T1p2
2.12 T2 T2p3 AAUDLR2010cal 02 AAUDLR2010 02 12 T2 T1p3
2.13 T2 T2p4 AAUDLR2010cal 02 AAUDLR2010 02 13 T2 T1p4
2.14 T2 T2p5 AAUDLR2010cal 02 AAUDLR2010 02 14 T2 T1p5

Comments:
Track T2 is longer than T1. The measurement files are approximately 60 s long.

Figure 5.2: Panograph from Rp1 perspective showing track T2, the train and the
antenna tower.
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5.5.4 Measurements of Scenario 3

All measurements of scenario 3 are with the transmitter on track T3 with the re-
ceiver positions Rp1 to Rp9, T1Rp1 to T1Rp5 and the positionsT2Rp1 to T2Rp5.
The room was empty and all windows were closed. The measurement team was
standing outside in the corridor during the measurement process. The measure-
ments of scenario 3 are intended for cooperative localization and their purpose is
described in Section 5.3.

Furthermore the measurement of scenario 3.20 was a measurement with the Tx
standing at the end of track T3. In this measurement the lights (fluorescent tubes)
were in the beginning switched of and after approximately 20seconds switched
on. This measurement corresponds to experiment 4.1 described in Section 5.4.1.

Table 5.5: Measurements for Transmitter on Track T3.
Scen. # Tx Rx Pos. Comments Calibration File Filename

Track (suffix “.KOR”) (suffix “.000.DLR1DSK”)

3.01 T3 Rp1 AAUDLR2010cal 05 AAUDLR2010 03 01 T3 Rp1
3.02 T3 Rp2 AAUDLR2010cal 05 AAUDLR2010 03 02 T3 Rp2
3.03 T3 Rp3 AAUDLR2010cal 05 AAUDLR2010 03 03 T3 Rp3
3.04 T3 Rp4 AAUDLR2010cal 05 AAUDLR2010 03 04 T3 Rp4
3.05 T3 Rp5 AAUDLR2010cal 04 AAUDLR2010 03 05 T3 Rp5
3.06 T3 Rp6 AAUDLR2010cal 06 AAUDLR2010 03 06 T3 Rp6
3.07 T3 Rp7 [1] AAUDLR2010cal 06 AAUDLR2010 03 07 T3 Rp7
3.08 T3 Rp8 AAUDLR2010cal 05 AAUDLR2010 03 08 T3 Rp8
3.09 T3 Rp9 AAUDLR2010cal 05 AAUDLR2010 03 09 T3 Rp9
3.10 T3 T1p1 AAUDLR2010cal 05 AAUDLR2010 03 10 T3 T1p1
3.11 T3 T1p2 AAUDLR2010cal 05 AAUDLR2010 03 11 T3 T1p2
3.12 T3 T1p3 AAUDLR2010cal 05 AAUDLR2010 03 12 T3 T1p3
3.13 T3 T1p4 AAUDLR2010cal 05 AAUDLR2010 03 13 T3 T1p4
3.14 T3 T1p5 AAUDLR2010cal 05 AAUDLR2010 03 14 T3 T1p5
3.15 T3 T2p1 AAUDLR2010cal 05 AAUDLR2010 03 15 T3 T2p1
3.16 T3 T2p2 AAUDLR2010cal 05 AAUDLR2010 03 16 T3 T2p2
3.17 T3 T2p3 AAUDLR2010cal 05 AAUDLR2010 03 17 T3 T2p3
3.18 T3 T2p4 AAUDLR2010cal 05 AAUDLR2010 03 18 T3 T2p4
3.19 T3 T2p5 AAUDLR2010cal 05 AAUDLR2010 03 19 T3 T2p5
3.20 T3 Rp6 [2] AAUDLR2010cal 06 AAUDLR2010 03 20 T3 Rp6lights

Comments:
[1] Door to R2 was open.
[2] Measurement with the train at the end of the track. First 20 seconds lights switched off. After 20 seconds
lights (flourescent tubes) switched on.
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Figure 5.3: Panograph from Rp6 perspective showing the interior of room R3 and
track T3.
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5.5.5 Measurements of Scenario 4

The measurements of scenario 4 consist of all measurements with the transmitter
on track T1 with the receiver positions Rp2 to Rp4. Around themeeting table
were 10 people sitting (Fig. 5.4) and all windows were closed. The purpose of the
measurements is described in Section 5.2.3.

Table 5.6: Measurements with 10 persons R4.
Scen. # Tx Rx Pos. Comments Calibration File Filename

Track (suffix “.KOR”) (suffix “.000.DLR1DSK”)

4.01 T1 Rp1 AAUDLR2010cal 02 AAUDLR2010 04 01 T1 Rp2
4.02 T1 Rp2 AAUDLR2010cal 02 AAUDLR2010 04 02 T1 Rp3
4.03 T1 Rp3 AAUDLR2010cal 02 AAUDLR2010 04 03 T1 Rp4

Comments:
10 people were sitting in the room around the table. People were asked to not move. No Laptops or any other
additional equipment.

Figure 5.4: Ten persons placed around the meeting room table.
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5.5.6 Measurements of Scenario 5

The measurements of scenario 5 consist of all measurements with the transmitter
on track T1 with the receiver positions Rp1 to Rp4 and open windows. The purpose
of the measurements is described in Section 5.2.1. The windows open to the inside
(Fig. 5.5) and the frames of the windows are metallic. Noticeat receiver position
Rp1 is window number 4 and at Rp2 window number 1 above the receiver array
when these windows are opened. An influence on the antenna response due to the
metallic window frame is expected. The order of opening the windows at position
Rp2 was changed as compared to the other measurements. The intention was that
only when all 4 windows are open, window 1 is above Rp2.

Table 5.7: Measurements with open windows.
Scen. # Tx Rx Pos. Comments Calibration File Filename

Track (suffix “.KOR”) (suffix “.000.DLR1DSK”)

5.01 T1 Rp4 [1] AAUDLR1010cal 02 AAUDLR2010 05 01 T1 Rp4 win1
5.02 T1 Rp4 [2] AAUDLR1010cal 02 AAUDLR2010 05 02 T1 Rp4 win12
5.03 T1 Rp4 [3] AAUDLR1010cal 02 AAUDLR2010 05 03 T1 Rp4 win123
5.04 T1 Rp4 [4] AAUDLR1010cal 02 AAUDLR2010 05 04 T1 Rp4 win1234
5.05 T1 Rp1 [1] AAUDLR1010cal 02 AAUDLR2010 05 05 T1 Rp1 win1
5.06 T1 Rp1 [2] AAUDLR1010cal 02 AAUDLR2010 05 06 T1 Rp1 win12
5.07 T1 Rp1 [3] AAUDLR1010cal 02 AAUDLR2010 05 07 T1 Rp1 win123
5.08 T1 Rp1 [4] AAUDLR1010cal 02 AAUDLR2010 05 08 T1 Rp1 win1234
5.09 T1 Rp2 [5] AAUDLR1010cal 02 AAUDLR2010 05 09 T1 Rp2 win4
5.10 T1 Rp2 [6] AAUDLR1010cal 02 AAUDLR2010 05 10 T1 Rp2 win34
5.11 T1 Rp2 [7] AAUDLR1010cal 02 AAUDLR2010 05 11 T1 Rp2 win234
5.12 T1 Rp2 [4] AAUDLR1010cal 02 AAUDLR2010 05 12 T1 Rp2 win1234
5.13 T1 Rp3 [1] AAUDLR1010cal 02 AAUDLR2010 05 13 T1 Rp3 win1
5.14 T1 Rp3 [2] AAUDLR1010cal 02 AAUDLR2010 05 14 T1 Rp3 win12
5.15 T1 Rp3 [3] AAUDLR1010cal 02 AAUDLR2010 05 15 T1 Rp3 win123
5.16 T1 Rp3 [4] AAUDLR1010cal 02 AAUDLR2010 05 16 T1 Rp3 win1234

Comments:
[1] W1 open.
[2] W1 and W2 open.
[3] W1, W2 and W3 open.
[4] W1, W2, W3 and W4 open.
[5] W4 open.
[6] W3 and W4 open.
[7] W2, W3 and W4 open.
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(a) (b)

Figure 5.5: (a) The receiver is at position Rp1 and W1 to W4 areopen. (b) The
receiver at position Rp2. The metallic frame of W1 is only approximatly 10 cm
above the antenna array.
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5.5.7 Measurements of Scenario 6

The measurements of scenario 6 consist of measurements withthe transmitter on
track T1 with the receiver positions Rp2 to Rp4. The windows W1 to W9 in the
rooms R2, R3 and R4 were open during the measurements. The intended use of
the measurements is described in Section 5.2.2.

Table 5.8: Measurements with window W1 to W9 open.
Scen. # Tx Rx Pos. Comments Calibration File Filename

Track (suffix “.KOR”) (suffix “.000.DLR1DSK”)

6.01 T1 Rp3 AAUDLR2010cal 02 AAUDLR2010 06 01 T1 Rp3 win1to9
6.02 T1 Rp4 AAUDLR2010cal 02 AAUDLR2010 06 02 T1 Rp4 win1to9
6.03 T1 Rp2 AAUDLR2010cal 02 AAUDLR2010 06 03 T1 Rp2 win1to9

Comments:
The windows in room R2, R3 and R4 were open.
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DATA STRUCTURE AND FILE
NAMES

6.1 Import of RAW Measurement Data

The descriptions in the previous sections refer to the measurement data in the raw
channel sounder format. In order to use this data format a 32 bit Matlab version
is necessary to use the MEDAV import functions. DLR’s MEDAV sounder uses
an older file format which is not compatible with the currently distributed “Hyeff”
filters from MEDAV. One can obtain with the “Hyeff” licence the import functions
for the DLR sounder, directly from DLR.

6.1.1 Import Functions and Data Formats

In the following we state some example Matlab code to import the measurement
data with the Medav functions.

[Error, Header] = RSKHead(0,[measurementFolder filename],0 );
[Error, Info] = RSKInfo(0,[measurementFolder filename],0);
for iLoop=1:Header.DataSets
[Error, Data, Snap] = RSKData(0,[measurementFolder filename],...

[(iLoop−1)∗Header.SetsPerFDBlock+1 1 iLoop∗Header.SetsPerFDBlock],...
[257 1 1793], [1 2 3 4 5 6 7 8], [],[],0,[],0 );

[Error, Nav, GPS] = RSKNav(0,[measurementFolder filename],...
[(iLoop−1)∗Header.SetsPerFDBlock+1:1:iLoop∗Header.SetsPerFDBlock],0 );

end

The code above imports in every iteration one burst of data with theRSKData()
function. The function uses a vector specifying the measurement cycles to import.
We specify this vector in Matlab as
[(iLoop-1)*Header.SetsPerFDBlock+1 1 iLoop*Header.SetsPerFDBlock]
to import all cycles with the burst indexiLoop. In the raw data file and for the used
measurement settings consists each measured frequency response of 2048 samples
from which only a part is non zero. We obtain the non zero part with the vector
[257 1 1793], which specifies the first frequency sample (257), the step size in
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Table 6.1: Data fields of the “Header” structure.
Fieldname Value

DataSets 7140
Channels 8
FDDChannels 1
MeasureMode 2
MeasureModeText ’Time grid mode’
FDDMode 0
FDDModeText ’FDD disabled’
Periode 2048
TxCount 1
Grid 131.0720
Bandwidth 120000000
RF 5.2000e+009
FDD-RF [250000000 250000000]
IF 80000000
SampleFreq 320000000
FDBlocksPerDBlock 1
SetsPerFDBlock 20
PreProcessing 1
PreProcessingText ’Rowdata whithout preprocessing’
OdometerPulses 100000
NavDataSource 0
NavDataSourceText ’Receiver unit’
CalibTxPower 0
CalibAGC 87
CalibAttenuation 33
CalibFactor 0
MeasTxPower 0

samples (1) and the last sample (1793) out of the 2048. The measured receive an-
tennas are selected with the vector[1 2 3 4 5 6 7 8]. The size of the “Data”
variable isNburst×Nc×NRx (20×1537×8). For a detailed overview of the function
description we refer to the headers in the source code of the import functions. The
fields of the other data structures are listed in Table 6.1, Table 6.2, and Table 6.3.

6.2 Detection of Erroneous Frequency Responses

Using long cables to the antenna multiplexer creates randomdistortions in the mea-
sured frequency responses. The frequency responses with such distortions need to
be detected automatically such that one can decide to include these data or not.
We observe these distortions as a drop in the power of the frequency response for
some arbitrary frequency ranges. The size of these frequency ranges and their loca-
tions in the considered bandwidth is random over the different measured frequency
responses.

During our measurements were no moving objects in the room and the trans-
mitter moved only 0.0035λ during one burst. Thus we assume that the measured
frequency responses ofNburst is constant at each antenna. In order to detect the
frequency distortions from the antenna multiplexer we compare each measured
frequency response to an averaged frequency response. We represent the measured
frequency response asHi, j( f ) where j = 1. . .NRx is the index for the number of re-
ceive antennas andi = 1. . .Nburst is the index of the cycles in a burst. We calculate
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Table 6.2: Data fields of the “Info” structure.
Fieldname Value

MeasFileName ’D:\RUSKData\Data\WHERE2 01 01 T1 Rp1.000.DLR1DISK’
CalibFileName ’D:\RUSKData\Calibration\Where2cal 01KOR’
StartTime ’02.01.1999; 04:28:10’
EndTime ’02.01.1999; 04:28:59’
MeasPlace ”
MeasSeries ”
MeasLeader ”
TxUnit ”
TxAntenna ’RUSK DLR 1.51 GHz 1x1-Tx-antenna (Id=1050, SNr.24547)’
TxPosition ”
RxUnit ”
RxAntenna ’RUSK DLR external multiplexer 8 times, f=1..5.3GHz, Pmax=2W, Serial number 33563, Id=9050’
RxPosition ”
Comment1 ”
Comment2 ”
Comment3 ”
Comment4 ”
Comment5 ”
Scenario [49x1 struct]

Table 6.3: Data fields of the “Nav” structure.
Fieldname Value

Number [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]
RelTime [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
Time [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
Distance1 [1x20 double]
Distance2 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

the average frequency response for thej antenna in a burst as

Ĥ j( f ) =
1

Nburst

Nburst

∑
i=1

Hi, j( f ). (6.1)

We use these averaged frequency responses for each antenna to calculate the error
between the averaged frequency responses and the frequencyresponses of each
cycle in the burst as

êi, j ( f ) = Hi, j( f )− Ĥ j( f ). (6.2)

Furthermore we estimate the sample based standard deviation of the absolute val-
ues of the error over the measurement bandwidth as

σ̂i, j =

√√√√ 1
Nc ∑

f

(
|êi, j( f )|− 1

Nc ∑
f

|êi, j ( f )|
)2

. (6.3)

For the case the frequency responses of one antenna in a burstare not distorted,
varies the standard deviation of the errors only due to measurement noise. If a
distortion of a frequency response occurred is the standarddeviation of the errors
larger. We chose a threshold to detect distorted frequency responses. The threshold
is calculated as the product of some constant valueq and the minimum standard
deviation of the error in a burst for each antenna. Thus we achieve the index set
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Di, j of distorted frequency responses as

Di, j = 1(σ̂i, j > q min
i

σ̂i, j), (6.4)

where1 is the indicator function. We obtain for each burst such an indexDi, j set.

6.3 Measurement Data in Matlab Format

The mentioned import functions in Section 6.1 for the channel sounder data only
work in specific 32 bit Matlab versions running on Windows. Inorder to allow for
the use of the measurement data in 64 bit Matlab versions and on Linux systems
are the data files converted in Matlab data files. The filenamesare the same as
the raw data files except that the suffix “.000.DLR1DSK” is replaced by the file
ending “.mat”.

The data contained in these files are the “Header” and “Info” structures. In
addition are the frequency responses of each burst stored intheir own variable (eg.
“Data0000001”,. . .,“Data0001000”). This allows for easy access to specific bursts
and not opening the complete data at once, which would results in huge memory
consumption. Additionally are to each burst the indices of the detected distorted
frequency responses saved. For the threshold we chose the valueq = 1.2, based on
some experimental tests. These indices are stored as logical variables and denoted
eg. “IndexGood0000001” or “IndexBad0000001” for the good and bad indices of
burst one. Similarly, for each burst are the “Gps” and “Nav” structures stored with
the corresponding indices, eg. as“Gps0000001” and “Nav0000001”.
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Abstract—Time Based (TB) localization in terrestrial mobile
radio as an augmentation for global navigation satellite systems
has recently gained plenty of interests. As an essential tool
to develop suitable algorithms for positioning applications in
mobile radios, channel models for wireless transmissions have
growing significance. Currently there is a lack of investigations
on comparing the propagation characteristics at2.45 GHz and
5.2 GHz for positioning applications. Therefore, we present a
statistic evaluation based on a channel measurement campaign.
Several propagation characteristics are researched like the re-
ceived power and the delay spread. While some measures like
the received power is carrier frequency dependent, most of the
measures like the non line-of-sight bias or the delay spreadare
independent of this measurement parameter. Instead they are
more influenced by the location and the environment.

I. I NTRODUCTION

Global Navigation Satellite Systems (GNSSs) such as the
Global Positioning System (GPS) provide very accurate po-
sitioning as long as line-of-sight (LoS) conditions between
satellites and receiver prevail. However, in critical scenarios
like urban canyons, the position accuracy by GNSSs very
much deteriorates due to shadowing, diffraction, and reflection
of satellite signals. In indoor environment GNSS receiverssuf-
fer from severe multipath effects, signal blockage resulting in
very low receive power handicapping the tracking of satellite
signals.

Augmenting GNSSs based positioning with signals of op-
portunity helps very much in these environments and improves
the position accuracy compared to a GNSS-only solution. The
signals of terrestrial mobile radio standards can be exploited
in addition to GNSS signals. A promising approach is to apply
Time Based (TB) localization to terrestrial radio signals which
provide considerably higher received power levels compared to
GNSS. In particular we focus our attention on the Long Term
Evolution (LTE) system operating at800 MHz and 2.6 GHz,
and to WIFI networks operating at2.4 GHz and5 GHz. The
potential of these signals for localization has been addressed
in [1] and [2]. For the LTE system the frequency band at
800 MHz is used for scenarios with large cell size like in rural
areas; the2.6 GHz band is foreseen for small and medium cell
size scenarios like in urban areas and for femtocells; the5 GHz
band is another potential center frequency for femtocells.TB
localization requires simultaneously receiving signals from
several base stations which is critical in rural areas. Therefore,

we focus on small cell size scenarios and, in turn, on the
2.6 GHz and5 GHz bands.

The wireless channel has a significant impact on TB lo-
calization. The position error is directly related to the range
estimation error of individual radio links. Two different major
channel characteristics affect the range estimation error: firstly,
ranging based on the first detectable wave is positively biased
if the Geometric Line-of-Sight (GLoS) path is blocked. This
bias, i.e. the difference between the geometrical distancefrom
the transmitter to the receiver and the propagation distance
of the first detectable path is known as the non Line-of-Sight
(NLoS) bias. Secondly, due to multipath the correlator based
synchronizer which is generally used for range estimation is
biased positively or negatively by the superposition of paths.
So far only few articles on the propagation channel at around
2.4 GHz and around5.7 GHz for outdoor to indoor scenarios
have been published, see e.g. [3]. However, these activities
have been conducted for communication applications, omitting
important measures needed for ranging applications such as
the NLoS bias and the spatial correlation characteristics.
This paper aims to compare outdoor to indoor broadband
wave propagations at2.45 GHz and5.2 GHz for geolocation
applications based on a DLR channel measurement campaign
for a time-variant mobile channel.

In Section II, the setup of the channel measurement cam-
paign is addressed. Thereafter, Section III discusses the data
processing methods and Section IV the corresponding results
including the received power, Root-Mean-Square (RMS) delay
spread, and NLoS bias. Section V will conclude this paper and
provides an outlook to future work.

II. CHANNEL MEASUREMENT

The measurement was accomplished in the Single Input
Single Output (SISO) manner with a MEDAV RUSK broad-
band channel sounder at the Institute of Communications
and Navigation of the German Aerospace Center (DLR) in
September2010. A spread spectrum signal — in particular an
Orthogonal Frequency Division Multiplexing (OFDM) signal
— has been sent by the transmitter at operating center fre-
quency2.45 GHz and5.2 GHz. The parameter setup of the
channel sounder is summarized in Table I.

The transmit antenna depicted on the left side of Fig. 1 was
positioned at four different locations referred to as Tx-1 to Tx-



TABLE I
CHANNEL SOUNDERSETUP

S-Band C-Band
RF centre frequency 2.45 GHz 5.2 GHz
Bandwidth 90 MHz 90 MHz
Transmit Power 5 W ∼= 37 dBm 5 W ∼= 37 dBm
Signal period 6.4 µs 6.4 µs
Measurement time grid 38.9 ms 38.9 ms
Antennas Omni-directional (V) Omni-directional (V)

4 on the rooftop of office building TE02 in a height of12 m
above ground as shown in Fig. 2. Two other transmit locations
Tx-5 and Tx-6 in front of the office building TE01 were used
with an antenna height of2 m above ground as depicted in
Fig. 2. The same antennas at both transmitter and receiver were
used for2.45 GHz and5.2 GHz. The transmitter was emitting a
signal with a power of35 dBm and a rectangular spectral shape
of B = 90 MHz bandwidth. The transmitted periodic signal
was vertical polarized with a repetition rate of6.4 µs leading
to a maximum resolvable propagation distance of1.92 km.
The channel sounder recorded the Channel Impulse Response
(CIR) h(i, n) every Tg = 38.912 ms, wherei denotes the
snapshot number andn = 0, . . . , N − 1 the delay bin of
the CIR at delayτ(n) = n

B . The same Rubidium standard
frequency normal was used for both transmitter and receiver
clocks to keep them synchronized. The receiver was located
inside office building TE01 as shown in Fig. 2. Both buildings
TE01 and TE02 can be characterized as standard three story
office buildings of concrete with metalized window glass. Our
primary goal was is assess the dynamic nature of the channel
which is typically experienced by a moving receiver. Thus,
instead of static point measurements with a fixed receiver
the receiving antenna was mounted on a model train shown
on the right side of Fig. 1 moving with a speed of about
0.05 m/s as described in [4]. For all six transmitter positions,
the model train was running on tracks T1 and T2 for both
carrier frequency.

Fig. 1. Left plot: transmit antenna located on the rooftop; Right plot: model
train including mounted receive antenna

As it was not possible to transmit both frequencies at
the same time from the same position, it was necessary to
perform measurements for both bands in series. The inter-
band switching was done after the model train completed its
run on both tracks. The position of the transmitter was pre-

Fig. 2. Measurement Scenarios. Transmit antenna positionsTx-1 to Tx-4
are located on the rooftop, whereas Tx-5 and Tx-6 are located in front of the
building. The receiving antenna mounted on the model railway runs along the
tracks T1 and T2.

cisely determined using a Leica tachymeter giving a nominal
accuracy in the sub-cm domain. To get a similar accuracy
for the receiv antenna mounted on the model train, the train
run by a cogwheel, is equipped with a rotary encoder giving
500 impulses per motor turn. This results in a precise travelled
distance measure for each captured CIR snapshot. More details
of the hardware setups are described in [4].

III. D ATA PROCESSINGAND EVALUATION

To compare the channel characteristics at center frequencies
2.45 GHz and5.2 GHz, the normalised received powerP (i),
RMS delay spreadσ(i), mean delaym(i), and the NLoS bias
ε(i) are investigated.

Each measured CIRh(i, n) at snapshoti is normalized
in power by the free space loss of the GLoS, and shifted
in delay such that the first delay bin corresponds to the
distance between receiving and transmitting antennas [4].The
normalized CIR is denoted ashn(i, n) with delayτn(n). The
normalised received powerP (i) is calculated as

P (i) =
N−1∑

n=0

|hn(i, n)|2 . (1)

The RMS delay spreadσ(i) is calculated as

σ(i)=

√√√√√√√√√√

N−1∑

n=0

(τn(n)−m(i))2·t
(
|hn(i, n)|2

)

N−1∑

n=0

t
(
|hn(i, n)|2

) (2)

with the mean delaym(i)

m(i)=

N−1∑

n=0

τn(n)·t
(
|hn(i, n)|2

)

N−1∑

n=0

t
(
|hn(i, n)|2

) , (3)



wheret(x) stands for a thresholding function with

t(x) =
{

x x ≥ xt

0 otherwise . (4)

xt is calculated as the maximum ofx minus20 dB.
For NLoS scenarios, the GLoS path is blocked by build-

ings, trees or other objects. As a result, its powerPGLoS

is extremely low, such that it cannot be detected. Hence,
the First Detectable Path (FDP) has a larger propagation
distance than the GLoS path resulting in a bias for range
estimation. The GLoS path delayτGLoS(i) for each snapshot
i is determined by the measured distance between transmit and
receive antennas divided by the speed of light. Therefore, the
NLoS biasε(i) is calculated as

ε(i) = c · τFDP (i) − c · τGLoS(i), (5)

whereτFDP (i) is the delay of the FDP. To estimateτFDP (i)
super resolution results provided by the Space-Alternating
Generalized Expectation-maximization (SAGE) algorithm [5]
have been used.

Due to the measurement setup, the accuracy of the position
measurement and the size of the antennas the nominal GLoS
distance error in the measurement campaign is within cm
domain. Nevertheless, several recordings under LoS condition
were made for verification and calibration purposes.

IV. CHANNEL CHARACTERISTICS

A. Received Power

Fig. 3 and Fig. 4 show examples of measured CIRs at
frequencies2.45 GHz and5.2 GHz respectively, with the grey
line representing the GLoS distance. It can be seen that the
CIRs measured at both frequencies show similar trends. At the
start of track T1 the receiving antenna was close to the window
and the NLoS bias is therefore small. When the receiving
antenna was moving on the track T1 into the corridor, the
NLoS bias noticeable increase. A clustered structure in the
CIR can be seen at both bands. This is most probably caused
by reflections between the two buildings TE01 and TE02. Due
to the use of metallized window glass, reflections between
the two buildings are of high power. The received power
normalized to the free space loss is shown in Fig. 5. Due to
the normalization of the power the values depicted represent
the propagation loss. When the transmit antenna is located
at Tx-1 or Tx-2, the electromagnetic waves enter the rooms
of TE01 directly through the windows facing TE02. Wave
propagation at5.2 GHz experiences higher penetration loss by
the metalized window glass compared to2.45 GHz. Whereas
the propagation loss at5.2 GHz is close to2.45 GHz when the
transmit antenna is located further away from Tx-1.

B. Time Dispersion Parameters

The statistics for RMS delay spread and mean delay are
shown in Fig. 6 to Fig. 9. For the transmit antenna locations
Tx-1 to Tx-4 the RMS delay spread and the mean delay
slightly decrease. Outdoor reflections showing up as clustered
structure in the CIR introduce significant impact on the delay

Fig. 3. CIRs normalized in power to the free space loss of the GLoS path for
2.45 GHz over travelled distance. The grey line represents the GLoS distance.
The transmit antenna was located at Tx-5, and the model railway run on track
T1.

Fig. 4. CIRs normalized in power to the free space loss of the GLoS path for
5.2 GHz over travelled distance. The grey line represents the GLoS distance.
The transmit antenna was located at Tx-5, and the model railway run on track
T1.
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Fig. 5. Normalized received powerP (i) in dependence of transmit antenna
location and frequency band. The error bars are indicating the standard
deviation of the calculated values.

spread. When the transmit antenna location is changed from
Tx-1 to Tx-4, the power levels of reflections between both
buildings seen at the receiver are reduced due to the change
of the impinging angle at TE01. As a result, the delay spread
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Fig. 7. Mean delaym(n) in dependence of transmit antenna location and
frequency band. The error bars are indicating the standard deviation of the
calculated values.

becomes smaller. According to Fig. 8 and Fig. 9 it is noticeable
that there are no significant RMS delay spread or mean
delay differences between wave propagation at2.45 GHz and
5.2 GHz Also, the CIR examples depicted in Fig. 3 and Fig. 4
show a similar structure. Therefore, the delay spread should be
similar. Channel models, which rely on the RMS delay spread
for generating wideband CIRs are therefore able to use the
same statistics for different frequencies.

C. NLoS Bias

As one of most essential factors in channel modelling for
positioning applications, the NLoS biasε(n) plays a crucial
role in algorithm performance. Fig. 10 to Fig. 12 show
statistics of the estimated NLoS biasε(n). When the transmit
antenna is positioned on the rooftop of building TE02, the
NLoS bias does not vary much in its mean value for each
antenna position. Only a slight increase for the NLoS bias
is visible when the transmit antenna is moving from Tx-1
towards Tx-4. At these positions the waves are propagating
directly into the room where the track T1 starts. However,
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Fig. 8. Cumulative density function of calculated RMS delayspread.
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Fig. 9. Cumulative density function of calculated mean delay.

when the transmit antenna is located in the front of TE01,
the NLoS bias is obviously larger as visible in Fig. 10.
When the transmit antenna is located at Tx-5, there is still
a small ”visible sight” from the transmit antenna to the outer
wall of TE01 facing TE02. The NLoS bias is slightly larger
compared to the values obtained, when the transmit antenna
is located at Tx-4. It seems that the NLoS bias depends on
the incident angle of the waves to the building. When the
transmit antenna is located at Tx-6, a direct LoS to the outer
wall of TE01 facing TE02 is not present. As a result, the
NLoS bias is larger. Similar as for the RMS delay spread,
there is no significant difference for the NLoS bias at2.45 GHz
compared to5.2 GHz. Therefore, it seems that the NLoS bias
is frequency independent.

V. CONCLUSIONS

In this paper, based on a broadband wireless channel mea-
surement campaign, we studied propagation characteristics at
2.45 GHz and5.2 GHz for geolocation applications. It shows
that the received power is influenced slightly by the incident
angle of the waves to the building. It has been noticed that
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transmit antenna is located on the rooftop of TE02.
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Fig. 12. Cumulative density function of estimated NLoS biaswhen the
transmit antenna is located in front of TE01.

there are no significant differences for RMS delay spread
and mean delay at2.45 GHz and5.2 GHz. Therefore, channel
models relying on the RMS delay spread to generate wideband
CIRs are able to use the same statistics for different carrier

frequencies. Moreover, no significant differences for the NLoS
bias at2.45 GHz compared to5.2 GHz could be found.
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Abstract—Time Based (TB) localization by terrestrial cellular
communications mobile radio as a complementation to Global
Navigation Satellite Systems (GNSSs) has gained plenty of in-
terests. Apart from multipath considered in standard commu-
nication channel models, the Non Line-of-Sight (NLoS) error
due to an undetectable Line-of-Sight (LoS) path, defined as
the additional propagation distance between the first detectable
path and the Geometric LoS (GLoS), needs to be taken into
account. In TB localizations, the range estimates from at least
3 different links to Base Stations (BSs) are required to solve
the 2 dimensional navigation equation. In this paper we analyze
the link-level NLoS errors based on a channel measurement
campaign. It turns out to be, that the NLoS errors for difference
links are i.i.d. processes.

I. INTRODUCTION

Positioning by using GNSSs, such as the Global Positioning
System (GPS) operating at L-band, promises very accurate
location information, when a LoS condition to the satellite is
present. However, positioning in urban canyons, where LoS
might be absent, GNSSs does not provide accurate positions.
For some indoor areas, like rooms with metalized windows,
satellite signals can not be tracked by GPS receivers because of
low signal power. TB localization, utilizing available ground
cellular communication networks [1][2], are investigated as
a complementation to GNSS with the advantage of higher
power level in comparison. By suitable Hybrid Data Fusion
(HDF) algorithms to combine measures obtained from GNSS
and terrestrial cellular networks, the accuracy of the estimated
position can be improved.

As an essential tool for receiver development in terms of
TB localization in cellular communication networks, wireless
channel modelling has a growing significance. Due to a dissim-
ilar focus between communications and positioning, channel
models for both applications are different.

• For communications in cellular networks, multipath mod-
eling is more used to evaluate the Bit Error Rate (BER),
and is considered as the most essential part for algorithms
evaluation, like the channel estimation, coding/decoding,
and synchronization.

• TB positioning using cellular networks focuses on inves-
tigating of the position error, which is directly related to
the range error of individual links. The ranging accuracy
strongly depends on the presence of a GLoS propagation

path. Two different major channel characteristics effect
the range error. First a positive bias is introduced if the
GLoS path is blocked, such that the ranging is based on
the first detectable reflected wave. Generally this bias,
between the geometrical distance from the transmitter
to the receiver and the propagation distance of the first
detectable path is known as the NLoS error [3]. Secondly
due to multipath the correlator based synchronizer which
is generally used for range estimation is biased positively
or negatively by the superposition of pathes [2].

Additionally, in TB localization, ranges from at least 3 differ-
ent BSs are required to solve the 2 dimensional navigation
equation. Therefore, the evaluation of correlation between
NLoS errors for different links involved in localization is an
important factor to model link level channels. Some research
works have investigated the single link NLoS errors based on
indoor to indoor ultra wide band measurement [4]. In this
paper, we evaluated the link level characteristics of the NLoS
errors based on a broadband outdoor to indoor channel sounder
measurement at premises of the German Aerospace Center
(DLR).

In Section II, the setup of the channel measurement cam-
paign is addressed. Thereafter, Section III discusses the data
processing methods and the evaluations. The corresponding
results, like the distribution of NLoS error and its link-level
correlation are shown in Section IV.

Throughout this paper, Ex{·} denotes the expectation over
x and is replaced by the sample mean for calculation.

II. CHANNEL MEASUREMENT CAMPAIGN

The measurement was accomplished in the Single Input
Single Output (SISO) manner with a MEDAV RUSK broad-
band channel sounder at premises of the German Aerospace
Center (DLR) in June 2008. A spread spectrum signal —
in particular an Orthogonal Frequency Division Multiplexing
(OFDM) signal — has been sent by the transmitter. The pa-
rameter setup of the channel sounder is summarized in Table I.
The measured i-th snapshot of the Channel Impulse Response
(CIR), h(i, j), j = 0, . . . , M − 1 consists of M = 1537
samples at delays τj = jΔτ , with Δτ = 1/B. The channel
sounder records one CIR every Tg = 1.024 ms providing a
measurement rate of 976 CIRs per second (CIRs/s).



TABLE I
CHANNEL SOUNDER SETTINGS FOR THE MEASUREMENT

RF center frequency 5.2 GHz
Bandwidth B = 120 MHz
A/D Converter 8 bits, 320 MHz
Transmit Power 5 W ∼= 37 dBm
Signal period 12.8 μs
Number of carrier 1537
Measurement mode Time grid mode
Measurement time grid 1.024 ms
Antennas Omni-directional

The receiver antenna was located 1 m above the ground of
the top floor of the building. Measurements were performed
at NP = 90 points in a distance grid of 1 m covering most
of the floor area as shown in Fig. 1. At each point N = 6000
CIR snapshots were measured within 6 s. The transmitter
was located outside, in front of the building. Fig. 1 depicts
the scenario information of the measurement site. Overall 4
different emitter positions were used, 2 different horizontal
positions (marked as H1 and H2), together with 2 different
heights (V 1 and V 2) for each horizontal position. In this
paper we denote the transmitter position by α, where α ∈
{d1 (H1, V 1), d2 (H1, V 2), d3 (H2, V 1), d4 (H2, V 2)}.
Therefore, 360 point measurements have been obtained. The
heights were H1 = 12 m and H2 = 18 m above the ground.
V 1 and V 2 were 32 m horizontally spaced. The distance
from the transmitter to the outer wall of the building was
approximately 16 m.

For range applications the propagation delay is the most
important factor and therefore the most important part in this
measurement campaign. Hence, receiver and transmitter were
perfectly synchronized by cable connection using one common
rubidium atomic clock serving as frequency normal. This setup
prevents time drifts which usually occur in channel sounder
measurements using separated clocks. A system calibration
before the measurement has been performed to equalize influ-
ences of the analog hardware.

The positions of the transmitter antenna and the receiver
antenna were measured in the World Geodetic System 1984
(WGS84) format using a Leica tachymeter system giving
a nominal accuracy in sub-cm domain. Thereafter, the true
distance from the transmitter to the receiver was determined
based on the measured transceiver coordinates to derive the
GLoS distance for each point.

III. DATA PROCESSING AND EVALUATION

A. Power Delay Profile (PDP) Normalized to GLoS

To calculate a conventional PDP, the Channel Impulse
Response (CIR) is normalized in power by total receive power
or maximum path power, and shifted in delay to the first
incoming path [5].

In positioning, it is essential to take the GLoS distance into
account. To better study the channel PDPs for this purpose,
the CIR hn(i, j) corresponds to h(i, j) normalized in power by
the free space loss, and shifted in delay by the GLoS distance
divided by speed of light c. The PDP for a measurement at a
certain point with a certain transmitter location is calculated

Fig. 1. Scenario information of the measurement

as

Pk(j) =
1
N

N∑

i=1

|hn(i, j)|2 (2)

where i is the snapshot index for each point, and k =
1, . . . , 4NP .

B. Channel Parameters Estimation

For each point, the measured CIRs are divided into blocks
of 100 snapshots. In each block b, the CIRs are averaged
to reduce the noise floor resulting in h(b, j) with increased
signal-to-noise ratio. As the environment was stable, the
averaging does not introduce disturbance to the CIR. To
accurately estimate the path delays, and complex amplitudes
from the measured bandlimited CIR, the Space-Alternating
Generalized Expectation-maximization (SAGE) super resolu-
tion algorithm [6] has been utilized. Without loss of generality,
the channel model can be denoted as the summation of paths

ĥ(b, j) =
L(b)∑

l=1

al(b)s(j − τl(b) · B) (3)

where al(b) is the complex amplitude of path l, τl(b) is the
delay of path l, and s(j) denotes the transmitted reference
signal which is a bandlimited dirac function. L(b) is the
number of paths for block b which is estimated by Minimum
Description Length (MDL) [7]. Values for the parameters of
ĥ(b, j) are obtained by fitting to the measured data h(b, j)
separately for each block b based on the Maximum Likelihood
(ML) criterion for the parameters al(b) and τl(b).

C. NLoS Error Calculation

For NLoS scenarios, the GLoS path is blocked by build-
ings, trees or other objects. As a result, its power PGLoS is
extremely low as shown in Fig. 2 and Fig. 3, such that it
cannot be detected. The First Detectable Path (FDP) has a
larger propagation distance than the GLoS resulting in a bias
for ranging applications. The GLoS delay ToAGLoS(p, α) for
each point p = 1, . . . , NP is determined by the measured
distance between transmitter, located at α and receiver point
divided by the speed of light. Shown in Fig. 3 as an example,



ρε(α1, α2) =
Ep {(εNLoS(p, α1) − Ep {εNLoS(p, α1)}) (εNLoS(p, α2) − Ep {εNLoS(p, α2)})}√

Ep

{
(εNLoS(p, α1) − Ep {εNLoS(p, α1)})2

}
Ep

{
(εNLoS(p, α2) − Ep {εNLoS(p, α2)})2

} (1)

Fig. 2. NLoS scenario with blocked GLoS path which is difficult to detect

Fig. 3. Example of a NLoS error εNLoS for a CIR. c is the speed of light,
ToAGLoS is the propagation delay of the GLoS path, and ToAFDP is the
propagation delay of first detectable path

the NLoS error εNLoS(p, α) for point p is calculated as the
mean of NLoS errors of for all blocks

εNLoS(p, α) = Eb{c · (ToAFDP (b, p, α)}−ToAGLoS(p, α)),
(4)

where ToAFDP (b, p, α) is the estimated delay of the FDP for
block b while the transmitter was locating at position α.

The GLoS distance errors caused by the size of the antenna
and position measurement errors are in cm domain. However,
in order to improve the accuracy, several LoS calibrations were
done based on the measurements of LoS points. The GLoS
distance was calibrated based on estimated LoS path delay.

D. Inter-Link NLoS Error Correlation Evaluation

As multiple links are required in positioning, the inter-
link correlation of NLoS error becomes essential for suitable
receiver algorithm development. The inter-link NLoS error
correlation coefficient ρε(α1, α2) is defined by Eq. (1). α1

and α2 represent the transmitter position d1, d2, d3 or d4.
Three scenarios are considered in this paper:

• S1 where the transmitters are at the same horizontal place
with different heights ((d1, d2), and (d3, d4)),

• S2 where the transmitter are at same heights with differ-
ent horizontal places ((d1, d3), and (d2, d4)),

• and S3 where the transmitter are at different heights and
different horizontal places ((d1, d4), and (d2, d3)).

E. Spatial Characterization

A covariance analysis has been performed to explore the
spatial evolution of the NLoS error εNLoS(p, α) in a statistical

manner. The spatial sample covariance function cα,l(d) is cal-
culated as the covariance of the NLoS error for measurement
points by

cα,l(d) = Epx,py
{(εNLoS(px, α)−μpl)(εNLoS(py, α)−μpl)}.

(5)
where the expectation is over all sets {px, py} of the two
measurement points px and py on the line-l (l = 1, 2, see
Fig. 1) separated spatially by d, and the mean μpl is equal
the average NLoS error for point measurement of line-l. In
this paper, the d is forced to be 1 m due to spacing between
neighboring points.

IV. EVALUATION RESULTS

A. PDP with Normalization to GLoS

The Probability Density Function (PDF) of the PDP Pk(j)
is presented in Fig. 4. A Gaussian kernel estimator [8] has
been used to estimate the one-dimensional PDF for Pk(j) for
each delay bin j. Around delay 0 µs which represents the
propagation time of GLoS, the probability of attenuation is
spread from −20 dB to −50 dB. For high attenuations the
GLoS path is difficult to be detected. In addition, clusters at
around 0.2 µs and 0.5 µs are observed. These clusters are well
satisfying the mutipath model in [9].

B. NLoS Error Modelling

Mathematical evaluation and modelling of NLoS error are
essential for future channel models used for positioning appli-
cations. The measured single link NLoS error εNLoS(p, α)
overall measurements has a mean value of 1.9 meter and
a standard deviation of 1.8 meter. To find its PDF, several
distributions, like the Weibul distribution, exponential distri-
bution, log normal distribution, and Gaussian distribution, have
been tested for fitting. The exponential distribution is found to

Fig. 4. PDF estimate of the PDP P (j) after normalized to GLoS
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Fig. 5. Histogram of NLoS error εNLoS(p, α) with an exponential fit
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Fig. 6. Probability plot for NLoS error εNLoS(p, α) with exponential fit

promise the best fit to the calculated NLoS errors. Fig. 5 shows
the histogram of the NLoS error together with its exponential
distribution fit. In a more accurate and intuitive way, Fig. 6
shows the probability plot of exponential fit to the NLoS
error. To further confirm the exponential fit, the data samples
are evaluated by Kolmogorov-Smirnov hypothesis test. The
calculated p-value of 0.92 promises a good fit to the null
hypothesis of an exponential distribution.

Except for the free space loss, reflection, penetration or
diffraction physically degrade the signal strength depending
on the materials’ electrical properties. For large NLoS errors,
the first detectable path suffers from larger attenuations due to
the longer propagation distance, reflections and/or diffractions.
It is clearly shown in Fig. 7 which depicts the FDP versus the
corresponding NLoS error εNLoS(p, α). Similar as Section III
the power is normalized to the free space loss of the GLoS.
As soon as the NLoS error becomes larger, the corresponding
path suffers from additional attenuation.

C. NLoS Error Correlations

As an essential factor for link level channel models, the
inter-link correlation coefficient between εNLoS(p, α) for dif-
ferent links is essential. As described in Section III, three sce-
narios are considered in this paper: S1 where the transmitters
are at the same horizontal place but different heights ((d1, d2),
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Fig. 7. The first detectable path power normalized to free space loss versus
the NLoS error εNLoS(p, α)

and (d3, d4)), S2 where the transmitter are at the same height
but different horizontal places ((d1, d3), and (d2, d4)), and
S3 where the transmitter are at difference heights and different
horizontal places ((d1, d4), and (d2, d3)). According to Eq. (1)
the correlation coefficients ρε(α1, α2) are listed in Table II. It
can be seen that the NLoS errors for different links have a
certain correlation if the transmitters were located in the same
horizontal place, but different height. For transmitters located
at different horizontal places, the NLoS errors of different
links have no correlation. In other words, the NLoS errors are
uncorrelated to each other. In cellular networks, the links to
BSs from different cells would therefore result in uncorrelated
NLoS errors. For channel modelling, this implies the fact
that NLoS errors for different links can be generated as an
independent and identically-distributed process.

TABLE II
INTER-LINK CORRELATION COEFFICIENTS OF εNLoS(p, α)

S1 ρε(d1, d2) ρε(d3, d4)
0.4769 0.6874

S2 ρε(d1, d3) ρε(d2, d4)
-0.192 0.108

S3 ρε(d1, d4) ρε(d2, d3)
-0.112 -0.072

To evaluate the coherence characteristics of the NLoS error,
the spatial correlation of εNLoS(p, α) is investigated which is
calculated as the covariance function. Since the measurement
was performed in a discrete point manner, the measurement
positions along two lines in the area A (see Fig. 1) are taken
into account. Fig. 8 and Fig. 9 show the spatial correlation
results for different transmitter positions. Considering a level
of 0.5, distances are ranging between 0.5 m and 3 m.

V. CONCLUSIONS

In this paper, based on a broadband wireless channel mea-
surement campaign, we studied propagation characteristic for
geolocation channel modelling in terms of the NLoS error.
An exponential decaying PDP is observed in the measure-
ment data. Based on probability density function tests, an
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Fig. 9. Spatial correlation of NLoS error εNLoS(p, α) for line-2 along the
area A

exponential distribution model for NLoS errors is presented
in this paper. Additionally, the inter-link correlation of NLoS
errors are investigated. The results imply that NLoS errors
for different links are independent and identically-distributed
processes. However, the NLoS errors from those BSs, which
are located at same horizontal places but different heights,
show a certain correlation to each other.
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Abstract—A general path loss model for in-room radio chan-
nels is proposed. The model is based on experimental obser-
vations of the behavior of the delay-power spectrum in closed
rooms. In such a room, the early part of the spectrum observed
at different positions typically consists of a dominant compo-
nent (peak) that vanishes as the transmitter-receiver distance
increases; the late part decays versus distance according to the
same exponential law in delay regardless of the distance. These
observations motivate the proposed model of the delay-power
spectrum with an early dominant component and a reverberant
component. The dominant component is modeled as a Dirac
delta function weighted with a factor decaying according to an
inverse distance power law (d−n). The reverberant component is
an exponentially decaying function versus delay with distance-
dependent onset. Its power decays exponentially with distance.
The proposed model allows for the prediction of path loss,
mean delay, and rms delay spread versus distance. We use
measurements to validate the model. We observe good agreement
of the model prediction for mean delay and rms delay spread.

I. INTRODUCTION

The field of indoor radio-localization has recently attracted
significant interest. One approach for solving the localization
problem is to rely on the measured power of the received signal
[1] and to use a path loss model to infer the corresponding
length of a radio link. Knowledge of the received power is
often used for localization in already deployed systems (e.g.
WiFi) where received signal strength is readily available or
with cheap low power devices in sensor networks. Even when
deploying localization techniques with higher accuracy, path
loss models are used to predict the signal-to-noise ratio and
the probability of connectivity [2], which are both important
criteria for system analysis.

Indoor path loss models, relating the received power to the
transmitter-receiver distance, have been a valuable instrument
to the communication engineer [3]. A vast amount of such
models have been proposed for various propagation scenarios
and environments and have been validated for diverse purposes
in wireless communications. The primary concern so far has
been to predict the power loss with respect to distance. These
models consider indoor scenarios in which path loss is caused
by transmission across multiple walls and floors, and multi-
path fading [4], [5]. Thus, they cover a whole building. Only
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Fig. 1. Typical behavior of the bandlimited delay-power spectrum experimen-
tally observed in an in-room environment at three different transmitter-receiver
distances (schematically presented by the grey box).

few models are available in the literature that characterize
propagation in a single room [6].

In this contribution we propose an in-room path loss model
based on experimental observations of the behavior of the
delay-power spectrum [7], [8] and on analogies to models used
in room acoustics [9] and electromagnetic fields in cavities
[10]. In our model the delay-power spectrum consists of a
dominant and a reverberant component. The model allows
for the prediction of the path loss, the mean delay and the
rms delay spread versus transmitter-receiver distance. The
proposed model is validated with a new set of measurement
data.

II. DELAY POWER SPECTRUM MODEL

We consider an in-room scenario as illustrated in Fig. 1. The
delay-power spectrum is observed at different transmitter and
receiver locations. A system bandwidth high enough to observe
frequency fading (delay dispersion), but to low to separate
single propagation paths in the environment is considered.
The regarded carrier frequencies are high enough, such that
the smallest dimension of the room is large compared to the
wavelength λ. The delay-power spectrum is the expectation of
the squared magnitude of the impulse response h (τ, d):

G(τ, d) = E[|h (τ, d)|2]. (1)

Here τ is the delay and d is the transmitter-receiver distance.
In [8] it is observed that the delay-power spectrum in such



TABLE I
PARAMETERS OF THE PROPOSED MODEL.

Parameter Meaning

G0 Path gain at reference distance d0.
d0 Reference distance, typically 1 m.
n Path gain decay exponent of the dominant component.
q Ratio Grev(d0)/Gdom(d0).
T Reverberation time of the reverberant component.

an in-room scenario exhibits the typical behavior depicted
in Fig. 1. The tail of the delay-power spectrum exhibits the
same constant exponential decay regardless of the transmitter-
receiver distance. The early part is strong at short distance and
gradually vanishes as this distance increases.

Based on these observations, we model the delay-power
spectrum as a dominant component plus a reverberant compo-
nent:

G(τ, d) = E[|hdom (τ, d)|2] + E[|hrev (τ, d)|2]
= Gdom(τ, d) + Grev(τ, d). (2)

Subscript dom indicates the dominant component and sub-
script rev denotes the reverberant component. The domi-
nant component represents the early part of the delay-power
spectrum consisting of a directly propagating component and
possible first-order reflections from the floor, ceiling and walls.
The reverberant component represents the multitude of higher
order reflections in the room which yield the diffuse tail of
the delay-power spectrum.

We model the delay-power spectrum of the dominant com-
ponent as

Gdom(τ, d) = G0

(
d0
d

)n
δ
(
τ − d

c

)
, (3)

where n is the power decay exponent, δ( · ) is the Dirac delta
function, c the speed of light, and G0 > 0 is the gain at the
reference distance d0.

We model the reverberant delay-power spectrum as an
exponentially decaying function with onset determined by the
transmitter-receiver distance:

Grev(τ, d) =

{
G0,rev e−

τ
T , τ > d

c

0, otherwise
(4)

where G0,rev is the reference gain of the reverberant compo-
nent. In analogy to acoustics [8], [9] we call T the reverber-
ation time.

We remark that the models in [7] and [8] are based on
the room acoustic theory. They both neglect the transmitter-
receiver distance. In [7] the delay-power spectrum of the
reverberant component, i.e. corresponding to (4), is non-
exponential. It has maximum power one and constant onset
at delay zero. In [8] the model only accounts for the expo-
nentially decaying delay-power spectrum of the reverberant
component in (2).

III. PREDICTIONS OF THE DELAY POWER SPECTRUM

MODEL

Based on the model (2) we now derive expressions for the
path gain, mean delay, and rms delay spread as a function of
the transmitter-receiver distance.

A. Path gain

The path gain at distance d is

G(d) =
∫

G(τ, d)dτ

= G0

(
d0
d

)n

︸ ︷︷ ︸
Gdom(d)

+G0,rev T e
−d
c T

︸ ︷︷ ︸
Grev(d)

. (5)

The component Gdom(d) decays with d−n, while Grev(d)
decays exponentially. Denoting by q the ratio of reverberant
to dominant gain at reference distance d0:

q =
Grev(d0)
Gdom(d0)

=
G0,rev

G0
T e

−d0
c T , (6)

the path gain can be recast as

G(d) = G0

(
d0
d

)n
+ G0 q e

d0−d
c T . (7)

Examples of G(d) are graphed in Fig. 2a. At small distances
Gdom(d) dominates and the path gain decays as d−n. Beyond a
certain distance, the contribution of the reverberant component
Grev(d) in G(d) leads to a deviation from Gdom(d). This
effect occurs over a certain distance interval, denoted as the
reverberation region Drev = {d : Grev(d) ≥ Gdom(d)}.
At larger distances Grev(d) vanishes and G(d) approaches
Gdom(d) again.

We remark that the path loss is defined as the inverse of
the path gain: L(d) = G(d)−1. For notational convenience we
consider only path gain in the sequel.

B. Mean Delay and Root Mean Squared Delay Spread

The mean delay at distance d as is derived from (2) as

μτ (d) =
1

G(d)

∫
τ G(τ, d)dτ (8)

= d
c + T

1

1 +
(

d0
d

)n 1
q e

d−d0
c T

. (9)

In (9) the first term is the delay of a directly propagating
component and the second term results from the reverberant
component. Fig. 2b depicts the mean delay versus distance
with the settings specified in the legend of the figures. The
mean delay increases with distance. For distances in the rever-
beration region, the curves approximately follow the straight
line d

c + T . It can be seen from (9) that limd→0 μτ (d) = 0
and that μτ (d) has the asymptote d

c for d →∞. Note that the
range of distance considered in the plot of Fig. 2b is to small
to observe the convergence of μτ (d) towards its asymptote.

Similarly, (2) enables computation of the rms delay spread:
στ (d):

σ2
τ (d) =

1
G(d)

∫
τ2 G(τ, d)dτ − (μτ (d))2 . (10)

Insertion of (7) and (9) into (10) leads to

σ2
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(11)
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Fig. 2. Path gain (a), mean delay (b) and rms delay spread (c) versus distance predicted by the proposed model for d0 = 1 m.

Fig. 2c depicts the rms delay spread versus distance. Notice,
στ (d) in (11) has the following limits

lim
d→0

στ (d) = lim
d→∞

στ (d) = 0. (12)

Here again, the range of the distance considered in Fig. 2c
is to small to observe the convergence of στ (d) towards 0
as d → ∞. For distances in the reverberation region στ (d)
approaches the reverberation time T . Indeed it can be shown
that

T = sup
d,n,q

{στ (d) : d ≥ 0, n ≥ 0, q ≥ 0}, (13)

i.e. the rms delay spread is upper bounded by T for any
distance.

IV. MEASUREMENT DATA

We validate the proposed model by means of measurement
data from a campaign conducted at DLR in Oberpfaffenhofen,
Germany. The investigated room is sketched in Fig. 3. A
panograph of it is depicted in Fig. 4. The environment was
static and no one was in the room while the measurements
were taken.

The dimensions of the room are 5.1×5.25×2.78 m3. The
three inner walls are made of plaster boards. As visible in the
panograph, the outer “wall” consists mainly of four windows
(W1–W4) and two pillars made of concrete. The frames of
the windows are metallic and the glass is metal coated. The
height of the transmit and receive antenna was 1.26 m and
1.1 m, respectively.

The measurement data were collected using the Rusk-DLR
channel sounder [11] operating at 5.2 GHz. The settings of
the sounder are summarized in Table II. The transmit antenna
[12] was omni-directional with 3 dBi gain. A uniform circular
array of eight monopoles with diameter 75.18 mm was used at
the receiver. The transmitter and receiver were synchronized
to a common clock via cables throughout the measurements.

The equipment used a multiplexer to sequentially sound
the eight channels between the port of the transmit antenna
and the ports of the eight elements of the receive array.
One measurement cycle, in which all eight channel frequency
responses were measured, was completed in 204.8 µs. The
sounder was operating in “burst” mode. In each burst 20
consecutive measurement cycles were performed. One burst
lasted 20 · 204.8 µs = 4096 µs. Between each burst, the
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Fig. 3. Schematic of the investigated room.
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Fig. 4. Panograph (spherical panoramic photo) of the investigated room seen
from Rp1 using an equi-rectangular projection.

sounder paused for data storage; the burst repetition time was
131.072 ms.

The receive antenna array was placed at five fixed locations
labeled as Rp1 to Rp5 respectively in Fig. 3. The transmit
antenna was mounted on a model train which moved on
two tracks labeled as T1 and T2. Frequency responses were
measured for each receiver position while the transmitter
moved along the two tracks with a constant speed of ap-
proximately 0.05 m/s. During one measurement burst the
transmitter moved 204.8 µm = 0.0035λ. Over this distance
the channel response can be considered constant. Between two
consecutive bursts, the transmitter moved 6.55 mm ≈ λ/8.8.

The positions Rp1-Rp5 and the trajectory along the track
were measured with a tachymeter. The odometer of the model
train was connected to the channel sounder to record the
measurement locations.

V. RESULTS

We compute the received power at all receiver and transmit-
ter positions. Notice that one measurement burst corresponds
uniquely to one pair of transmitter and receiver positions. Let
us consider one specific burst. The frequency responses of each
of the eight channels measured during the burst are averaged.



TABLE II
SETTINGS OF THE CHANNEL SOUNDER.

Parameter Value

Carrier frequency fc 5.2 GHz
Bandwidth B 120 MHz
Number of sub-carriers Nc 1536
Carrier separation Δf 78.125 kHz
Signal duration 12.8 µs
Cycle duration 204.8 µs
Cycles per burst 20
Burst duration 4096 µs
Burst repetition time 131.072 ms
Transmit power 0 dBm

TABLE III
PARAMETER ESTIMATES FOR THE STANDARD AND PROPOSED MODELS.

Model Ĝ0 n̂ q̂ T̂ [ns]

Standard 1.11 · 10−5 1.14 — —
Proposed T̂ = 18.73 ns 6.42 · 10−6 2.26 0.56 18.73

Proposed T̂ = 16.02 ns 5.79 · 10−6 2.39 0.71 16.02

The averaged responses are then squared and integrated to
obtain the power values of the eight channels. Averaging these
values yields the power measured in the burst. Fig. 5 reports
the scatter plot of power values computed for all bursts versus
transmitter-receiver distance. Since the noise-floor is below
−70 dBm in all measurements, we disregard the noise.

We compute the mean delay estimate μ̂τ and rms delay
spread estimates σ̂τ for each burst. We multiply the averaged
frequency responses of the eight channels obtained for a given
burst (see above) with a Hann window. Taking the inverse
Fourier transform of the filtered frequency responses yields
estimates of the impulse responses of the eight channels.
The mean delay and delay spread estimates for the burst are
obtained by inserting the squared average of the eight im-
pulse responses in (8) and (10), respectively. These estimates
computed for all bursts are reported versus transmitter-receiver
distance in Fig. 6. These values are in accordance with values
reported in [5] for office environments.

We use the model assumption (4) on the behavior of the
tail of the delay-power spectrum versus τ to estimate T
from experimental delay-power spectra. More specifically, an
estimate of T is obtained from a linear least squares estimate
of the slope of the late part of the experimental log power
spectra. As can be seen in Fig. 7 the underlying model
assumption (4) holds true for the experimental delay-power
spectra. Considering the restriction of the log spectra obtained
for any transmitter and receiver positions in the delay range
40 ns ≤ τ ≤ 150 ns, the linear least squares estimator yields
T̂ = 18.73 ns.

We test the behavior of the mean delay (μτ → d
c + T ,

see Fig. 2b) and the rms delay spread (στ ≈ T , see Fig. 2c)
predicted by the model when d ranges in the reverberation
region. The scatter plot of estimates of the rms delay spread
in Fig. 6 shows a constant behavior for distances larger than
3 m. Therefore, we estimate T by taking the average of these
estimates for d > 3m. This yields T̂ = 16.02ns. Similarly we
estimate T from the scatter plot of estimates of the mean delay
versus distance. For each estimate, say μ̂τ (d), the difference
μ̂τ (d) − d

c is computed for d > 3 m. The estimate T̂ is the
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average of these differences. Doing so yields T̂ = 13.07 ns.
The theoretical results for μτ and στ in Fig. 2b and Fig. 2c,
respectively, show that for some model parameter settings, the
bound στ ≈ T and specifically the asymptote of the mean
delay μτ → d

c +T are not reached. Thus we proceed with the
analysis by considering the two close estimates T̂ = 18.73 ns
and T̂ = 16.02 ns.

We estimate the parameters of both the standard path
loss model (G(d) = G0

(
d0
d

)n
) and the proposed model

from the estimated power values reported in Fig. 5. More
specifically, the estimates are computed by considering the
log-power domain. For the standard path loss model a linear
least squares estimation is performed. We use the Matlab curve
fitting toolbox [13], which provides a non-linear least squares
estimator, to fit the proposed path gain model (7). This toolbox
returns estimates of the parameters G0, n and q with the
estimate T̂ provided as input.

The estimates of the parameters of the models are reported
in Table III and the path gains versus distance computed from
the models with these parameter settings are shown in Fig. 5.
The path gain predictions of the standard and proposed models
(for the two sets of parameter estimates) almost overlap.
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VI. DISCUSSION

The estimate n̂ = 1.14 of the path loss exponent of the
standard path gain model is in the range of published values
obtained from in-room measurement data [6] and references
therein. Traditionally, exponent values lower than 2 are at-
tributed to wave guiding effects. However, the dimensions of
the room do not advocate this interpretation. A reverberation
phenomenon in the room provides a more plausible explana-
tion to the observed low exponent.

The estimates of the mean delay μ̂τ (d) and rms delay
spread σ̂τ (d) shown in Fig. 6 are in accordance with the
model prediction obtained with T̂ = 16.02 ns. The predicted
transition of the mean delay and the rms delay spread from
zero at d = 0 to respectively d

c + T and T for d ranging in
the reverberation region is well observed.

The parameter estimates of the model computed from the
two estimated reverberation times slightly differ (see Ta-
ble III). However, the path gains predicted by the two model
estimates fall on top of each other as shown in Fig. 7.

The estimate T̂ = 18.73ns obtained directly from the delay-
power spectra deviates by only 14.5 % from T̂ = 16.02 ns
obtained from (13). These observations support the hypoth-
esis that the reverberant component impacts significantly the
received power, mean delay, and rms delay spread.

The estimated values for q, which characterize the ratio be-
tween the power of the dominant and reverberant components,
is 0.56 and 0.71 respectively. Thus, the reverberant component
plays an important role in the description of the path gain. The
estimates n̂ = 2.26 and 2.39 of the path gain decay exponent
of the dominant component are close to the exponent of free-
space propagation.

The estimated reverberation times are close to typical rms
delay spreads observed in office environments [5]. This sug-
gests that these rms delay spreads might have been measured
in the reverberation region and are thus dominated by the
reverberation term. This interpretation is further supported by
the fact that the reverberation region starts as close a distance
as 1.2 m in the considered scenario.

VII. CONCLUSIONS

A model of the delay-power spectrum of an in-room rever-
berant channel has been proposed. The model includes a dom-

inant and a reverberant component. The dominant component
follows an inverse distance power law (d−n). The reverberant
component decays exponentially versus delay and exhibits a
distance dependent onset. As a result, its power decays ex-
ponentially with distance. The proposed model allows for the
prediction of path gain, mean delay and rms delay spread. The
model was validated using measurement data and compared to
the standard path loss model. The predictions of mean delay
and rms delay spread agree well with the estimates obtained
from the measurement data. In the investigated environment
the ratio of the gain of the reverberant component to the gain
of the dominant component is 0.56. Hence, the reverberant
component is prominent in this environment. The estimated
path gain exponent of the dominant component in the proposed
model is close to the free-space path gain exponent. Due to
its inability to separate the dominant component from the
reverberant component the standard path gain model yields a
path gain exponent close to unity. This model merely provides
a fit of the path gain that blends the contributions from the
dominant and reverberant component.
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Modeling of Reverberant Radio Channels Using
Propagation Graphs

Troels Pedersen, Gerhard Steinböck, and Bernard H. Fleury

Abstract— It has been observed from measurements that the
spatially averaged channel impulse response for in-room sce-
narios exhibits an avalanche effect: The earliest signal compo-
nents, which appear well separated in time, are followed by an
avalanche of components arriving with increasing rate of occur-
rence, gradually merging into a diffuse tail with exponentially
decaying power. A new approach is followed to design a model
of the channel response which includes recursive scattering and
thereby inherently accounts for the exponential power decay and
the avalanche effect. The environment is modeled in terms of
a propagation graph in which vertices represent transmitters,
receivers, and scatterers, while edges represent propagation con-
ditions between vertices. A closed form expression of the channel
transfer function valid for any number of interactions is derived.
We discuss an example where interactions are assumed to cause
no time dispersion and thus delay occurs only due to propagation
in between scatterers. For this example, a stochastic modelof the
propagation graph is stated based on which realizations of the
channel transfer function and impulse response are generated
for numerical evaluation. The results reveal that the graph’s
recursive structure yields both an exponential power decayand
an avalanche effect in the generated impulse responses.

I. I NTRODUCTION

Engineering of modern indoor radio systems for communi-
cations and geolocation relies heavily on models for the time
dispersion of the wideband and ultrawideband radio channels
[3]–[5]. From measurement data, as exemplified in Fig. 1, it
appears that the spatially averaged channel impulse response
(or delay-power spectrum) for in-room scenarios exhibits an
avalanche effect: The earliest signal components, which appear
well separated in time, are followed by an avalanche of com-
ponents arriving with increasing rate of occurrence, gradually
merging into a diffuse tail with exponentially decaying power.
A similar avalanche effect is well-known in room acoustics
[7] where it is attributed to recursive scattering of sound
waves. Indoor radio propagation environments are particularly
exposed to recursive scattering as electromagnetic waves may
be reflected back and forth in between walls, floor, and ceiling.
Thus, in the present contribution we hypothesize that recursive
scattering is the cause of both the observed avalanche effect
and the exponential power decay.

Recursive scattering phenomena have been previously con-
sidered in a number of radio channel models. The works
[8]–[11] use the analogy to acoustical reverberation theory
to predict the exponential decay. As a matter of fact, there
exists a well-developed theory of electromagnetic fields in
cavities [12], [13], but in this field too the avalanche effect has
received little attention. Recursive scattering between particles

Department of Electronic Systems, Aalborg University, DK-9220 Aalborg
East, Denmark. Email: {troels,gs,fleury}@es.aau.dk. The present contributions
builds on and expands on the work presented in [1], [2].
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Fig. 1. Spatially averaged delay-power spectrum measured within an office
of 5×5×2.6m3with a signal bandwidth of 10GHz. The spectrum is the rms
value of impulse responses obtained at 30×30 receiver positions on a square
horizontal grid with steps of 1cm. The delay scale includes some cable delays;
the transmitter-receiver distance is approximately 3.8m. The vertical axis is
with reference to 10GHz, shifting the curve by –100dB. Reprinted from [6]
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in a homogeneous medium is a well-known phenomenon
studied by Foldy [14] and Lax [15], [16]. The solution, given
by the so-called Foldy-Lax equation [17], has been applied
in the context of time-reversal imaging by Shi and Nehorai
[18]. The solution is, however, intractable for heterogeneous
indoor environments. In [19] the radio propagation mechanism
is modeled as a “stream of photons” performing continuous
random walks in a homogeneously cluttered environment. The
model predicts a delay power spectrum consisting of a single
directly propagating “coherent component” followed by an
incoherent tail. Time-dependent radiosity [20]–[23] accounting
for delay dispersion has been recently applied to design a
model for the received instantaneous power [24]. Thereby,
the exponential power decay and the avalanche effect can be
predicted.

Simulation studies of communication and localization sys-
tems commonly rely on synthetic realizations of the channel
impulse response. A multitude of impulse response models
exist [4], [5], [25], but only few account for the avalanche
effect. Ray tracing methods can also be used, but to achieve
tractable computational complexity, the maximum number of
interactions considered is limited [26]. Thus the avalanche
effect is discounted. The models [27]–[29] treat early com-
ponents via a geometric model whereas the diffuse tail is gen-
erated via another stochastic process; the connection between
the propagation environment and the diffuse tail is, however,
not considered.

In this contribution, we model the channel response fol-
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lowing a new approach which includes recursive scattering.
The obtained model thus accounts inherently for the expo-
nential power decay and the avalanche effect. We represent
the environment in terms of a propagation graph, where
vertices represent transmitters, receivers, and scatterers, while
edges represent propagation conditions between vertices.This
modelling approach allows for a closed form expression of the
channel transfer function valid for any number of interactions.
We assess the validity of the hypothesis by considering an
example of a propagation graph suitable for Monte Carlo
simulations. Scatterer interactions are assumed to cause no
time dispersion and thus delay dispersion occurs only due to
propagation in between vertices. We state a stochastic model
of the propagation graph allowing for numerical evaluation
of realizations of the channel impulse response and transfer
function. The results reveal that the graph’s recursive structure
yields both an exponential power decay and an avalanche
effect in the generated impulse responses.

II. REPRESENTINGRADIO CHANNELS AS GRAPHS

In a typical propagation scenario, the electromagnetic signal
emitted by a transmitter propagates through the environment
interacting with a number of objects called scatterers. The
receiver, which is usually placed away from the transmitter,
senses the electromagnetic signal. If a line of sight exists
between the transmitter and the receiver, direct propagation
occurs. Also, the signal may arrive at the receiver indirectly
via one or more scatterers. In the following we represent
recursive and non-recursive propagation mechanisms using
graphs. First we state the necessary definitions of directed
graphs and associated terms.

A. Directed Graphs

Following [30], we define a directed graphG as a pair
(V , E) of disjoint sets of vertices and edges. The two mappings
init : E → V andterm : E → V assign to edgee ∈ E an initial
vertex init(e) and a terminal vertexterm(e) respectively. We
also say that the edgee is ingoing to vertexterm(e) and
outgoing from vertexinit(e). Edgese and e′ are parallel if
init(e) = init(e′) and term(e) = term(e′). When a graph
has no parallel edges, an edgee can be identified by the
vertex pair(init(e), term(e)) ∈ V2. With a slight abuse of
notation we write in this casee = (init(e), term(e)). With
this identification,E ⊆ V2. This notation also allows for the
graph to have anti-parallel edges, i.e. if the edgee = (v, v′) is
in the graph, the edgee′ = (v′, v) can also exist. A walk (of
length K) in G is a sequence(v1, v2, . . . , vK+1) of vertices
in V such that(vk, vk+1) ∈ E , k = 1, . . .K. A walk which
fulfills v1 = vK is called a cycle. A loop is an edgee = (v, v),
i.e., init(e) = term(e). Thus, by definition, a loop is a walk
of length1.

B. Propagation Graphs

We define a propagation graph as a directed graphG =
(V , E) where vertices inV represent transmitters, receivers
and scatterers. Edges inE represent the propagation conditions
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Fig. 2. A propagation graphG = (V , E) with four transmit verticesVt =
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and six scatterer verticesVs = {S1, S2, S3,S4,S5,S6, }. The edge setE
is the union of the setsEd = {(Tx1,Rx1), (Tx2,Rx1), (Tx3,Rx1)},
Et = {(Tx2, S3), (Tx3,S3), (Tx4,S6), (Tx4, S1)}, Er = {(S1, Rx3),
(S3,Rx3), (S6,Rx2)}, and Es = {(S1,S2), (S2,S1), (S3,S1), (S2, S4),
(S4,S3), (S4,S5)}.

between the vertices. Thus, the vertex set of a propagation
graph is a union of three disjoint sets:V = Vt ∪ Vs ∪ Vr,
whereVt = {Tx1, . . . , TxMt} is the set of transmit vertices,
Vr = {Rx1, . . . , RxMr} is the set of receive vertices, and
Vs = {S1, . . . , SN} is the set of scatterer vertices. The
transmit vertices are considered as sources with outgoing
edges only. Likewise, the receivers are considered as sinks
with only incoming edges. Thus for a propagation graph,
the edge set can be partitioned into four disjunct sets as
E = Ed ∪ Et ∪ Er ∪ Es, whereEd = E ∩ (Vt × Vr) is the set
of direct edges,Et = E ∩ (Vt × Vs) is the set of transmitter-
scatterer edges,Er = E ∩ (Vs × Vr) is the set of scatterer-
receiver edges, andEs = E ∩ (Vs × Vs) is the set of inter-
scatterer edges. Fig. 2 shows an example propagation graph.

The signals propagate in the graph in the following way.
Each transmitter emits a signal that propagates via its outgoing
edges. The signal observed by a receiver vertex is the sum of
the signals arriving via the ingoing edges. A scatterer sums
up the signals on its ingoing edges and re-emits the sum-
signal on the outgoing edges. As a signal propagates along
an edge, or interacts with a scatterer, it undergoes delay and
dispersion in time. The specific delay dispersion endured by
a signal depends on the particular propagation mechanism
along its edges. Assuming these mechanisms to be linear and
time-invariant, this effect can be represented as a convolution
with an impulse response or, in the Fourier domain, as a
multiplication with a transfer function. Let us for a moment
consider the edgee = (vn, vn′) in E . A filtered version
of the signal Cn(f) emitted by vertexvn is observed at
vertexvn′ . The signal observed at vertexvn′ via edgee reads
Ae(f)Cn(f), whereAe(f) is the transfer function of edge
e. In other words, the transfer functionAe(f) describes the
interaction the initial vertexvn and the propagation fromvn

to vn′ .

C. Weighted Adjacency Matrix of a Propagation Graph

Propagation along the edges is described via a transfer
matrix A(f) which can be viewed as an adjacency ma-
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X(f) Y(f)

Z(f)

Vt Vr

Vs

D(f)

T
(f) R

(f
)

B(f)

Fig. 3. Vector signal flow graph representation of a propagation graph.
Vertices represent vertex sets of the propagation graph with associated vector
signals. Signal transmission between the sets are represented by the edges and
associated transfer matrices.

trix where the entries are weigthed by the corresponding
edge transfer functions. Thus, the weighted adjacency matrix
A(f) ∈ C(Mt+Mr+N)×(Mt+Mr+N) of the propagation graph
G is defined as

[A(f)]nn′ =

{
A(vn,vn′)(f) if (vn, vn′) ∈ E ,

0 otherwise,
(1)

i.e., entryn, n′ of A(f) is the transfer function from vertex
vn to vertexvn′ of G. Selecting the indexing of the vertices
according to

vn ∈





Vt, n = 1, . . . , Mt

Vr, n = Mt + 1, . . . , Mt + Mr

Vs, n = Mt + Mr + 1, . . . , Mt + Mr + N,

(2)

the weighted adjacency matrix takes the form

A(f) =




0 0 0
D(f) 0 R(f)
T(f) 0 B(f)


 , (3)

where0 denotes the all-zero matrix of the appropriate dimen-
sion and the transfer matrices

D(f) ∈ CMr×Mt connectingVt to Vr, (4)

R(f) ∈ CMr×N connectingVs to Vr, (5)

T(f) ∈ CN×Mt connectingVt to Vs, and (6)

B(f) ∈ CN×N interconnectingVs. (7)

The special structure ofA(f) reflects the structure of the
propagation graph. The firstMt rows are zero because, we
do not accept incoming edges into the transmitters. Likewise
columnsMt + 1, . . . , Mt + Mr are all zero since the receiver
vertices have no outgoing edges.

The input signal vectorX(f) is defined as

X(f) = [X1(f), . . . , XMt(f)]T, (8)

whereXm(f) is the signal emitted by transmitterTxm, and
[ · ]T denotes the transposition operator. The output signal
vectorY(f) is defined as

Y(f) = [Y1(f), . . . , YMr(f)]T, (9)

whereYm(f) is the Fourier transform of the signal observed
by receiverRxm. Similar, to X(f) and Y(f) we let Z(f)
denote the output signal vector of the scatterers:

Z(f) = [Z1(f), . . . , ZN(f)]T, (10)

where thenth entry denotes the Fourier transform of the
signal observed at scatterer vertexSn. By the definition of the
propagation graph, there are no other signal sources than the
vertices inVt. Assuming linear and time-invariant propagation
mechanisms, the input-output relation in the Fourier domain
reads

Y(f) = H(f)X(f), (11)

whereH(f) is a Mr ×Mt transfer matrix.
The structure of the propagation graph unfolds in the vector

signal flow graph depicted in Fig. 3. The vertices of the vector
signal flow graph represent the three setsVt, Vr, and Vs

with the associated signalsX(f),Y(f), andZ(f). The edge
transfer matrices of the vector signal flow graph are the sub-
matrices ofA(f) defined in (4)–(7).

III. T RANSFERMATRIX OF A PROPAGATION GRAPH

In the following we derive the input-output relation of a
propagation graph. In Subsection III-A we first discuss how the
response of a graph is composed of signal contributions prop-
agating via different propagation paths. This representation
is, albeit intuitive, impractical for computation of the transfer
function for graphs with cycles. Thus in Subsections III-B and
III-C we give the transfer function and partial transfer matrices
of a general propagation graph in closed form. Subsection III-
D treats the graphical interpretation of reciprocal channels.
The section concludes with a discussion of related results in
the literature.

A. Propagation Paths and Walks

The concept of a propagation path is a corner stone in mod-
eling multipath propagation. In the literature, this concept is
most often defined in terms of the resulting signal components
arriving at the receiver. A shortcoming of this definition isthat
it is often hard to relate to the propagation environment. The
graph terminology offers a convenient alternative. We define a
propagation path as a walkℓ = (v(0), v(1), . . . , v(K+1)) in G
such that the initial vertexv(0) is a transmitter and the terminal
vertexv(K+1) is a receiver, i.e.,v(0) ∈ Vt and v(K+1) ∈ Vr.
A signal that propagates along propagation pathℓ traverses
K + 1 (not necessarily different) edges and undergoesK
interactions. We refer to such a propagation path as aK-
bounce path. A zero-bounce propagation pathℓ = (v, v′) is
called a line-of-sight path, or direct path, from transmitter v
to receiverv′. As an example, referring to the graph depicted
in Fig. 2, it is straightforward to verify thatℓ1 = (Tx1, Rx1)
is a direct path,ℓ2 = (Tx4, S6, Rx2) is a single-bounce path,
andℓ3 = (Tx4, S1, S2, S1, Rx3) is a 3-bounce path.

We denote byLvv′ the set of propagation paths inG
from transmitterv to receiverv′. The signal received atv′

originating from transmitterv is the superposition of signal
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components each propagating via a propagation path inLvv′ .
Correspondingly, entry(v, v′) of H(f) reads

Hvv′(f) =
∑

ℓ∈Lvv′

Hℓ(f), (12)

whereHℓ(f) is the transfer function of propagation pathℓ.
The number of terms in (12) equals the cardinality ofLvv′ ,

which may, depending on the structure of the graph, be finite
or infinite. As an example, the number of propagation paths
is infinite if v andv′ are connected via a directed cycle inG.
The graph in Fig. 2 contains two directed cycles which are
connected to both transmitters and receivers.

In the case of an infinite number of propagation paths,
computing Hvv′ (f) directly from (12) is infeasible. This
problem is commonly circumvented by truncating the sum in
(12) to approximateHvv′ (f) as a finite sum. This approach,
however, calls for a method for determining how many terms
of the sum should be included in order to achieve reasonable
approximation.

In the frequently used “K-bounce channel models”, propa-
gation paths with more thanK interactions are ignored. This
approach is motivated by the rationale that at each interaction,
the signal is attenuated, and thus terms in (12) resulting from
propagation paths with a large number of bounces are weak
and can be left out as they do not affect the sum much.
This reasoning, however, holds true only if thesum of the
components with more thanK interactions is insignificant,
which may or may not be the case. From this consideration,
it is clear that the truncation criterion is non-trivial as it
essentially necessitates computation of the whole sum before
deciding whether a term can be ignored or not.

B. Transfer Matrix for Recursive and Non-Recursive Propa-
gation Graphs

As an alternative to the approximation methods applied to
the sum (12) we now give an exact closed-form expression for
the transfer functionH(f). Provided that the spectral radius
of B(f) is less than unity, the expression holds true for any
number of terms in the sum (12) and thus holds regardless
whether the number of propagation paths is finite or infinite.

Theorem 1:If the spectral radius ofB(f) is less than unity,
then the transfer matrix of a propagation graph reads

H(f) = D(f) + R(f)[I−B(f)]−1T(f). (13)
According to Theorem 1 the transfer matrixH(f) consists

of the two following terms:D(f) representing direct propa-
gation between the transmitters and receivers andR(f)[I −
B(f)]−1T(f) describing indirect propagation. The condition
that the spectral radius ofB(f) be less than unity implies that
for any vector norm‖ · ‖, ‖Z(f)‖ > ‖B(f)Z(f)‖ for non-
zero ‖Z(f)‖, cf. [31]. For the Euclidean norm in particular
this condition implies the sensible physical requirement that
the signal power decreases for each interaction.

Proof: Let Hk(f) denote the transfer matrix for allk-
bounce propagation paths, thenH(f) can be decomposed as

H(f) =
∞∑

k=0

Hk(f), (14)

where

Hk(f) =

{
D(f), k = 0
R(f)Bk−1(f)T(f), k > 0.

(15)

Insertion of (15) into (14) yields

H(f) = D(f) + R(f)

( ∞∑

k=1

Bk−1(f)

)
T(f). (16)

The infinite sum in (16) is a Neumann series converging to
[I−B(f)]−1 if the spectral radius ofB(f)) is less than unity.
Inserting this in (16) completes the proof.

The decomposition introduced in (14) makes the effect of
the recursive scattering directly visible. The received signal
vector is a sum of infinitely many components resulting from
any number of interactions. The structure of the propagation
mechanism is further exposed by (16) where the emitted vector
signal is re-scattered successively in the propagation environ-
ment leading to the observed Neumann series. This allows
for modeling of channels with infinite impulse responses by
expression (13). It is possible to arrive at (13) in an alternative,
but less explicit, manner:

Proof: It is readily observed from the vector signal flow
graph in Fig. 3 thatZ(f) can be expressed as

Z(f) = T(f)X(f) + B(f)Z(f). (17)

Since the spectral radius ofB(f) is less than unity we obtain
for Z(f) the solution

Z(f) = [I−B(f)]−1T(f)X(f). (18)

Furthermore, according to Fig. 3 the received signal is of the
form

Y(f) = D(f)X(f) + R(f)Z(f). (19)

Insertion of (18) in this expression yields (13).
We remark that the above two proofs allow for propagation

paths with any number of bounces. This is highly preferable,as
the derived expression (13) is not impaired by approximation
errors due to the truncation of the series into a finite number
of terms as it occurs when usingK-bounce models.

A significant virtue of the expression (13) is that prop-
agation effects related to the transmitters and receivers are
accounted for in the matricesD(f), T(f) andR(f), but do
not affectB(f). Consequently, the matrix[I−B(f)]−1 only
needs to be computed once even though the configuration of
transmitters and receivers changes. This is especially advanta-
geous for simulation studies of e.g. spatial correlation asthis
leads to a significant reduction in computational complexity.

C. Partial Transfer Matrices

The closed form expression (13) for the transfer matrix of
a propagation graph accounts for propagation via an arbitrary
number of scatterer interactions. For some applications itis,
however, relevant to study only some part of the response
according to a particular number of interactions. One case is
where a propagation graph is used to generate only a part of
the response and other techniques are used for the remaining
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parts. Another case is when one must assess the approximation
error when the infinite series is truncated. In the following
we derive a few useful expressions for such partial transfer
matrices.

We define theK : L partial transfer matrix as

HK:L(f) =
L∑

k=K

Hk(f), 0 ≤ K ≤ L, (20)

i.e., we include only contributions from propagation pathswith
at leastK, but no more thanL bounces. It is straightforward
to evaluate (20) forK = 0, andL = 0, 1, 2:

H0:0(f) = D(f) (21)

H0:1(f) = D(f) + R(f)T(f) (22)

H0:2(f) = D(f) + R(f)T(f) + R(f)B(f)T(f). (23)

This expansion of the truncated series is quite intuitive but
the obtained expressions are increasingly complex for large
L. Theorem 2 gives a closed form expression of the partial
transfer functionHK,L(f) for arbitraryK andL:

Theorem 2:The partial responseHK:L(f) is given by

HK:L(f) =





D(f) + R(f)[I−BL(f)][I−B(f)]−1T(f),
K = 0, L ≥ 0

R(f)[BK−1(f)−BL(f)][I−B(f)]−1T(f),
0 < K ≤ L,

provided that the spectral radius ofB(f) is less than unity.
Proof: The partial transfer function for0 ≤ K ≤ L reads

HK:L(f) =
∞∑

k=K

Hk(f)−
∞∑

k′=L+1

Hk′(f)

= HK:∞(f)−HL+1:∞(f). (24)

For K = 0 we haveH0:∞(f) = H(f) by definition; for
K ≥ 1 we have

HK:∞(f) = R(f)
∞∑

k=K−1

Bk(f)T(f)

= R(f)BK−1(f)
∞∑

k=0

Bk(f)T(f)

= R(f)BK−1(f)[I−B(f)]−1T(f). (25)

Inserting (25) into (24) completes the proof.
Theorem 2 enables closed-form computation ofHK:L(f)

for any K ≥ L. We have already listed a few partial transfer
matrices in (21), (22), and (23). By definition the partial
responseHK:K(f) equalsHK(f) for which an expression
is provided in (15). The transfer function of theK-bounce
approximation is equal toH0:K(f). Another special case
worth mentioning isHK+1:∞(f) = H(f)−H0:K(f) available
from (25), which gives the error due to theK-bounce approx-
imation. Thus the validity of theK-bounce approximation
can be assessed by evaluating some appropriate norm of
HK+1:∞(f).

D. Reciprocity and Propagation Graphs

In most cases, the radio channel is considered reciprocal. As
we shall see shortly, the graph terminology accommodates an
interesting interpretation of the concept of reciprocity.For any
propagation graph we can define the reverse graph in which
the roles of transmitter and receiver vertices are swapped.
The principle of reciprocity states that the transfer matrix
of the reverse channel is equal to the transposed transfer
matrix of the forward channel, i.e., a forward channel with
transfer matrixH(f) has a reverse channel with transfer matrix
H̃(f) = HT(f). In the sequel we mark all entities related to
the reverse channel with a tilde.

We seek the relation between the forward graphG = (V , E)
and its reversẽG = (Ṽ , Ẽ) under the assumption of reciprocity.
More specifically, we are interested in the relation between
the weighted adjacency matrixA(f) of G and the weighted
adjacency matrixÃ(f) of G̃. We shall prove the following
theorem:

Theorem 3:A propagation graphG = (V , E) with weighted
adjacency matrixA(f) has a reverse graph̃G = (V , Ẽ) with
edge setẼ = {(v, v′) : (v′, v) ∈ E} and weighted adjacency
matrix Ã(f) = AT(f).

In words Theorem 3 identifies the graph of the reverse
channel as the graph obtained by reversing the direction of
all edges ofG while maintaining the edge transfer functions.

Proof: We start by noting that the set of transmitters,
receivers, and scatterers is maintained for the reverse channel,
thus the vertex set of̃G is V . Interchanging the roles of
transmitters and receivers means that we admit no edges of
the reverse graph̃G going into vertices inVr and no outgoing
edges from vertices inVt. Consequently, assuming the vertex
indexing as in (2), the weighted adjacency matrix ofG̃ is of
the form

Ã(f) =



0 D̃(f) T̃(f)
0 0 0
0 R̃(f) B̃(f)


 (26)

where the transfer matrices̃D(f), R̃(f), T̃(f), andB̃(f) are
defined according to Fig. 4. The input-output relation of the
reverse channel reads̃X(f) = H̃(f)Ỹ(f) whereỸ(f) is the
signal emitted by the vertices inVr and X̃(f) is the signal
received by the vertices inVt. By inspection of Fig. 4 and
by arguments similar to those presented in Section III-B we
achieve for the reverse channel

H̃(f) = D̃(f) + R̃(f)
[
I− B̃(f)

]−1

T̃(f). (27)

The reciprocity conditioñH(f) = HT(f) yields the alterna-
tive expression:

H̃(f) = DT(f) + TT(f)
[
I−BT(f)

]−1
RT(f). (28)

Comparing (27) and (28) it is clear that̃D(f) =
DT(f), B̃(f) = BT(f), T̃(f) = RT(f), and R̃(f) =
TT(f). After inserting these four identities into (26) we obtain
Ã(f) = AT(f). The relation betweeñE andE now follows
from the definition of the weighted adjacency matrix.
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X̃(f) Ỹ(f)

Z̃(f)

Vt Vr

Vs

D̃(f)

T̃
(f) R̃

(f
)

B̃(f)

Fig. 4. Vector signal flow graph representation of a reverse propagation graph.
Compared to the forward graph depicted in Fig. 3 all edges arereversed.

E. Related Recursive Scattering Models

We provide a few examples of recursive models to assist
the reader in recognizing models which can be represented by
the graphical structure.

In [18] Shi and Nehorai consider a model for recursive scat-
tering between point scatterers in a homogeneous background.
The propagation between any point in space is described by
a scalar Green’s function. The transfer function obtained by
applying the Foldy-Lax equation can also be obtained from
a propagation graph by defining the sub-matrices ofA(f) as
follows. The model does not include a directed term and thus
D(f) = 0. The entry of[T(f)]m1n is the Green’s function
from transmit vertexm1 to scatterern times the scattering
coefficient of scatterern′. Similarly, the entry[R(f)]nm2 is
the Green’s function from the position of scatterern to receiver
m2. The entry[B(f)]nn′ , n 6= n′ is the Green’s function from
the position of scatterern to the position of scatterern′ times
the scattering coefficient of scatterern. Since a point scatterer
does not scatter back on itself, the diagonal entries ofB(f)
are all zero. As can be observed from the above definitions,
the assumption of homogeneous background medium leads to
the special case withEd = ∅, Et = Vt×Vs, Er = Vs×Vr, and
Et = V2

s .
Another modeling method that can be conveniently de-

scribed using propagation graphs is (time-dependent) radiosity
[24]. The time-dependent radiosity algorithms published in
[20]–[24] are formulated in the delay domain. It appears,
however, that no closed-form solution feasible for numerical
evaluation is available in the literature. Thus [20]–[24] resort to
iterative solutions which can be achieved after discretizing the
inter-patch propagation delays. The time-dependent radiosity
problem can be expressed in the Fourier domain in terms of
a propagation graph where each patch is represented by a
scatterer, and the entries ofA(f) are defined according to the
Fourier transform of the delay-dependent form factor. Using
this formulation, a closed form expression of the channel
transfer function appears immediately by Theorem 1 with no
need for quantization of propagation delays.

F. Revisiting Existing Stochastic Radio Channel Models

It is interesting to revisit existing radio channel models by
means of the just defined framework of propagation graphs.

Such an effort may reveal some structural differences between
models, which are not apparent merely from the mathematical
formulation. It is, however, a fact that the interpretationof
a transfer functions as a propagation graph is not unique—
different propagation graphs may yield the same transfer func-
tion. Therefore different equivalent graphical interpretations
may be given for a particular model.

We first consider the structure of the seminal model [32]
by Turin et al. This model can be expressed in the frequency
domain as

H(f) =
∞∑

ℓ=0

αℓ exp(−j2πfτℓ), (29)

whereαℓ is the complex gain and andτℓ denotes the delay of
the ℓth component. We assume thatτ0 = 0. Thus{(τℓ, αℓ) :
ℓ = 1, 2, . . .} is a marked Poisson point process of delays
on [0,∞) with complex marks{αℓ : ℓ = 1, 2, . . .}. The
reader is referred to [32] for further details. We represent
this model as the graph depicted in 5(a). We construct the
graph by identifying each term in (29) as corresponding to a
specific propagation path from the transmitter to the receiver. It
appears that the componentsαℓ exp(−j2πfτℓ), ℓ = 0, 1, 2, . . .
are statistically independent. Therefore, we assign to each
component a separate path which results in a graph with
infinitely many single-bounce paths. This definition allowsfor
direct interpretation of both the forward and reverse graphs.
Since no scatterer-to-scatterer edges exist,Es = ∅ andB(f) =
0. By blocking the propagation from theTx to scattererℓ, the
edge(Tx, ℓ) is removed from the graph while the remaining
paths are unaffected. The same happens if edge(ℓ, Rx) is
removed.

The celebrated model by Saleh and Valenzuela [33] is
structured as a second-order Turin model:

H(f) =
∞∑

ℓ=0

αℓ exp(−j2πfτℓ)
∞∑

ℓ′=0

αℓℓ′ exp(−j2πfτℓℓ′).

(30)
Assuming for simplicity thatτ0 = 0 and τ0ℓ′ = 0, ℓ′ =
0, 1, . . . , the processes{(αℓ, τℓ) : ℓ = 1, 2, . . .} and
{(αℓℓ′ , τℓℓ′) : ℓ = 1, 2, . . .}, ℓ′ = 0, 1, . . . , are independent
marked Poisson processes on[0,∞) with complex marks.
Details on these stochastic processes can be found in [33].
Again, considering that statistically independent terms in (30)
stem from distinct propagation paths, we can construct the
graph depicted in Fig. 5(b). The structure of the graph appears
to be asymmetric in the sense that the transmitter is connected
to a set of super-ordinate or “cluster” scatterers whereas the
receiver is connected to the set of sub-ordinate scatterers. As a
result, removing one of the outgoing edges from the transmitter
makes a whole cluster disappear; but by removing one of the
receiver’s ingoing edges only a single component vanishes in
the double sum (30). This leads to an interesting effect in
the reverse graph: After reversion of all edges the asymmetry
is changed as the transmitting vertex is connected to the
subordinate scatterers while the receiving vertex is connected
to the cluster scatterers. This problem can be circumventedby
making the graph symmetric as shown in Fig. 5(c), which in
turn necessitates additional scatterers and edges.
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Fig. 5. Propagation graph representations of: a) a realization of the model
by Turin et al. [32]; b) a realization of the Saleh-Valenzuela model [33]; c)
a symmetric version of the model in panel b).

IV. EXAMPLE : STOCHASTIC MODEL FOR IN-ROOM

CHANNEL

The concept of propagation graph introduced until now
can be used for describing a broad range of channel models.
In this section we apply these general results to a specific
example scenario where scatterer interactions are considered
to be non-dispersive in delay. We specify a method feasible
for generating such a graph in Monte Carlo simulations. The
model discussed in this example is a variant of the model
proposed in [1], [2].

A. Weighted Adjacency Matrix

We define the weighted adjacency matrix according to a
geometric model of the environment. We consider a scenario
with a single transmitter, a single receiver, andN scatterers,
i.e., the vertex set readsV = Vt∪Vr∪Vs with Vt = {Tx},Vr =
{Rx}, and Vs = {S1, . . . , SN}. To each vertexv ∈ V we
assign a displacement vectorrv ∈ R3 with respect to a
coordinate system with arbitrary origin. To edgee = (v, v′)
we associate the Euclidean distancede = ‖rv − rv′‖, the gain
ge, the phaseφe, and the propagation delayτe = de/c where
c is the speed of light. The edge transfer functions are defined
as

Ae(f) =

{
ge(f) exp(jφe − j2πτef); e ∈ E
0; e 6∈ E .

(31)

The edge gains{ge(f)} are defined according to

g2
e(f) =





1
(4πfτe)2

; e ∈ Ed

1
4πfµ(Et)

· τ−2
e

S(Et)
; e ∈ Et

1
4πfµ(Er)

· τ−2
e

S(Er)
; e ∈ Er

g2

odi(e)2 ; e ∈ Es

(32)

where odi(e) denotes the number of edges frominit(e) to
other scatterers and for anyE ′ ⊆ E

µ(E ′) =
1
|E ′|

∑

e∈E′
τe and S(E ′) =

∑

e∈E′
τ−2
e , (33)

with | · | denoting cardinality. The weight of the direct edge
is selected according to the Friis equation [34] assuming
isotropic antennas at both ends. The weights of edges inEt

andEr also account for the antenna characteristics. They are
computed at the average distance to avoid signal amplification
when scatterers are close to a transmitter or receiver, namely
when the far-field assumption is invalid.

B. Stochastic Generation of Propagation Graphs

We now define a stochastic model of the sets{rv}, E , and
{φe} as well as a procedure to compute the corresponding
transfer function and impulse response. The vertex positions
are assumed to reside in a regionR ⊂ R3 corresponding to the
region of interest. The transmitter and receiver positionsare
assumed to be fixed, while the positions of theN scatterers
{rv : v ∈ Vs} is a Bernoulli point process onR, i.e., the
numberN of scatterers is assumed constant, and the scatterer
positions are drawn independently from a uniform distribution
onR.

Edges are drawn independently such that a vertex paire ∈
V2 is in the edge setE with probability Pe = Pr[e ∈ E ]
defined as

Pe =





Pdir, e = (Tx, Rx)
0, term(e) = Tx
0, init(e) = Rx
0, init(e) = term(e)
Pvis otherwise

. (34)

The first case of (34) controls the occurrence of a direct
component. IfPdir is zero, the direct termD(f) is zero with
probability one. IfPdir is unity, the direct termD(f) is non-
zero with probability one. The second and third cases of (34)
exclude ingoing edges to the transmitter and outgoing edges
from the receiver. Thus the generated graphs will have the
structure defined in Section II-B. The fourth case of (34)
excludes the occurrence of loops in the graphs. This is sensible
as a specular scatterer cannot scatter a signal back to itself.
A consequence of this choice is that any realization of the
graph is loopless and thereforeA(f) has zeros along its main
diagonal. The last case of (34) assigns a constant probability
Pvis of the occurrence of edges fromVt to Vs, from Vs to Vs

and fromVs to Vr.
Finally, the phases{φe : e ∈ E} are drawn independently

from a uniform distribution on the interval[0; 2π).
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1) Draw rv, v ∈ Vs uniformly onR
2) GenerateE according to (34)

3) Draw independent phases{φe : e ∈ E} uniformly on
[0, 2π)

4) ComputeA(f) within the frequency bandwidth using (31)

5) IF spectral radius ofB(f) is larger than unity for some
frequency within the bandwidth GOTO step 1

6) EstimateHK:L(f) andhK:L(τ ) as described in Appendix

Fig. 6. Algorithm for generating full or partial transfer functions and impulse
responses for a preselected bandwidth.

TABLE I

PARAMETER SETTINGS FOR NUMERICAL EXAMPLES

Parameters Symbol Values

Room size R [0, 5]× [0, 5]× [0, 2.6] m3

Transmitter position rTx [1.78, 1.0, 1.5]T m
Receiver position rRx [4.18, 4.0, 1.5]T m
Number of scatterers N 10
Tail slope ρ –0.4dB/ns
Prob. of visibility Pvis 0.8
Prob. of direct propagation Pdir 1
Speed of light c 3 · 108 m/s
Transmit signal X[γ] Unit power Hann pulse
Number of frequency samples Γ 8192

Given the parametersR, rTx, rRx, N , Pdir, Pvis and g,
realizations of the (partial) transfer functionHK:L(f) and
corresponding (partial) impulse responsehK:L(τ) can now be
generated for a preselected frequency range[fmin, fmax], using
the algorithm stated in Fig. 6.

C. Numerical Experiments

The effect of the recursive scattering phenomenon can
now be illustrated by numerical experiments. The parameter
settings given in Table I are selected to mimic the experimental
setup of [28] used to acquire the measurements reported
in Fig. 1. The room size and positions of the transmitter
and receiver are chosen as in [28]. We consider the case
where direct propagation occurs and setPdir to unity. The
probability of visibility Pvis and the number of scatterers
N are chosen to mimic the observed avalanche effect. The
value of g is set to match the tail slopeρ ≈ −0.4 dB/ns
of the delay power spectrum depicted in Fig. 1. The value
of g can be related to the slopeρ of the log delay power
spectrum via the approximationρ ≈ 20 log10(g)/µ(Es). This
approximation arises by considering the power balance for a
scatterer assuming the signal components arriving at a scatterer
to be statistically independent, neglecting the probability of
scatterers with outdegree zero, and approximating edge delays
of edges inEs by the averageµ(Es) defined in (33).

Fig. 7 shows the amplitude of a single realization of the
transfer function. Overall, the squared amplitude of the transfer
function decays asf−2 due to the definition of{ge(f)}.
Furthermore, the transfer function exhibits fast fading over the
considered frequency band. The lower panel of Fig. 7 reports
the corresponding impulse response for two different signal
bandwidths. Both impulse responses exhibit an avalanche

[fmin, fmax] = [2, 3] [GHz]

|h
(τ

)|
[d

B
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|H
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)|
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B
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Fig. 7. Channel response for a specific realization of the propagation
graph. Top: Transfer function in dB(20 log10 |H(f)|) in the frequency range
[1, 11] GHz. Bottom: Impulse responses in dB(20 log10 |h(τ)|) computed
for two frequency ranges.

effect as well as a diffuse tail of which the power decays
exponentially with ρ ≈ −0.4 dB/ns. As anticipated, the
transition to the diffuse tail is most visible in the response
obtained with the larger bandwidth.

The build up of the impulse response can be examined via
the partial impulse responses given in Fig. 8. Inspection ofthe
partial responses whenK = L reveals that the early part of
the tail is due to signal components with a lowK while the
late part is dominated by higher-order signal components. It
can also be noticed that asK increases, the delay at which
the maximum of theK-bounce partial response occurs and
the spread of this response are increasing.

Fig. 9 shows two types of delay-power spectra. The upper
panel shows the ensemble average of squared amplitudes of
1000 independently drawn propagation graphs for the two
signal bandwidths also considered in Fig. 7. Both spectra
exhibit the same trend: A clearly visible peak due to the direct
signal is followed by a tail with exponential power decay.
As expected, the first peak is wider for the case with 1GHz
bandwidth than for the case with 10GHz bandwidth. The
tails differ by approximately 7 dB. This shift arises due to
the f−2 trend of the transfer function resulting in a higher
received power for the lower frequencies considered in the
1GHz bandwidth case.

The bottom panel shows spatially averaged delay-power
spectra obtained for one particular realization of the propaga-
tion graph. The simulated spatial averaged delay-power spectra
exhibit the avalanche effect similar to the one observed in
Fig. 1. Indeed, for the 10GHz bandwidth case the power level
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Fig. 8. Partial responses obtained for one graph realization for the bandwidth[2, 3]GHz. The K : L settings are indicated in each miniature. The full
response is indicated in gray for comparison. Top row: responses ofK-bounce approximations. Right-most column: error terms resulting from(K−1)-bounce
approximations. Main diagonal(K = L): K-bounce contributions.
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Fig. 9. Simulated delay power spectra. Top panel: Ensemble average over
1000 Monte Carlo runs. Bottom panel: Spatial average of a single graph
realization assuming the same grid as the one used in Fig. 1, i.e., 900 receiver
positions on a 30×30 horizontal square grid with1 × 1 cm2 mesh centered
at positionrRx given in Table I.

of diffuse tails of the delay power spectra agrees remarkably
well with measurement in Fig. 1. The modest deviation of
about 3dB can be attributed to antenna losses in the mea-
surement.

V. CONCLUSIONS

The outset for this work was the observation that in-room
channels available in the literature are observed to exhibit an
avalanche effect where separate signal components appear at
increasing rate and gradually merge into a diffuse tail with
and exponential decay of power. We hypothesized that this
avalanche effect is due to recursive scattering. We propose
a model which includes recursive scattering by modeling the
propagation environment as a graph where vertices represent
transmitters, receivers, and scatterers and edges represent prop-
agation conditions between vertices. This general structure
allows for the propagation graph’s full and partial transfer
matrix to be derived in closed form. This expression can,
by specifying the edge transfer functions, be directly usedto
perform numerical simulations.

We consider as an example a graph-based stochastic model
where all interactions are non-dispersive in delay in a scenario
similar to an experimentally investigated scenario where the
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avalanche effect has been observed. The responses generated
from the model also exhibit an avalanche effect. Thus we
conclude: 1) the diffuse tail can be generated even when
scatterer interactions are non-dispersive in delay and therefore
the diffuse tail can be attributed to recursive scattering,and 2)
the exponential decay of the delay-power spectra is caused by
recursive scattering. As illustrated by the simulation results
the proposed model, in contrast to existing models which
treats dominant and diffuse components separately, provides
a unified account for the avalanche effect.

APPENDIX

The transfer functionH(f) and impulse responseh(τ) can
be estimated as follows:

1) ComputeΓ samples of the transfer matrix within the
bandwidth[fmin, fmax]

H[γ] = H(fmin + γ∆f), γ = 0, 1, . . .Γ− 1, (35)

where∆f = (fmax − fmin)/(Γ− 1) and H( · ) is ob-
tained using Theorem 1.

2) Estimate the received signaly(τ) via the inverse discrete
Fourier transform:

y(i∆τ ) = ∆f

Γ−1∑

γ=0

H[γ]X[γ] exp(j2πiγ/Γ),

i = 0, . . .Γ− 1,

whereX[γ] = X(fmin + γ∆f), γ = 0, 1, . . .Γ − 1 and
∆τ = 1/(fmax − fmin).

The impulse response can be estimated by lettingX[f ] be a
window function of unit power

∫ fmax

fmin

|X(f)|2df ≈
Γ∑

γ=0

|X[γ]]|2∆f = 1. (36)

whereX[γ] = X(fmin + γ∆f). The window function must
be chosen such that its inverse Fourier transform exhibits a
narrow main-lobe and sufficiently low side-lobes;y(τ) is then
regarded as a good approximation of the impulse response
of the channel and by abuse of notation denoted byh(τ).
Samples of the partial transfer matrix are obtained by replacing
H( · ) by HK:L( · ) in (35). The corresponding received partial
impulse response is denoted byhK:L(τ).

REFERENCES

[1] T. Pedersen and B. Fleury, “Radio channel modelling using stochastic
propagation graphs,” inProc. IEEE International Conf. on Communica-
tions ICC ’07, June 2007, pp. 2733–2738.

[2] T. Pedersen and B. H. Fleury, “A realistic radio channel model based on
stochastic propagation graphs,” inProceedings 5th MATHMOD Vienna –
5th Vienna Symposium on Mathematical Modelling, vol. 1,2, Feb. 2006,
p. 324, ISBN 3–901608–30–3.

[3] H. Hashemi, “Simulation of the urban radio propagation,” IEEE Trans.
Veh. Technol., vol. 28, pp. 213–225, Aug. 1979.

[4] D. Molkdar, “Review on radio propagation into and withinbuildings,”
Microwaves, Antennas and Propagation, IEE Proceedings H, vol. 138,
no. 1, pp. 61–73, 1991.

[5] N. Alsindi, B. Alavi, and K. Pahlavan, “Measurement and modeling of
ultrawideband TOA-based ranging in indoor multipath environments,”
IEEE Trans. Veh. Technol., vol. 58, no. 3, pp. 1046–1058, Mar. 2009.

[6] J. Kunisch and J. Pamp, “Measurement results and modeling aspects
for the UWB radio channel,” inIEEE Conf. on Ultra Wideband Systems
and Technologies, 2002. Digest of Papers, May 2002, pp. 19–24.

[7] H. Kuttruff, Room Acoustics. London: Taylor & Francis, 2000.
[8] C. Holloway, M. Cotton, and P. McKenna, “A model for predicting the

power delay profile characteristics inside a room,”IEEE Trans. Veh.
Technol., vol. 48, no. 4, pp. 1110–1120, July 1999.

[9] R. Rudd and S. Saunders, “Statistical modelling of the indoor radio
channel – an acoustic analogy,” inProc. Twelfth International Conf. on
Antennas and Propagation (Conf. Publ. No. 491), vol. 1, 31 March–3
April 2003, pp. 220–224.

[10] R. F. Rudd, “The prediction of indoor radio channel impulse response,”
in The Second European Conf. on Antennas and Propagation, 2007.
EuCAP 2007., Nov. 2007, pp. 1–4.

[11] J. B. Andersen, J. Ø. Nielsen, G. F. Pedersen, G. Bauch, and
J. M. Herdin, “Room electromagnetics,”IEEE Antennas Propag. Mag.,
vol. 49, no. 2, pp. 27–33, Apr. 2007.

[12] T. H. Lehman, “A statistical theory of electromagneticfields in complex
cavities,” Otto von Guericke University of Magdeburg, Tech. Rep., May
1993.

[13] D. A. Hill, Electromagnetic Fields in Cavities: Deterministic and
Statistical Theories. Wiley-IEEE Press, 2009.

[14] L. L. Foldy, “The multiple scattering of waves — I general theory of
isotropic scattering by randomly distributed scatterers,” Physical Review,
vol. 67, pp. 107–119, Feb. 1945.

[15] M. Lax, “Multiple scattering of waves,”Reviews of Modern Physics,
vol. 23, no. 4, pp. 287–310, Oct. 1951.

[16] ——, “Multiple scattering of waves. II. the effective field in dense
systems,”Physical Review, vol. 85, no. 4, pp. 621–629, Feb. 1952.

[17] M. I. Mishchenko, L. D. Travis, and A. A. Lacis,Multiple Scattering
of Light by Particles: Radiative Transfer and Coherent Backscattering.
Cambridge University Press, May 2006.

[18] G. Shi and A. Nehorai, “Cramér-Rao bound analysis on multiple
scattering in multistatic point-scatterer estimation,”IEEE Trans. Signal
Process., vol. 55, no. 6, pp. 2840–2850, June 2007.

[19] M. Franceschetti, “Stochastic rays pulse propagation,” IEEE Trans.
Antennas Propag., vol. 52, no. 10, pp. 2742–2752, Oct. 2004.

[20] E.-M. Nosal, M. Hodgson, and I. Ashdown, “Investigation of the validity
of radiosity for sound-field prediction in cubic rooms,”The Journal of
the Acoustical Society of America, vol. 116, no. 6, pp. 3505–3514,
2004. [Online]. Available: http://link.aip.org/link/?JAS/116/3505/1

[21] M. Hodgson and E.-M. Nosal, “Experimental evaluation of radiosity
for room sound-field prediction,”The Journal of the Acoustical Society
of America, vol. 120, no. 2, pp. 808–819, 2006. [Online]. Available:
http://link.aip.org/link/?JAS/120/808/1

[22] S. Siltanen, T. Lokki, S. Kiminki, and L. Savioja, “The room
acoustic rendering equation,”The Journal of the Acoustical Society of
America, vol. 122, no. 3, pp. 1624–1635, 2007. [Online]. Available:
http://link.aip.org/link/?JAS/122/1624/1

[23] R. T. Muehleisen and C. W. Beamer, IV, “Steady state acoustic radiosity
for the prediction of sound pressure levels in enclosures with diffuse
surfaces,”Noise Control Engineering Journal, vol. 57, no. 3, pp. 244–
262, 2009. [Online]. Available: http://link.aip.org/link/?NCE/57/244/1

[24] G. Rougeron, F. G. nd Yannik Gabillet, and K. Boutouch, “Simulation
of the indoor propgation of a 60 GHz electromagnetic wave with a
time-dependent radiosity algorithm,”Computers & Graphics, vol. 26,
pp. 125–141, 2002.

[25] H. Hashemi, “The indoor radio propagation channel,”Proc. IEEE,
vol. 81, no. 7, pp. 943–968, July 1993.

[26] O. Fernandez, L. Valle, M. Domingo, and R. P. Torres, “Flexible rays,”
IEEE Veh. Technol. Mag., vol. 3, pp. 18–27, Mar. 2008.

[27] J. Kunisch and J. Pamp, “UWB radio channel modeling considerations,”
in Proc. International Conference on Electromagnetics in Advanced
Applications 2003, Turin, Sept. 2003.

[28] ——, “An ultra-wideband space-variant multipath indoor radio channel
model,” in IEEE Conf. on Ultra Wideband Systems and Technologies,
2003, Nov. 2003, pp. 290–294.

[29] J. Kunisch, J. amd Pamp, “Locally coherent ultra-wideband radio
channel model for sensor networks in industrial environment,” in Proc.
IEEE 2006 International Conf. on Ultra-Wideband, Sept. 2006, pp. 363–
368.

[30] R. Diestel,Graph Theory. Springer-Verlag, 2000.
[31] R. A. Horn and C. A. Johnson,Matrix Analysis. Cambridge University

Press, 1985.
[32] G. Turin, F. Clapp, T. Johnston, S. Fine, and D. Lavry, “Astatistical

model of urban multipath propagation channel,”IEEE Trans. Veh.
Technol., vol. 21, pp. 1–9, Feb. 1972.



11

[33] A. A. M. Saleh and R. A. Valenzuela, “A statistical modelfor indoor
multipath propagation channel,”IEEE J. Sel. Areas Commun., vol. SAC-
5, no. 2, pp. 128–137, Feb. 1987.

[34] H. T. Friis, “A note on a simple transmission formula,”Proceedings of
the I.R.E., vol. 34, no. 5, pp. 254–256, may 1946.



ICT–248894 WHERE2 D1.3

A.6 Sparse Variational Bayesian SAGE Algorithm with Application to the Estima-
tion of Multipath Wireless Channels

Dmitriy Shutin and Bernard H. Fleury. Sparse variational Bayesian SAGE algorithm with
application to the estimation of multipath wireless channels. to appear in IEEE Transactions
on Signal Processing, 2011.

c©2011 IEEE. Personal use of this material is permitted. However, permission to reprint/
republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

90 / 123



Sparse Variational Bayesian SAGE Algorithm

with Application to the Estimation of

Multipath Wireless Channels

Dmitriy Shutin and Bernard H. Fleury

Abstract

In this work we develop a sparse Variational Bayesian (VB) extension of the SAGE algorithm

for the high resolution estimation of the parameters of relevant multipath components in the response of

frequency and spatially selective wireless channels. The application context of the algorithm considered in

this contribution is parameter estimation from channel sounding measurements for radio channel modeling

purpose. The new sparse VB-SAGE algorithm extends the classical SAGE algorithm in several respects:

by monotonically minimizing the variational free energy, i) distributions of the multipath component

parameters can be obtained instead of parameter point estimates and ii) the estimation of the number

of relevant multipath components and the estimation of the component parameters are implemented

jointly. The sparsity is achieved by defining parametric sparsity priors for the weights of the multipath

components. We revisit the Gaussian sparsity priors withinthe sparse VB-SAGE framework and extend

the results by considering Laplace priors. The structure ofthe VB-SAGE algorithm allows for an

analytical stability analysis of the update expression forthe sparsity parameters. This analysis leads

to fast, computationally simple, yet powerful, adaptive selection criteria applied to the single multipath

component considered at each iteration. The selection criteria are adjusted on a per-component-SNR

basis to better account for model mismatches, e.g. diffuse scattering, calibration and discretization errors,

allowing for a robust extraction of the relevant multipath components. The performance of the sparse

VB-SAGE algorithm and its advantages over conventional channel estimation methods are demonstrated

in synthetic single-input–multiple-output time-invariant channels. The algorithm is also applied to real

measurement data in a multiple-input–multiple-output time-invariant context.
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I. I NTRODUCTION

In modeling real world data, proper model selection plays a pivotal role. When applying high

resolution algorithms to the estimation of wireless multipath channels from multidimensional channel

measurements, an accurate determination of the number of dominant multipath components is required

in order to reproduce the channel behavior in a realistic manner – an essential driving mechanisms for

the design and development of next generation multiple-input–multiple-output (MIMO)-capable wireless

communication and localization systems. Consider for simplicity a single-input–multiple-output (SIMO)

wireless channel1, e.g., an uplink channel with a base station equipped with multiple antennas. The

received signal vectorz(t) made of the signals at the outputs of these antennas can be represented as

a superposition of an unknown numberL of multipath componentswls(t, θl) contaminated by additive

noiseξ(t) [1]:

z(t) =
L∑

l=1

wls(t, θl) + ξ(t). (1)

In (1) wl is the multipath gain factor ands(t, θl) is the received version of the transmitted signals(t)

modified according to the dispersion parameter vectorθl of the lth propagation path.2 Classical parameter

estimation [2]–[5] deals with the estimation of the multipath components, i.e.wl and θl, while the

estimation of the numberL of these components is the object of model order selection [6]–[9]. Despite its

obvious simplicity, the model (1) provides an over-simplified description of reality: it adequately accounts

for specular-like propagation paths only. Components originating from diffuse scattering inevitably present

in measured channel responses are not rendered appropriately in (1). More specifically, a very high number

of specular componentsL is needed to represent such diffuse components. Further effects leading to

model mismatch are errors in calibration of the response of the transceiver or measurement equipment

that cause inaccuracies in the description ofs(t, θl), as well as the discrete-time approximations to (1),

typically arising when model parameters are estimated using numerical optimization techniques. All these

effects have a significant impact on the performance of both parameter estimation algorithms and model

1The proposed method can be easily extended to MIMO time-variant channels with stationary propagation constellation;
with minor modifications the polarization aspects can be included as well. This extension merely leads to a more complicated
signal model, including for instance more dispersion parameters, without adding any new aspect relevant to the understanding
of the new proposed concepts and methods. The scenario consideringa SIMO channel seems a sensible compromise between
complexity of the model underlying the theoretical analyses and an interesting application in which the proposed method can
be demonstrated. However, in the experimental section we consider the estimation of a MIMO channel.

2We mean as dispersion parameters of the waves propagating from the transmitter side to the receiver site, and by generalization
of the multipath components in the resulting channel response, their relative delay, direction of departure, direction of arrival,
and Doppler frequency. The parameterθl includes all these parameters or a subset of them depending on the transmitter and
receiver configurations.
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order selection schemes derived based on (1). Experimental evidence shows that if the model order

selection scheme is not carefully designed, the above modelmismatch will lead to an overestimation

of the number of relevant multipath components. Fictive components without any physical meaning

will be introduced and their parameters estimated. Hence, radio channel estimators combining model

order (component number) selection and component parameter estimation that are robust against model

mismatch are needed here.

Bayesian methods are promising candidates for such robust methods. For a fixed model order

L the classical Maximum Likelihood (ML) approach to the estimation of dispersion parameters

Θ = {θ1, . . . , θL} and gainsw = {w1, . . . , wL} in (1) involves maximization of the multidimensional

parameter likelihoodp(z|Θ, w) given the measurementz. Although efficient algorithms exist to solve this

optimization problem [2], [3], [10], standard ML algorithms require a fixed number of componentsL, and

typically do not employ any likelihood penalization to compensate for overfitting. Bayesian techniques

can compensate for this through the use of a priorp(Θ, w), which effectively imposes constrains on

the parameters of the model. The model fit (i.e., the value of thelikelihood) can be traded for the

model complexity (i.e., number of components in (1)) through the likelihood penalization. Likelihood

penalization lies in the heart of celebrated information-theoretic model order selection criteria, such as

Minimum Description Length (MDL), Bayesian Information Criterion (BIC), as well as their variants

[7]–[9].

Imposing constraints on the model parameters is a key to sparse signal modeling [11]–[16]. In Bayesian

sparsity approach [11], [13], [14], [17] the gainsw are constrained using a parametric priorp(w|α) =
∏

l p(wl|αl), wherep(wl|αl) is a circularly symmetric probability density function (pdf), with the prior

parameterαl – also called sparsity parameter – being inversely proportional to the width of the pdf.

Such form of the prior allows controlling the contribution ofeach basis associated with the weightwl

through the sparsity parameterαl: large value ofαl will drive the corresponding weightwl to zero, thus

realizing a sparse estimator. The sparsity parameters are found as the maximizers ofp(z|α), which is

also known as a type-II likelihood function or model evidence [13], [14], [18] and the corresponding

estimation approach is known as the Evidence Procedure (EP) [14].

In general, evaluatingp(z|α) is difficult. This, however, can be done analytically [11], [13], [14],

[17] in the special case of linear models3 p(z|Θ, w) with both model distribution and sparsity prior

being Gaussian (which corresponds to theℓ2-type of parameter constraints) . Moreover, it can be shown

3In our context this corresponds to assumingθl as known or fixed, and thuss(θl) ≡ s̃.
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[19] that in the Gaussian prior case the maximum of the model evidencep(z|α) coincides with the

Bayesian interpretation of the Normalized Maximum Likelihood model order selection [7] and reduces

to the Bayesian Information Criterion (BIC) as the number ofmeasurement samples grows. Therefore,

the EP allows for joint model order selection and parameter estimation. This approach was investigated

in [19] within the context of wireless channels; however, work [19] considers the estimation of multipath

gains only, thus bypassing the estimation of the dispersionparameters in (1). Recently, a large number of

investigations has been dedicated to study ofℓ1-type of parameter penalties [12], [15], [16], [20], [21],

which, in the Bayesian Sparsity framework, is equivalent to choosingp(wl|αl) as a Laplace prior for

l = 1, . . . , L. Compared to Gaussian priors, such form of constraints leads to sparser models [13], [15],

[22], [23]. Theℓ1-type of penalties significantly limits the analytical studyof the algorithm; nonetheless

for models linear in their parameters a number of efficient numerical techniques has been developed [15],

[24], [25]. Extensions of the Bayesian sparsity methods withLaplace priors applied to the estimation of

multipath wireless channels have not been explored yet, mainly due to the nonlinearity of the channel

model inΘ. This can be circumvented using virtual channel models [16],[21], which is equivalent to

a sampling or gridding of the dispersion parametersΘ at the Nyquist rate [16]. The algorithm then

estimates the coefficients on the grid using sparsity techniques [12], [16], [21]. This approach, however,

does not provide high resolution estimates of the multipathparameters. Although it is very effective in

capturing channel energy, recent investigations [26] demonstrate that this approach inevitably leads to

a mismatch between the true channel sparsity and the estimated sparsity; more specifically, even when

fine quantization ofΘ is used, the number of virtual multipath components will always exceed the

true number of multipath components; in that respect the channel estimates derived based on virtual

models are not appropriate when the goal is to extract physical multipath components. In this paper

we aim to demonstrate that the super-resolution property should not be sacrificed to the linearity of

the estimation problem. We achieve this by i) casting a super-resolution SAGE algorithm for multipath

parameter estimation [3] in a Bayesian framework, and treating the entries inΘ as random variables

whose pdfs are to be estimated and ii) combining this estimation scheme with the Bayesian sparsity

techniques, as mentioned in the previous paragraph, i.e., using multiple sparsity parametersαl to control

the model sparsity on a per-component basis. Moreover, as wewill show, our analysis also allows defining

ways to reduce the impact of estimation artifacts due to the basis mismatches through a detailed analysis

of the estimation expressions for the sparsity parameters.

Our main contribution in this work is twofold. First, in orderto realize Bayesian sparse estimation and

to overcome the computational difficulties due to the nonlinearity of the channel model, we propose a
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new Variational Bayesian [27] extension of the Space-Alternating Generalized Expectation-Maximization

(SAGE) algorithm for multipath parameter estimation [3], [28] – Variational Bayesian SAGE (VB-SAGE).

In contrast to the SAGE algorithm, the VB-SAGE algorithm estimates the posterior pdfs of the model

parameters by approximating the true posterior pdfp(Θ, w, α|z) with a proxy pdfq(Θ, w, α) such as

to minimize the variational free energy [27]. Similar to the original SAGE algorithm [28], the VB-SAGE

algorithm relies on the concept of the admissible hidden data – an analog of the complete data in the

EM framework – to optimize at each iteration the variational free energy with respect to the pdfs of the

parameters of one component only. We demonstrate that the Monotonicity Property of the VB-SAGE

algorithm guarantees that such optimization strategy necessarily minimizes the variational free energy.

Such optimization strategy makes the estimation of the parameters inΘ a tractable optimization problem

due to the reduced dimensionality of the resulting objective functions. Second, we demonstrate that the

admissible hidden data also permits a detailed analytical study of the sparsity parametersα, which leads

to selection criteria applied individually to the multipath component updated at each iteration. These

selection criteria, on the one hand, allow for a fast implementation of the sparse channel estimator; on

the other hand these criteria are easy to interpret and can beadjusted to compensate for model mismatch

due to e.g. calibration and discretization errors. Thus, thesparse VB-SAGE algorithm jointly implements

the estimation of the number of relevant multipath components and the estimation of the posterior pdfs

of the component parameters. We revisit and extend the Gaussian prior case, and present new results for

Laplace sparsity priors within the framework of the VB-SAGE algorithm. It should also be mentioned that

the performed analysis of sparsity parametersα is equally valid for the problem of sparse estimation of

virtual channels models [16] with VB-SAGE algorithm. However, the application of the sparse VB-SAGE

algorithm to the estimation of virtual channel models is outside the scope of the paper.

The paper is organized as follows: In Section II we introduce the signal model; Section III addresses

the derivation of the VB-SAGE algorithm for the multipath parameter estimation, followed by the analysis

of the sparsity priors for model order selection discussed in Section IV; in Section V several practical

issues, e.g. algorithm initialization, are discussed; finally, in Section VI estimation results obtained from

synthetic and measured data are presented.

Through the paper we shall make use of the following notation.Vectors are represented as boldface

lowercase letters, e.g.,x, and matrices as boldface uppercase letters, e.g.,X. For vectors and matrices(·)T

and(·)H denote the transpose and Hermitian transpose, respectively. Sets are represented as calligraphic

uppercase letters, e.g.,S. We useI to denote an index set, i.e.,I = {1, . . . , L}. The assumed number of

elements inI is L, unless stated otherwise. We will writexI ≡
⋃{xl} as a shorthand notation for a list of
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variablesxl with indicesl ∈ I. WhenS is a set andx ∈ S, thenS(x) = S\{x} is the complement of{x}
in S. Similarly, I(l) = I \{l} andS(M) = S \M. Two types of proportionality are used:x ∝ y denotes

x = αy; x ∝e y denotesex = eβey and thusx = β + y, for arbitrary constantsα and β. An estimate

of a random variablex is denoted aŝx. We useEq(x)

{
f(x)} to denote the expectation of a function

f(x) with respect to a probability densityq(x); similarly, Eq(M)

{
f(x)} denotes the expectation with

respect to the joint probability densityq(M) of the random variables in the setM. Finally, N(x; a, B)

andCN(x; a, B) denotes respectively a multivariate real and complex Gaussian pdf with a meana and

a covariance matrixB; Ga(x; a, b) denotes a Gamma pdf with parametersa andb.

II. SIGNAL MODEL

Channel sounding is an instrumental method for the design ofaccurate, and realistic radio channel

models. Channel sounding is usually performed by sending a specific sounding sequenceu(t) through

the channel and observing the responsez(t) at the receiving side. The received signalz(t) is then used to

estimate the channel impulse response (CIR) or its parameters when a parametric model of the response

is considered. Consider now a Single-Input Multiple-Output(SIMO) channel model and time-domain

channel sounding. The sounding signalu(t) consists ofNu periodically repeated burst waveformsb(t), i.e.,

u(t) =
∑Nu−1

i=0 b(t−iTf ), whereb(t) has durationTb ≤ Tf and is formed asb(t) =
∑M−1

m=0 bmp(t−mTp).

The known sounding sequenceb0 . . . bM−1 consists ofM chips andp(t) is the shaping pulse of duration

Tp, with MTp = Tb. We assume that the signal vectorz(t) has been received/measured with an antenna

array consisting ofMr sensors located at positionsd0, . . . , dMr−1 ∈ R2 with respect to an arbitrary

reference point. The signal originating from thelth propagation path is an altered version of the original

transmitted signalu(t) weighted by a complex gainwl. The alteration process is described by a (non-

linear) mappingu(t) 7→ s(t, θl), whereθl is the vector of dispersion parameters, e.g., relative delay,

azimuth and elevation angles of arrival. The nonlinear mapping u(t) 7→ s(t, θl) includes the system

effects, e.g., the transmitter and the receiver RF/IF filters,the response of the transmit and receive arrays,

which in turn depends on the field patterns of their antenna elements and their layout. In the sequel

we try to abstract from the concrete channel structure whereit is possible and keep the model in its

most general form. Additive noiseξ(t) is assumed to be a zero-mean spatially white and temporally

wide-sense stationary Gaussian process, i.e.,E{ξk(t)ξ∗k(t + τ)} = Rξ(τ), andE{ξm(t)ξ∗k(t + τ)} = 0,

0 ≤ k, m ≤ Mr − 1, k 6= m. In our framework we assume thatRξ(τ) is known4. In practicez(t) is

4Although it is possible to reformulate the algorithm to estimate the noise covariance [14], [29], we will leave this aspect
outside the scope of this work.
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low-pass filtered and sampled with the sampling periodTs, resulting inMr N -tuples, withN being the

number of output samples per sensor. By stacking the sampledoutputs of theMr sensors in one vector

z, (1) can be rewritten as

z =
L∑

l=1

wls(θl) + ξ, (2)

where we defines(θl) = [s0(θl)T , . . . , sMr−1(θl)T ]T , ξ = [ξT
0 , . . . , ξT

Mr−1]
T , with sp(θl) =

[sp(0, θl), . . . , sp((N − 1)Ts, θl)]T , andξp = [ξp(0), . . . , ξp((N − 1)Ts)]T , p = 0, . . . , Mr − 1. Finally,

we defineΩ = {w1, θ1, . . . , wL, θL}.
The probabilistic graph depicted in Fig. 1(a) encodes the dependencies between the parameters and

the observation vector in the model (2). According to the graph structure, the joint density of the graph

α1 w1

θ1 z

. . . αLwL

θL

(a)

αl wl xl

θl z
k ∈ I(l)

αkwk

θk

(b)

Fig. 1. a) Graphical model representing (2) withL components; b) extended model with the admissible hidden dataxl.

variables can be factored asp(z,Ω, α) = p(z|Ω)p(Ω|α)p(α), whereα = [α1, . . . , αL]T is the vector

containing the model sparsity parameters. Let us now specifythe statistical model behind the involved

variables.

Under the Gaussian noise assumption,p(z|Ω) = CN(z;
∑L

l=1 wls(θl),Σ), whereΣ = E{ξξH}.
The second termp(Ω|α) is the parameter prior. We assume thatp(Ω|α) =

∏L
l=1 p(wl|αl)p(θl), where

p(wl|αl) is the sparsity prior for thelth component. The purpose of the sparsity prior is, on the one

hand, to constrain the gainsw1, . . . , wL of the components, and thus implement sparsification/model

order selection, and, on the other hand, to control this constraint through the sparsity parametersα. We

will study two choices forp(wl|αl): i) a Gaussian prior, and ii) a Laplace prior. In both cases theprior

pdfs are complex circularly symmetric, with the non-negative hyperparameterαl inversely proportional

to their width. Thus, large values ofαl will render the contribution of the componentwls(θl) ’irrelevant’,

since the corresponding prior overwl will then be concentrated at the origin. The choice of the prior

p(θl) is arbitrary; however, it must reflect the underlying physicsand restrictions of the measurement
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equipment; a non-informative prior can also be used. The prior p(αl), also called the hyperprior of

the lth component, is selected as a Gamma pdfGa(αl; al, bl) = b
al
l

Γ(al)
αal−1

l exp(−blαl). Practically we

set al = bl = 10−7 for all components to render their hyperpriors non-informative [13], [14]. Such

formulation of a hyperprior pdfp(α) =
∏

l p(αl) is related to automatic relevance determination [18],

[30].

III. PARAMETER ESTIMATION FRAMEWORK

Direct evaluation ofp(z,Ω, α) or of the posteriorp(Ω, α|z) for performing inference of the unknown

parameters{Ω, α} is a nontrivial task. Two main reasons for this are the nonlinearity of the model (1)

and the statistical dependence of multipath component parameters whenz is observed.5 Approximative

techniques might significantly ease the model fitting step. In our work we resort to the variational Bayesian

inference framework. The variational Bayesian inference generalizes the classical EM algorithm [27], and

provides a tool for estimating distributions of{Ω, α}. Essentially, variational methods approximate the

posterior pdf of interest with a simpler one (by, e.g. neglecting some statistical dependencies between

random variables) such that the Kullback-Leibler divergence between the former pdf and the later pdf is

minimized.

When estimating parameters using the SAGE algorithm [3], [28], the concept of complete data in the

EM algorithm is replaced by that of admissible hidden data. Thepurpose of the admissible hidden data

is to make the update procedure for only a subsetΩsub ⊂ Ω a tractable optimization problem. For the

variablexsub to be an admissible hidden data with respect toΩsub the following factorization must be

satisfied:p(z, xsub,Ω) = p(z|xsub, {Ω \ Ωsub})p(xsub,Ω) [28]. The fact thatxsub is an admissible

hidden data guarantees that the likelihood of the new parameter updateΩ′ (obtained by replacing the

updated parameter subsetΩ′
sub in the overall parameter setΩ) cannot be smaller than the likelihood prior

to the update [28]. This property is referred to as the Monotonicity Property. The concept of admissible

hidden data can be exploited within the variational framework as well. As we will show later this similarly

leads to an iterative algorithm – we call it the Variational Bayesian SAGE algorithm – that still exhibits

the Monotonicity Property in terms of the variational free energy [27].

Consider for a specific componentl the new variable

xl = wls(θl) + ξl, (3)

5Such graph structure is also referred to as a V-structure [31], which leads to the conditional dependence of the parent variables
when the child node is observed.
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which can be conceived as a received signal associated with the lth propagation path. The additive noise

componentξl in (3) is obtained by arbitrarily decomposing the total noise ξ, such thatΣl = E{ξlξ
H
l } =

βlΣ, and0 ≤ βl ≤ 1. We define∆l = (1 − βl)Σ to be the part of the total additive noise that is not

associated with thelth component. Thus,∆l + Σl = Σ. Consider now the modified graph in Fig. 1(b)

that accounts forxl. It is straight-forward to show thatxl is an admissible hidden data with respect to

the subset{wl, θl, αl}. Since we are interested in estimating allL components, we can formulate the

estimation algorithm as a succession ofL estimations of{θl, wl, αl} with respect toxl, l = 1, . . . , L,

assuming that{wk, θk, αk}, k ∈ I(l), are known and fixed. According to the extended graph in Fig.

1(b), the joint densityp(z, xl,Ω, α) now factors as

p(z|xl, θI(l), wI(l))
∏

k∈I(l)

p(θk)p(wk|αk)p(αk)

×p(xl|wl, θl)p(wl|αl)p(θl)p(αl),

(4)

where

p(z|xl, θI(l), wI(l)) = CN(z; xl +
∑

k∈I(l)

wks(θk),∆l), (5)

andp(xl|wl, θl) = CN(xl; wls(θl),Σl).

A. Variational Bayesian inference of signal parameters

Bayesian variational inference [27] is a family of techniques that exploit analytical approximations of

the posterior pdf of interest, i.e.,p(Ω, α|z), using a simpler proxy pdfq(Ω, α). The latter pdf is estimated

as a minimizer of the variational free energyF(q(Ω, α)‖p(Ω, α, z)) [27], which is formally equivalent to

the Kullback-Leibler divergenceDKL(q(Ω, α)‖p(Ω, α, z)) between the proxy pdf and the true joint pdf.

The admissible hidden data, used in the SAGE algorithm to facilitate the maximization of the parameter

likelihood, can also be used within the variational inference framework to ease the minimization of the

variational free energy. Such algorithm we term a Variational Bayesian SAGE (VB-SAGE) algorithm.

Essentially, the VB-SAGE algorithm approximatesp(Ω, α, xl, z) with a variational proxy pdf

q(Ω, α, xl) = q(xl)
L∏

k=1

q(wk)q(θk)q(αk) (6)

by performing minimization of the free energy with respect to the parameter of thelth component only,

and cycling through allL components in a “round-robin” fashion. The Monotonicity Property of the
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VB-SAGE algorithm (see Appendix A) ensures that such sequential optimization necessarily decreases

the free energyF(q(Ω, α)‖p(Ω, α, z)).

It is straightforward to show that with the factorization (6) the estimation of any factorq(a), a ∈
{wI , θI , αI , xl}, requires the Markov blanketMB(a) [31] of a to be known.6 Define now

p̃(a) ∝ exp
(
Eq(MB(a))

{
log p(a|MB(a))

})
. (7)

The unconstrained solution forq(a) that minimizes the corresponding free energy is then simplyfound as

q(a) = p̃(a). Clearly, an unconstrained solution is preferred; however, we might constrainq(a) to belong

to some class of density functionsQ(a) to make the optimization tractable. In this case the approximate

solution is obtained by solving

q(a) = argmin
q∗(a)∈Q(a)

DKL(q∗(a)‖p̃(a)). (8)

In the case ofxl it is straightforward to show that̃p(xl) is quadratic inxl; thereforep̃(xl) is a Gaussian

pdf, andq(xl) = CN(xl; x̂l, Ŝ
x

l ). We stress that the constraintq(xl) = p̃(xl) guarantees the monotonicity

of the VB-SAGE algorithm, as we show in the Appendix A. Similarly, we selectQ(wl) as the set of

Gaussian pdfs, i.e.,q(wl) = CN(wl; ŵl, Φ̂l); notice thatq(wl) = p̃(wl) only whenp(wl|αl) is a Gaussian

pdf. For the sparsity parametersαl we selectQ(αl) as the set of Gamma pdfs, i.e.,q(αl) = Ga(αl; âl, b̂l).

This choice is dictated by the Gamma distribution being the conjugate prior for the inverse variance of

the normal distribution; as a result, in the Gaussian prior caseq(αl) = p̃(αl). We selectQ(θl) as the

set of Dirac measures on the range ofθl; thus,q(θl) = δ(θl − θ̂l). By doing so we restrict ourselves to

point estimates of the dispersion parameters.7 The parameterŝxl, Ŝ
x

l , θ̂l, âl, b̂l, ŵl, and Φ̂l are called

variational parameters. Obviously, knowing the pdfq(Ω, α, xl) translates into knowing the variational

parameters of its factors and vice-versa.

B. Variational estimation expressions

Just like SAGE, the VB-SAGE algorithm is implemented in a sequential manner. For the model withL

signal components we start withl = 1 and update factorsq(xl), q(θl), q(wl), andq(αl) related to thelth

component, i.e., we update the corresponding variational parameters, assuming that the approximating

6For a given Bayesian network withO variables, a Markov Blanket of a variablea is the smallest subset of variablesMB(a) ⊆
O that ’shields’a from the rest of the variablesR = O \ {a,MB(a)} in the sense thatp(a|MB(a),R) = p(a|MB(a)).

7Considering more complex forms ofq(θl) would requires(θl) to be specialized for a particular antenna structure and
measurement setting. A detailed study of this case is outside the scope of thispaper.
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factors for the other components are known and fixed. In the same fashion the componentl = 2 is

updated, and so on, until allL components are considered. The procedure of updating all parameters of

all L components in this way constitutes a single update cycle of the algorithm. The update cycles are

repeated anew until convergence.

In what follows, we consider the update expressions for the variational parameters{x̂l, Ŝ
x

l , θ̂l, âl, b̂l,

ŵl, Φ̂l} of the lth component only. The updated value of a parameter will be denoted by(·)′; let us point

out that afterq(xl) has been updated, the other factors related to the componentl can be updated in any

order.

1) Estimation ofq(xl): From the graph in Fig. 1(b) we conclude thatMB(xl) =
{
z, θI , wI

}
.

Evaluating (7) in this case leads tõp(xl) ∝ p(z|xl, θ̂I(l), ŵI(l))p(xl|ŵl, θ̂l). Since the right-hand side is

a product of Gaussian pdfs,p̃(xl) is as well a Gaussian pdf, with the mean and covariance matrixgiven

by

x̂′l = (1− βl)ŵls(θ̂l) + βl


z −

∑

k∈I(l)

ŵks(θ̂k)


 ,

(Ŝ
x

l )′ = (∆−1
l + Σ−1

l )−1,

(9)

and q(xl) = p̃(xl) = CN(xl; x̂l, Ŝ
x

l ). The result (9) generalizes that obtained in [3] by accounting for

the covariance matrix ofxl and for the noise covariance matrixΣ. Note, however, that the expression

for the mean̂xl in (9) is identical to that obtained in the SAGE algorithm.

Let us consider the limiting case asβl → 1. It has been show that for models linear in their parameters

the choiceβl = 1 leads to a fast convergence of the algorithm already in the early iteration steps [28].

This is equivalent to assuming thatxl = z −∑
k∈I(l) wks(θk), which was also used as an admissible

hidden data in [3]. In this case(Ŝ
x

l )′ → 0 so thatq(xl) collapses to a Dirac distribution, andΣl → Σ.

2) Estimation ofq(θl): The Markov blanket ofθl is MB(θl) =
{
wl, xl

}
. Here the estimation

algorithm profits from the usage of the admissible hidden dataq(xl). Since q(θl) = δ(θl − θ̂l),

finding q(θl) reduces to the computation of̂θl that maximizesp̃(θl) given by (7). By noting that

p(θl|wl, xl) ∝ p(xl|θl, wl)p(θl) we obtain

θ̂
′
l = argmax

θl

{
log p(θl)+

log p(x̂l|θl, ŵl)− Φ̂ls(θl)HΣ−1
l s(θl)

}
.

(10)
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Notice that due toq(wl) being a Gaussian pdf within the VB-SAGE framework, (10) includes a Tikhonov-

like regularization term̂Φls(θl)HΣ−1
l s(θl), with the posterior variancêΦl of wl acting as a regularization

constant. Unfortunately, sinces(θl) depends nonlinearly onθl, (10) has to be optimized numerically,

e.g., using successive line searches where each element ofθ̂l is determined separately, or using a joint

search in which all elements of̂θl are computed jointly; if derivatives of the objective function (10) with

respect toθl are available, gradient-based optimization schemes can also be used.

Typically q(θl) is selected to factorize according toq(θl) = q(θ1l) · . . . · q(θMl), whereM is the

number of dispersion parameters describing a multipath component.8 Estimatingθml can be done by

evaluating (7) usingMB(θml) = {MB(θl)
⋃{θl \ θml} and performing a simple line search of the

resulting objective function. Notice that the same assumption underpins the SAGE-based estimation of

θl. The VB-SAGE estimation expression forθl in (10) will coincide with that of the standard SAGE

whenp(θl) is assumed non-informative andq(wl) = δ(wl − ŵl).

3) Estimation ofq(wl): The Markov blanket forwl isMB(wl) =
{
θl, xl, αl

}
. Evaluating (7) leads

to p̃(wl) ∝ p(x̂l|wl, θ̂l)p(wl|α̂l). For a given choice ofp(wl|αl) the moments ofq(wl) = CN(wl; ŵl, Φ̂l)

can be either found in closed form, or efficiently approximated. We defer the estimation of these moments

to Section IV, where different priorsp(wl|αl) are discussed.

4) Estimation ofq(αl): HereMB(αl) =
{
wl

}
. Observe that in contrast toq(θl) and q(wl), the

admissible hidden dataxl is not inMB(αl). This is the result of the Markov chainαl → wl → xl;

in fact, wl is the admissible hidden data for estimatingαl sincep(xl, wl|αl, θl) = p(xl|wl, θl)p(wl|αl)

due to the factorization (4). By noting thatp(αl|wl) ∝ p(wl|αl)p(αl), (7) can be rewritten as̃p(αl) ∝
p(αl) exp

(
Eq(wl){log p(wl|αl)}

)
. Due to the fact thatq(αl) = Ga(αl; âl, b̂l), the variational parameters

âl and b̂l are found by equating the moments ofq(αl) and p̃(αl). Observe that it is the estimation of

q(αl) that eventually leads to the sparse VB-SAGE algorithm. Also notice that the sparsity priorp(wl|αl)

is a key to the estimation of the sparsity parameters. In the following section we will consider several

choices ofp(wl|αl) and analyze their effect on sparsity-based model order selection.

IV. SPARSITY PRIORS FOR MODEL ORDER SELECTION

In this section we consider three choices for the sparsity prior p(wl|αl): i) a Gaussian prior, which

leads to theℓ2-type of log-likelihood penalty, ii) a flat prior, obtained asa limiting case of the Gaussian

prior whenαl → 0, and iii) a Laplace prior, which results in theℓ1-type of log-likelihood penalty.

8If some of the dispersion parameters are statistically dependent, a structured mean field can be used to account for this
dependency by means of an appropriate factorization of the proxy pdfq(θl).
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A. Gaussian prior

The Gaussian sparsity prior is obtained by selectingp(wl|αl) = CN(wl; 0, α−1
l ). With this choice it

is straightforward to show thatq(wl) = p̃(wl), and that

Φ̂′l =
(
α̂l + s(θ̂l)HΣ−1

l s(θ̂l)
)−1

,

ŵ′l = Φ̂′ls(θ̂l)HΣ−1
l x̂l.

(11)

Observe that (11) is merely a regularized least-squares estimate ofŵ′l given x̂l, θ̂l, with the regularization

parameter̂αl = Eq(αl){αl} = âl/b̂l.

The variational parameterŝal and b̂l of q(αl) are found fromp̃(α). This requires the expectation of

|wl|2 to be computed. Doing so leads to the following update expressions:

â′l = al + 1, b̂′l = bl + (|ŵl|2 + Φ̂l). (12)

Let us now analyze (12) in more details for the caseal = bl = 0, i.e., whenp(αl) is non-informative. In

this case the mean ofq(αl) is given as

α̂′l =
1

|ŵl|2 + Φ̂l

. (13)

Note that this result coincides with the EM-based evidence estimation proposed in [11], [14]. However,

in our case botĥwl and Φ̂l are estimated using the admissible hidden dataxl, as opposed to [11], [14]

where the incomplete dataz is used to obtain these estimates. The updating steps in (11) and (13)

can be alternatively repeated, while keepingx̂l and θ̂l fixed to generate a sequence{α̂[m]
l }m>0, where

α̂
[1]
l = α̂′l, α̂

[2]
l = α̂′′l , etc. Note that this updating process makes sense since neither xl nor θl are in

MB(αl).9 Therefore, the corresponding sequence of pdfs{q[m](αl) = Ga(αl; â
[m]
l , b̂

[m]
l )}m>0 necessarily

monotonically decreases the variational free energy with respect toq(αl). Let α̂[∞]
l be the stationary point

of the sequence{α̂[m]
l }m>0 whenm → ∞. In order to simplify the notation we definêsl ≡ s(θ̂l). By

substituting (11) into (13) and solving for̂α[∞]
l we obtain (see also [19])

α̂
[∞]
l =

(ŝH
l Σ−1

l ŝl)2

|ŝH
l Σ−1

l x̂l|2 − ŝH
l Σ−1

l ŝl

. (14)

9Notice that this property allows for a straightforward extension of the subsequent analysis to the estimation of sparse virtual
channel models [16] since it remains valid even when the dispersion parametersθl are constrained to some resolution grid.

February 24, 2011 DRAFT



13

By definition α̂
[∞]
l > 0, which is satisfied if, and only, if

|ŝH
l Σ−1

l x̂l|2 > ŝH
l Σ−1

l ŝl. (15)

By interpreting (13) as a nonlinear dynamic mapping, which at the iterationm mapsα̂
[m]
l into α̂

[m+1]
l ,

it can be shown [19] that for|ŝH
l Σ−1

l x̂l|2 ≤ ŝH
l Σ−1

l ŝl the fixed point of the mapping is at infinity, i.e.,

α̂
[∞]
l =∞. As a result, thelth signal component can be removed from the model.10 A similar result was

reported in [17] using a non-variational analysis of the marginal log-likelihood function. This allows us

to implement model order selection during a parameter update iteration (i.e., joint multipath component

detection and parameter estimation), while still minimizing the variational free energy.

Now, let us reinspect (15). This inequality might at first glance seem a bit counter-intuitive – the

quadratic quantity on the right-hand side is compared to thefourth-power quantity on the left-hand side.

In order to better understand the meaning of it, let us divideboth sides of (15) by(α̂[∞]
l + ŝH

l Σ−1
l ŝl)2.

It follows that (15) is equivalent to

|ŵ[∞]
l |2 > γl

1

α̂
[∞]
l + ŝH

l Σ−1
l ŝl

= γlΦ̂
[∞]
l , (16)

whereγl = ŝ
H
l Σ−1

l ŝl

α̂
[∞]
l +ŝ

H
l Σ−1

l ŝl

≤ 1. The left-hand term in (16) is an estimate of the posterior variance ofwl

scaled byγl. This result leads directly to several important observations:

1) The sparsity parameter̂α[∞]
l of the signal componentl with |ŵ[∞]

l |2 smaller than its posterior

varianceΦ̂[∞]
l scaled byγl is infinite, and thus such components can be removed from the model.

2) By multiplying both sides of (16) witĥsH
l Σ−1

l ŝl, we find that this inequality is equivalent to

ŜNRl > γ2
l , where ŜNRl = |ŵ[∞]

l |2ŝH
l Σ−1

l ŝl is the estimated signal-to-noise ratio of the

lth component. Thus condition (15) (and (16)) corresponds to keeping this component provided

ŜNRl > γ2
l .

3) Condition (15) can be tuned to retain the component provided its estimated SNR is above some

predefined levelSNR′ ≥ γ2
l using the modified condition

|ŝH
l Σ−1

l x̂l|2 > ŝH
l Σ−1

l ŝl ×
SNR′

γ2
l

. (17)

These results provide us with the required instruments to determine whether a componentl with

the sparsity parameterαl should be updated or pruned: if the componentl fails to satisfy (15), it is

10Strictly speaking, this is true only in the case of non-informative hyperprior p(αl).
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removed since for̂α[∞]
l → ∞, ŵ

[∞]
l → 0. In case of (17) we remove the component if its estimated

SNR is below some levelSNR′ ≥ γ2
l . Notice that the obtained results allow for an interpretation of

the sparsity parameterαl in terms of estimated SNR of thelth component. Thus, model order selection

(sparsification) can be realized using simple SNR-guided decisions. It should be stressed that the analysis

of (14) is possible only due to the use of the admissible hidden dataxl. A standard approach with

Gaussian priors [11], [14], [17] requires anL× L posterior covariance matrix̂Φ of the gain coefficient

vectorw = [w1, . . . , wL]T to be computed. This significantly complicates the analyticalcomputation of

the fixed pointα̂[∞]
l and its analysis. The sparse VB-SAGE algorithm with Gaussian sparsity priors and

model order selection scheme that utilizes (15) or (17) we denote as the VB-SAGE-G algorithm.

B. Flat priors

In the case wherep(wl|αl) is chosen to be non-informative, we can still make use of the Bayesian

sparsity to estimate the model order. This can be done by usingthe VB-SAGE-G algorithm in the limiting

case aŝαl → 0 (i.e., b̂l → ∞). Due to the structure of the graph (see Fig. 1(b)), this will only affect

the moments ofq(wl), which remain identical to (11) witĥαl = 0. Clearly, in this caseγl = 1 and

condition (16) corresponds to the sparsification of thelth component provided̂SNRl > 1, i.e., we keep

the component when its SNR is above0dB. The sparse VB-SAGE algorithm with such model order

selection scheme we denote as the VB-SAGE-F algorithm. Observe that condition (17) can also be used

in the case of the VB-SAGE-F algorithm.

C. Laplace priors (soft thresholding)

As the last choice we consider a Laplace priorp(wl|αl). We will use an analogous Laplace prior in

the complex domain defined as

p(wl|αl) =
2α2

l

π
exp(−2αl|wl|). (18)

The mean ofq(wl) can be obtained in closed form:

ŵ′l = sign(s(θ̂l)HΣ−1
l x̂l)×

max(0, |s(θ̂l)HΣ−1
l x̂l| − α̂l)

s(θ̂l)HΣ−1
l s(θ̂l)

.
(19)

Here sign(·) is the sign function defined assign(x) = x/|x|. Expression (19) is also known as asoft

thresholdingrule. To our best knowledge no closed form expression for theposterior variance exists.
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However, we can approximate it with the result obtained for the real-valuedwl 6= 0, which is given as

Φ̂′l ≈
(
s(θ̂l)HΣ−1

l s(θ̂l)
)−1

. (20)

Now we turn to the estimation of the sparsity parameterαl. By plugging (18) in the expression for

p̃(αl), and ignoring terms independent ofαl, we obtainp̃(αl) ∝ p(αl)α2
l exp

(
−2αlEq(w){|wl|}

)
. Since

q(wl) is Gaussian,|wl| follows a Rice distribution characterized by the parameters |ŵl| (19) and
√

Φ̂l/2

(20). The expectationEq(w){|wl|} is then given as
√

Φ̂lπ/4L1/2(−|ŵl|2/Φ̂l), whereLν(x) denotes the

Laguerre polynomial with degreeν. To simplify the estimation ofq(αl), we consider an approximation

of Eq(w){|wl|} as|ŵl|2/Φ̂l →∞. This approximation is equivalent to assuming a high precision estimate

of wl. In this caseEq(w){|wl|} = |ŵl|. Then, it is straightforward to show that

â′l = al + 2, b̂′l = bl + 2|ŵl|. (21)

By selecting a non-informative priorp(αl), the update expression for the meanα̂′l = â′l/b̂′l simplifies to

α̂′l = 1
/
|ŵl|. (22)

Similar to the Gaussian prior case we analyze the fixed pointα̂
[∞]
l of (22). We definêsl ≡ s(θ̂l) to

simplify the notation. Combining (22) and (19) leads to

α̂
[∞]
l =

ŝH
l Σ−1

l ŝl

max(0, |ŝH
l Σ−1

l x̂l| − α
[∞]
l )

. (23)

Assuming that|ŝH
l Σ−1

l x̂l| > α
[∞]
l (otherwiseα

[∞]
l = ∞), we solve forα[∞]

l . Doing so yields two

solutions:

α
[∞]
l,+ =

1
2

(
|ŝH

l Σ−1
l x̂l|+ µl

)
, (24)

α
[∞]
l,− =

1
2

(
|ŝH

l Σ−1
l x̂l| − µl

)
, (25)

whereµl =
√
|ŝH

l Σ−1
l x̂l|2 − 4ŝH

l Σ−1
l ŝl. Furthermore, we see that a necessary and sufficient condition

for the fixed points to be real is that

|ŝH
l Σ−1

l x̂l|2 ≥ 4ŝH
l Σ−1

l ŝl. (26)

Components that do not satisfy (26) are removed. Note that both fixed points are feasible. We have

always empirically observed that when the initialq(αl) is chosen such that̂αl = 0, iterations (22) either
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diverge (α[∞]
l =∞) or converge to the closest (smallest) feasible solution given by (25). The properties

of the second stationary point are subject to further investigations left outside the scope of this paper. The

sparse VB-SAGE algorithm with Laplace sparsity priors that makes use of (26) for model order selection

we denote as the VB-SAGE-L algorithm. Similarly to (16) it can beshown that (26) is equivalent to

|ŵ[∞]
l |2 ≥ 4γ2

l

1
ŝH

l Σ−1
l ŝl

= 4γ2
l Φ̂[∞]

l , (27)

whereγl = |ŝH
l Σ−1

l x̂l|−α̂
[∞]
l

|ŝH
l Σ−1

l x̂l| ≤ 1. In the same way (26) and (27) are equivalent to keeping the component

provided ŜNRl ≥ 4γ2
l , whereŜNRl = |ŵ[∞]

l |2ŝH
l Σ−1

l ŝl is the estimated component SNR. Note that

(26) and (27) are the Laplace-prior equivalent conditions of(15) and (16) respectively for the Gaussian

prior. Although the pruning conditions are formally similar, they differ in their numerical values: the

moments ofq(wl) are estimated differently for the VB-SAGE-L and VB-SAGE-G schemes; as a result,

the estimates of the admissible hidden dataxl for the VB-SAGE-L and VB-SAGE-G algorithms are also

different; in addition, the scaling factorγl in (27) is computed differently from that in (16). It should

also be mentioned that asαl → 0 the VB-SAGE-L algorithm converges to the VB-SAGE-F algorithm.

Similarly to (17), (26) can be tuned to keep the component whenits estimated SNR is above some

predefined levelSNR′ ≥ 4γ2
l using the modified condition

|ŝH
l Σ−1

l x̂l|2 ≥ ŝH
l Σ−1

l ŝl ×
SNR′

γ2
l

. (28)

V. I MPLEMENTATION AND INITIALIZATION OF THE ALGORITHM

A. Summary of the algorithm

Let us now summarize the main steps of the proposed algorithm.For the moment we assume that at

some iterationj the approximating factorsq(xl), q(θl), q(wl), andq(αl), l ∈ {1, . . . , L̂}, are known for

the L̂ components. A single update iteration for the componentl is summarized in Algorithm 1.

This update iteration is repeated for all components in a round-robin fashion, which constitutes a single

update cycle of the algorithm. The update cycles are then repeated until the number of components and

their variational parameters converge. Observe that the number of components might be reduced during

one update cycle: at each iteration the updated multipath component undergoes a test specified by the

conditions (15) or (26). When the corresponding condition is not satisfied the component is removed. The

model order might also be increased by adding new components. Details of this procedure are outlined

in Section V-D.
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Algorithm 1 Update iteration for the componentl

Updateq(xl) from (9)
Updateq(θl) from (10) and evaluates(θ̂

′
l)

if Condition (17)/(28) are TRUEthen
Updateq(αl) from (14) (VB-SAGE-G), or (25) (VB-SAGE-L)
Updateq(wl) from (11) (VB-SAGE-G, -F), or (19) (VB-SAGE-L)
L̂′ ← L̂

else
Remove thel’th component;L̂′ ← L̂− 1

end if

B. Algorithm initialization

We propose a simple bottom-up initialization strategy, which allows us to infer the initial variational

parameters from the observationz by starting with an empty model, i.e., assuming all variational

parameters to be0. The first component is initialized by lettinĝx′1 = z and applying the initialization loop

shown in Algorithm 2. Observe that usinĝx′l the dispersion parameterŝθ
′
l are initialized using a simple

Algorithm 2 Algorithm initialization

Set l← 1; initialize q(xl): x̂′1 ← z
while Continue initializationdo

Initialize q(θl) by computingθ̂
′
l = argmaxθl

{
|s(θl)HΣ−1

l x̂′l|
/
s(θl)HΣ−1

l s(θl)
}

if Condition (15) (VB-SAGE-G, -F) or (26) (VB-SAGE-L) are TRUEthen
Initialize q(w) from (11) with α̂l = 0
Initialize q(αl) from (12) (VB-SAGE-G), or (21) (VB-SAGE-L)
L̂′ = l; l← l + 1
x̂′l ← z −∑l−1

k=1 ŵ′ks(θ̂
′
k),

else
Stop initialization:L̂′ = l − 1

end if
end while

beamformer and the obtained estimate ofs(θ̂
′
l) is plugged in (15) (in the Gaussian prior case) or in (26) (in

the Laplace prior case) to determine whether the initializedcomponent should be kept in the model. When

the test fails, the initialization stops. It should be stressed that the use of conditions (15) or (26) during

the initialization is optional and may be omitted if an overcomplete channel representation is desired. The

components with large sparsity parameters will then be pruned later during the update iterations. This

initialization strategy is similar to the successive interference cancellation scheme proposed in [3], [5].

The number of initialization iterations (i.e., the initial number of signal components) can be either fixed
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to Lmax, or inferred automatically by repeating the initialization iterations until the pruning condition

(15) (or (26)) fails at some iteration.11 In our implementation of the algorithm we use a combination of

the two methods, by limiting the maximum number of initial components toLmax.

1) Noise statistics:A crucial part of the initialization procedure is to obtain an accurate estimate of

the variance of the additive noiseξ. Logically, when the noise level is high, we tend to put less “trust”

in the estimates of the signal parameters, and thus sparsifycomponents more aggressively.

In many cases estimates of the noise variance can be derived from the signal itself. Specifically, the

noise variance can be estimated from the tail of the measuredCIR. Alternatively, the noise variance can

be estimated from the residual signal obtained after completion of the initialization step. In our work we

use the former initialization strategy.

2) SelectingΣl: The obtained sparsity expressions for model order selectionall depend on the

covariance matrix of the additive noiseξl associated with thelth multipath component. The covariance

matrix Σl is related to the total covariance matrixΣ as Σl = βlΣ, where βl is the noise splitting

parameter introduced in the definition of the admissible hidden data (3). In the SAGE algorithm applied

to the estimation of superimposed signal parameters [3], this parameter was set toβl = 1; we also adopt

this choice. Obviously, in this case,Σl = Σ, and ŜNRl = |wl|2s(θl)HΣ−1s(θl).

C. Stopping criterion for update cycles

The iterative nature of the algorithm requires a stopping criterion for the variational parameter updates.

In our implementation we use the following simple criterion: the estimation iterations are terminated when

i) the number of signal components stabilizes, and, ii) the maximum change of the components in{Ω, α}
between two consecutive update cycles is less than0.01%.

D. Adaptive model order estimation

The structure of the estimation algorithm also allows increasing the model order. Increasing the model

order might be useful whenLmax is selected too small so that not all physical multipath components might

have been discovered. Alternatively, new components mightalso appear in time-varying scenarios. The

new components can be initialized from the residual signal.After the model fitting has been performed

at some update cycle, e.g.,j, the residual̂x′L+1 = z −∑L
l=1 ŵls(θ̂l) is computed and used to initialize

11We suggest to use the conditions (15) or (26) instead of their modified versions (17) and (28), since this allows for the
inclusion of even the weakest components during the initialization.
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new components as explained in Sec. V-B. Essentially, the residual signal can be used at any stage of

the algorithm to initialize new components.

E. Estimation uncertainty and selection of sensitivitySNR′

There are four main sources of uncertainty in model-based multipath estimation: (i) the inaccuracy of

the specular model (1) in representing reality (e.g. in the presence of diffuse components); (ii) the error

in calibrating the measurement equipment, which results inan error in the specification of the mapping

u(t) 7→ s(t, θl); (iii) the discrete-time approximation (2) of the model; and (iv) the discrete optimization

that is typically necessary due to the nonlinearity of the model versus some of its parameters. All these

aspects have a significant impact on the model order estimation. Any deviation from the “true” model

(effects (i) and (ii)) and inaccuracies in the parameter estimatesΩ̂ (due to (iii) and (iv)) results in a

residual error, manifesting itself as a contribution from fictive additional components. If no penalization

of the parameter log-likelihood is used, this error leads toadditional signal components being detected,

especially in high SNR regime. These non-physical componentsare numerical artifacts; they do not

correspond to any real multipath components. Moreover, these fictive components (which are typically

much weaker than the real specular components) create pseudo-clusters since typically their parameters

are highly correlated. In the case of the VB-SAGE-G, VB-SAGE-F and VB-SAGE-L algorithms, the

artifacts can be efficiently controlled using the pruning conditions (17) and (28) with an appropriately

chosen sensitivity levelSNR′. The sensitivity levelSNR′ can be set globally, or can be tuned individually

to each multipath component. We propose the following implementation of individual tuning.

First, we consider the impact of all above-mentioned inaccuracies together. This approach is motivated

by experimental evidence indicating that (i) each type of inaccuracies has a non-negligible effect on

channel estimation, and (ii) that these effects are difficultto quantify and also to separate. Second, we

assume that – due to these inaccuracies – the residual error contributed by a given estimated multipath

component is proportional to the sample of the delay power profile at the component delay. Indeed, it

makes sense to presume that the stronger a multipath component is, the larger the residual error due to

calibration and discretization error is. This rationale leads us to selectSNR′ ≡ SNR′(τ) proportional

to an estimate of the delay power profile. We select as such an estimate a low-pass filtered version of the

delay power profileDPP (τ). In Sec. VI-B we discuss how this scheme is applied to measuredCIRs.

Note that there are also alternative approaches to account for the inaccuracy of the specular model.

In [32] the authors propose a method that jointly estimates the specular multipath components and the

diffuse component, called dense multipath component (DMC)in a time-variant MIMO context. The
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parameters of the components (direction of departure (DoD), direction of arrival (DoA), relative delay,

Doppler frequency, polarimetric path gain) are estimated using an extended Kalman filter built around a

dynamic model of these parameters. The parameters of the DMC are computed from the residual signal

resulting after subtracting the estimated specular components from the observed signal; obviously, an

accurate estimation of the specular part of the channel plays a vital role here. We now discuss the main

difference of the sparse VB-SAGE algorithm proposed here with the method published in [32]. First,

both algorithms apply a path pruning algorithm that relies on comparing the path weight to a threshold.

The pruning algorithm proposed here is based on a Bayesian sparsity framework, while that used in

[32] implements the Wald test. This leads to different ways ofcomputing the pruning threshold and the

signals compared to this threshold. Second, the sparse VB-SAGE algorithm does not make any particular

assumption on the structure of the DMC. Experimental evidence suggests that the DoD-DoA-delay power

spectrum characterizing the DMC typically does not factorize up to a proportionality constant in the

product of the corresponding DoD, DoA, and delay spectra, asimplied by the Kronecker factorization of

the transmit-array–receive-array-frequency covariancematrix assumed in [32]. The inherent directionality

of the radio channel, which holds for both specular components and diffuse components, translates in

power spots scattered in the DoD-DoA-delay plane that cannot be represented by the above factored

spectrum (see also Fig. 5(d)-5(f) and Fig. 6(d)-6(f)). This observation, combined with the other early

mentioned model inaccuracies, has motivated the empiricalmethod based on the selectedSNR′(τ)

threshold. Finally, the sparse VB-SAGE is derived and appliedin a time-invariant SIMO scenario with

only one polarization considered. As early mentioned it canbe easily extended to time-variant MIMO

scenario including full path polarization, provided the propagation constellation is stationary. Extension to

the time-variant scenario with changing propagation constellation as considered in [32] will require further

work. A thorough investigation is needed to assess the pros and contras of the model order selection

methods applied in the channel estimation proposed in [32] and in the sparse VB-SAGE algorithm. This

study is, however, out of the scope of this paper.

VI. A PPLICATION OF THE SPARSEVB-SAGE ALGORITHM TO THE ESTIMATION OF WIRELESS

CHANNELS

A. Synthetic channel responses

We first demonstrate the performance of the algorithm with synthetic channel responses generated

according to model (2). We use a sounding sequence withM = 63 chips and a square-root-raised-cosine

shaping pulsep(t) with a durationTp = 10nsec and a roll-off factor0.25. A horizontal-only propagation
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scenario is considered with a single received replica of thetransmitted signal represented aswls(t, θl) =

wlc(φl)u(t− τl) with wl, φl, andτl denoting respectively the complex gain, the azimuthal direction and

the relative delay of thelth multipath component. Thus,θl = {φl, τl}. The Mr-dimensional complex

vector c(φl) = [c1(φl), . . . , cMr
(φl)]T is the steering vector of the array [3]. We assume a linear array

with Mr = 16 ideal isotropic sensors, spaced half a wavelength apart. Theparameters of the multipath

components are chosen by randomly drawing samples from the corresponding distributions: delaysτl

and anglesφl are drawn uniformly in the interval[0.03, 0.255]µsec and [−π/2, π/2], respectively. For

generating the multipath gainswl we follow two scenarios. First, we generate the gains aswl =
√

P ejηl ,

where P is some positive constant andηl, l = 1, . . . , L, are independent random phases uniformly

distributed in the interval[0, 2π]. This ensures that all multipath components have the same power P

and therefore the same per-component SNR. In the second scenario the values ofwl, l = 1, . . . , L, are

independently drawn from a complex Gaussian distribution with the pdf CN(wl; 0, P ′e−τl/τs), where

P ′ is some positive constant andτs is the delay spread set toTb/4. In this case the distribution of the

component gainswl is conditioned on the delayτl such that the received power decays exponentially as

the delay increases. The later choice approximates better the physical distribution of component powers

versus delay. At the same time it demonstrates the performance of the algorithm under conditions with

changing per-component SNR.

By samplingz(t) with a sampling periodTs we obtain the equivalent discrete-time formulation (2)

with N samples per channel. The samples of the received signal are recorded over the time window

Tb = 0.63µsec (i.e., Nu = 1) at a rate1/Ts = 200MHz. In the simulations we set the number of

specular components toL = 20. By fixing L we aim to demonstrate the possible bias of the model order

selection mechanism. Additive noiseξ is assumed to be white with covariance matrixΣ = σ2
ξI. Different

SNR conditions are simulated. The considered SNR is the averaged per-component SNR defined as

SNR =
1
L

∑

l

|wl|2‖s(θl)‖2
σ2

ξ

.

With this setting the estimation step (10) is implemented asa sequence of two numerical optimizations.

For instance, the estimation ofτl with MB(τl) = {xl, wl, φl} is performed first as

τ ′l = argmax
τl

{
log p(x̂′l|τl, φ̂l, ŵl)−

Φ̂ls(τl, φ̂l)HΣ−1
l s(τl, φ̂l) + log p(τl)

}
,

(29)
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followed by the estimation of the azimuthφl with MB(φl) = {xl, wl, τl} as

φ̂′l = argmax
φl

{
log p(x̂′l|τ̂ ′l , φl, ŵl)−

Φ̂ls(τ̂ ′l , φl)HΣ−1
l s(τ̂ ′l , φl) + log p(φl)

}
.

(30)

Optimizations (29) and (30) are performed using a simple line search on a grid followed by polynomial

interpolation to improve the precision of the estimates. For the initialization of the algorithm we follow the

scheme described in Sec. V-B. The maximum number of initialized components is set toLmax = N . We

use the modified pruning conditions (17) for the VB-SAGE-G and VB-SAGE-F schemes and (28) for the

VB-SAGE-L algorithm withSNR′ set to the true SNR used in the simulations. This setting demonstrates

the performance of the algorithms when the true per-component SNR is known. In particular, it allows

us to investigate how the modified pruning conditions can be used to control the estimation artifacts.

We compare five estimation algorithms: i) VB-SAGE-G, ii) VB-SAGE-F, iii) VB-SAGE-L, iv) the

SAGE algorithm [3] with Bayesian Information Criterion for model order selection (SAGE-BIC), and v)

the VB-SAGE algorithm with the negative log-evidence (NLE) approach for model order selection (VB-

SAGE-NLE) [19]. The NLE is equivalent to the Bayesian interpretation of the Normalized Maximum

Likelihood model order selection [7], [9]. For SAGE-BIC and VB-SAGE-NLE we set the initial number

of components to the number of samplesN .

We first consider the simulation scenario where all components have the same power. The corresponding

results, averaged over200 Monte Carlo runs, are summarized in Fig. 2. It can be seen that VB-SAGE-G,
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Fig. 2. Performance of the proposed estimation algorithms applied to synthetic channels with equal component power. Estimation
of model orderL̂ (a-e), and the achieved RMSE between the synthetic and reconstructed responses (f-j). The true number of
components isL = 20 (dotted line in upper plots). The solid lines denote the averaged estimates of the corresponding parameters.
Upper and lower dotted lines denote the5th and95th percentiles of the estimates, respectively.
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VB-SAGE-F, and VB-SAGE-L clearly outperform the other two methods, with VB-SAGE-L exhibiting

the best performance. Notice that (17) in VB-SAGE-G and VB-SAGE-F fails for low SNR; also the

initial number of components (126 in this case) remains unchanged during the update iterations. The

VB-SAGE-L algorithm, however, does not exhibit such behavior. Nonetheless, all three methods have

a small positive model order bias in the high SNR regime. VB-SAGE-NLE and SAGE-BIC perform

reasonably only in the limited SNR range8 − 14dB and fail as the SNR increases beyond. The reason

for this is an inadequate penalization of the parameter likelihood, which leads to the introduction of

estimation artifacts. Specifically, the selected sampling rates of the processed signals limit the precision

in the estimation of the dispersion parametersθl of the multipath components. As a result the mean-

squared estimation errors of these estimates exhibit a floor at high SNR. These estimates are obtained by

optimizing parameter-specific objective functions, cf. (29) and (30), which in a real implementation are

computed from discrete signals. As a consequence, the objective functions need to be interpolated between

their computed samples in these optimization procedures. It is these interpolations that lead to the flooring

of the estimate errors at high SNR regime. The residual errors of the dispersion parameters translate into

residual interference that may manifest itself as fictive components if not handled appropriately. This

effect can also be seen as a basis mismatch problem that leadsto an overestimation of true model

sparsity [26]. The use of adjusted pruning conditions in caseof VB-SAGE-G, -F, and -L algorithms

allows for a better control over the estimation artifacts. This, however, leads to a floor of the RMSE

between the synthetic and reconstructed channel responsesat high SNR, as seen in Figures 2(f), 2(g),

and 2(h). In contrast, VB-SAGE-NLE and VB-SAGE-BIC do not exhibitthis behavior of RMSE, albeit

at the expense of introducing more and more fictive multipath components to compensate for multipath

parameter estimation errors as the SNR increases.12 Increasing the number of samplesN while keeping

Tb fixed and increasing the number of antenna elements reduce thenoise RMSE floor since the multipath

dispersion parameters can be estimated with greater precision.

Obviously, the model order estimate has a significant impact on the convergence speed of the algorithm.

Fig. 3 depicts the averaged number of update cycles versus SNR for the five investigated channel

estimation schemes. We see here that for SNR above12dB the VB-SAGE-G, -F, and -L schemes

outperform the other estimation schemes, with the convergence rate of the VB-SAGE-L algorithm being

almost independent of the SNR. Notice that the overestimation of the model order with VB-SAGE-NLE

and SAGE-BIC leads to a significant increase of the number of iterations as the SNR increases.

12Note, however, that that the same effect is observed with VB-SAGE-G and VB-SAGE-L whenSNR′ is not used to enforce
sparsity and correct for model order estimation errors.
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Fig. 3. a) Averaged number of update cycles versus the averaged per-component SNR.

Let us now consider the second scenario where the component power decreases exponentially versus

delay. These results are reported in Fig. 4. A picture similar to the equal-power case is observed here.
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Fig. 4. Performance of the proposed estimation algorithms applied to synthetic channels with exponentially decaying component
power. Estimation of model order̂L (a-e), and the achieved RMSE between the synthetic and reconstructed responses (f-j). The
true number of components isL = 20 (dotted line in upper plots). The solid lines denote the averaged estimates of the
corresponding parameters. Upper and lower dotted lines denote the5th and95th percentiles of the estimates, respectively.

The performance of VB-SAGE-L is clearly better than that of the other tested schemes. In this setting

both VB-SAGE-G and VB-SAGE-F require higher SNR to bring the estimated model order within the
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range of the true number of components. Notice that all threeconditional methods are no longer biased

and on average estimate the correct number of components.

B. Estimation of measured wireless channels

We now investigate the performance of the VB-SAGE-L algorithmapplied to the estimation of

measured wireless channel responses collected in an indoorenvironment. The measurements were done

with the MIMO channel sounder PropSound manufactured by Elektrobit Oy. The measurement setup

consisted ofMr = 18 receiving andMt = 50 transmitting antenna elements. In the conducted experiment

the sounder operated at the center frequency5.2GHz with a chip period ofTp = 10nsec. The sounding

sequence consisted ofM = 255 chips, resulting in a burst waveform duration ofTb = 2.55µsec. One

burst waveform was sent to sound each channel correspondingto any pair or transmit antenna and receive

antenna.The received signal was sampled with the periodTs = Tp/2 (i.e., 2 samples/chip).

The estimation results obtained using the VB-SAGE-L algorithmare compared to those obtained with

Bartlett beamformer outputs [33]. Since the receiver was equipped with a planar array, we report only

the azimuthal information of the estimated multipath components. In order to minimize the effect of

estimation artifacts we make use of (28). The sensitivity level SNR′ is computed from the estimated

delay power profile as described in Section V-E: a smoothed estimate of the delay power profileDPP (τ)

is normalized with the estimated additive noise varianceσ2
ξ ; the sensitivitySNR′(τ)13 is then defined

asSNR′(τ) = DPP (τ)
σ2

ξ

/
101.5. This setting allows for a detection (removal) of componentsat a certain

delay with power above (below) a threshold15dB below the received power at that delay. The algorithm

is initialized as described in Sec.V-B. To initializeτl’s we partition the DPP in8 delay segments, covering

the delay interval[10, 360]ns. Then, using (29) and (30) we initialize at most7 components per segment14,

which results inLmax = 56. For the used sensitivity levelSNR′(τ) the algorithm estimatesL = 18

components. The parameter estimates of these components aresummarized in Fig. 5 and 6.

Investigations, not reported due to space limitation, showthat the estimated multipath components can

be associated to propagation paths computed from the geometry of the environment using ray-tracing.

Due to the delay-dependent sensitivity levelSNR′(τ) very weak components at the tails of the delay

response are also detected. Their positions coincide well with the maxima of the Bartlett spectrum

13A possible extension, not considered here due to space limitations, would consists in makingSNR′ both delay and direction
dependent.

14The initialization of the multipath components located in a delay segment is interrupted when the pruning condition (26)
fails.
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Fig. 5. (a-c) Bartlett estimates (solid line) and model-based estimates (dashed line) of the delay power profile; dotted lines
denote the estimated delay power profile of the residualξ; triangles denote the delays of the estimated components; (d-f)
normalized Bartlett estimates of the azimuth of arrival and departure forthe selected delay ranges (denoted by crosses in figures
(a-c), respectively.

estimates. We also note that not all of the “footprints” in the Bartlett spectrum have been identified

as multipaths. This is due to the component magnitudes being below the detection sensitivity of the

algorithm; also, some of the footprints observed in the Bartlett spectrum are likely due to side lobes

caused by the system response and thus may not correspond to any true physical multipath component.

VII. C ONCLUSION

This contribution proposes a new algorithm that estimates the number of relevant multipath components

in the response of radio channels and the parameters of thesecomponents within the Bayesian framework.

High-resolution estimation of the multipath components isperformed using the Variational Bayesian

SAGE (VB-SAGE) algorithm – a new extension of the traditional SAGE algorithm – which allows

computing estimates of the posterior probability density functions (pdfs) of the component parameters,

rather than parameter point estimates. By introducing sparsity priors for the multipath component gains,

the sparse VB-SAGE algorithm allows estimating the posterior pdfs of the component parameters jointly

with the posterior pdfs of the sparsity parameters by minimizing the variational free energy. The pdfs of

the parameters of a single component are updated at each iteration of the algorithm, with the iterations
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Fig. 6. (a-c) Bartlett estimates (solid line) and model-based estimates (dashed line) of the delay power profile; dotted lines
denote the estimated delay power profile of the residualξ; triangles denote the delays of the estimated components; (d-f)
normalized Bartlett estimates of the azimuth of arrival and departure forthe selected delay ranges (denoted by crosses in figures
(a-c), respectively.

cycling through the components. Due to the Monotonicity Property of the VB-SAGE algorithm, the free

energy is non-decreasing versus the iterations.

Several sparsity priors are considered: Gaussian, flat and Laplace priors. The admissible hidden data

introduced in the VB-SAGE algorithm allow obtaining simple and easy to interpret component pruning

rules/conditions for these priors. Theses conditions are shown to be equivalent to removing signal

components based on comparison of the per-component SNR witha given threshold. This threshold

can be set for all components or tailored for each component individually.

The sparse VB-SAGE algorithm is applied to the estimation of the multipath components in the

response of synthetic and measured wireless multipath channels. We show by means of Monte Carlo

simulations that the sparsity-based model order selectionmethods with sensitivity-adjusted pruning

conditions outperform the Bayesian Information Criterionand the Negative Log-Evidence model order

selection criterion. These methods fail since, due to various effects (calibration errors, finite precision in

the discretization process, diffuse scattering, etc.) leading to a model mismatch, numerical artifacts are

introduced, which lead to a decreasing RMSE at the expense of an increased model order. In case of

estimation of wireless channels this is highly undesirable, since the estimated artifacts have no physical
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meaning. The proposed modifications of the pruning conditionsallow correcting for possible model order

estimation bias due to modeling mismatch. Making use of the Laplace prior results in the best performance

among the tested methods. Simulations show that for low SNR theVB-SAGE algorithm with Laplace

sparsity priors, which we refer to as the VB-SAGE-L algorithm,keeps only reliably estimated components,

while successfully removing the artifacts. The VB-SAGE-L algorithm also exhibits the fastest convergence

as compared to the other tested algorithms with the same stopping criterion.

We apply the VB-SAGE-L algorithm to the estimation of the multipath components in the measured

CIRs. In order to minimize the effects of model mismatch, thedetector sensitivitySNR′ is adjusted

based on an estimate of the delay power profile. Since the artifacts are typically more pronounced in

areas of the high received power, a smoothed version of the delay power profile can be used as an

indicator of the received power versus propagation delay. Investigations, not reported in this paper due to

space limitation, show that the estimated multipath components can be associated to propagation paths

computed from the geometry of the environment using ray-tracing.

The sparse VB-SAGE algorithm provides a new and effective toolfor efficient estimation of wireless

channels. Its flexibility and its iterative structure make itvery attractive for many applications in wireless

communications: analysis and estimation of complex MIMO channel configurations in channel sounding

and MIMO radars, channel estimation in iterative receiversperforming joint channel estimation and

data decoding, as well as extraction of location-dependentfeatures of the radio channel for localization

purposes.

APPENDIX A

MONOTONICITY PROPERTY OF THEVB-SAGE ALGORITHM

Define Al = {wl, θl, αl} as the set of parameters associated with thelth multipath compo-

nent andRl = {wk, θk, αk; k ∈ I(l)} as the set of the other multipath parameters. We as-

sume thatq(Al,Rl) = q(Al)q(Rl). It is straightforward to show that minimizing the free energy

F(q(Al,Rl)‖p(z,Al,Rl)) with respect toq(Al) is equivalent to minimizingF(q(Al)‖p̃(z,Al)), where

p̃(z,Al) ∝ exp
(
Eq(Rl){log p(z,Al,Rl)}

)
. The VB-SAGE algorithm facilitates this optimization using

the admissible hidden dataxl in (3). Consider the equalityp(xl, z,Al,Rl) = p(xl|z,Al,Rl)p(z,Al,Rl).

By combining this equality with the factorization (4) and computing the expectation with respect toxl

February 24, 2011 DRAFT



29

andRl we obtain

Eq(Rl){log p(z,Al,Rl)} = Eq(xl){log p(xl,Al)}

−Eq(xl)Eq(Rl){log p(xl|z,Al,Rl)}+ const

whereconst is a term independent ofAl. Define now˜̃p(Al) ∝ exp
(
Eq(xl){log p(xl,Al)}

)
. Observe that

p(xl,Al) is a function of the admissible hidden data and of thelth multipath component parameters.

Now, the free energy with respect toAl can be rewritten as

F(q(Al)‖p̃(z,Al)) = F(q(Al)‖ ˜̃p(Al))

−Eq(xl)Eq(Al)Eq(Rl){log p(xl|z,Al,Rl)}+ const.

(31)

Minimizing F(q(Al)‖ ˜̃p(Al)) is typically simpler as compared to minimizingF(q(Al)‖p̃(z,Al)).

However, whetherF(q(Al)‖p̃(z,Al)) decreases asF(q(Al)‖ ˜̃p(Al)) decreases ultimately depends on

the termEq(xl)Eq(Al)Eq(Rl){log p(xl|z,Al,Rl)} in (31).

Let q(Al) denote an existing (old) estimate ofAl, and let q′(Al) be the new minimizer of

F(q(Al)‖ ˜̃p(Al)). A current estimateq(xl) of the admissible hidden data posterior pdf is given by

(7), i.e., q(xl) = p̃(xl) ∝ exp
(
Eq(Al)Eq(Rl){log p(xl|z,Al,Rl)}

)
, sinceMB(xl) = {z,Al,Rl}.

Note that it is easy to show thatlog p̃(xl) must be quadratic inxl. Similarly we definep̃′(xl) ∝
exp

{
Eq′(Al)Eq(Rl){log p(xl|z,Al,Rl)}

}
. With these settings it follows that

F(q(Al)‖p̃(z,Al))−F(q′(Al)‖p̃(z,Al)) =

F(q(Al)‖ ˜̃p(Al))−F(q′(Al)‖ ˜̃p(Al))

+DKL(p̃(xl)‖p̃′(xl)) ≥ 0.

(32)

Result (32) expresses the Monotonicity Property of the VB-SAGE algorithm. Furthermore,q(xl) =

p̃(xl) ∝ exp
{
Eq(Al)Eq(Rl){log p(xl|z,Al,Rl}

}
is a sufficient condition that guarantees the monotonicity

of the VB-SAGE algorithm for our estimation problem.
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