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EXECUTIVE SUMMARY

In this deliverable the intermediate research results, conducted in WHERE2 WP1, for the
purpose of characterizing the multi-link radio channel are presented. This deliverable is
structured in two parts, a body part that provides a summary of the reported activities orga-
nized topic-wise, and an appendix containing all related publications and reports produced
within WP1. The latter documents are meant to provide the readers with more detailed
information on the activities if needed or wanted.

The body part of the deliverable summarizes in Section [2] a measurement campaign
conducted by DLR and AAU. The purpose of the campaign is the characterization of radio
channels for cooperative localization and the validation of reverberant in-room channels.
The data is not part of the WHERE?2 project but is extensively used and analyzed within
the project. The extensive measurement report can be found in Appendix [A.T] First results
using these measurements are also included in this deliverable.

First results of the characterization of the cross-correlation of multi-link large scale pa-
rameters are summarized in Section[3l The work so far has focused on the characterization
of delay dependent large scale parameters and the range estimation error due to the non-line
of sight bias. These investigations were done specifically for multi-link channels and for
multi-carrier frequencies for the outdoor-to-indoor channel. Detailed information on this
topic can be found in the Appendices[A.2]and[A.3]

Section 4 summarizes recent on-going work on reverberant in-room radio channel mod-
els. A distance-dependent delay-power spectrum model of in-room channels is considered.
The proposed model is used to characterize various distance dependent parameters such
as the received signal strength, mean delay and rms delay spread. The model allows for
the prediction of these parameters for in-room multi-link scenarios. Furthermore, this sec-
tion contains a model that describes the response of the indoor radio channel. The model’s
uniqueness is the consideration of the so-called avalanche effect. The structure of the model
allows for an efficient implementation of multi-link channels. Details on these models can
be found in the Appendices[A.4and[A.5]

A sparse radio channel parameter estimator is summarized in Section[5] The avalanche
effect observed in measurements makes it extremely difficult to reliably estimate parameters
of multipath components. The presented method allows for the joint estimation of the pa-
rameters and the number of dominant multipath components. The method is also crucial for
delay-power-profile based fingerprinting. A detailed description of the estimation algorithm
can be found in Appendix[A.6

The presented results and the ongoing activities presented in this deliverable, together
with the results and ongoing activities on non-stationary channels of deliverable D1.4 as well
the investigations on ray-tracing tools in deliverables D1.5 and D1.6, form the basis for the
characterization of a multi-link channel model.
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1 INTRODUCTION

As already identified in Annex I “Description of Work™ of the WHERE?2 project descrip-
tion [[1], the positioning accuracy achievable with global navigation satellite systems can be
greatly improved by usage of additional terrestrial mobile radio standards. This results in a
combination of various standards in the form of heterogeneous multi-link systems. To char-
acterize multi-link channels, for both localization and communication purposes, research in
the WHERE?2 project focuses on 1) the characterization of the statistical dependency be-
tween channel links, 2) the characterization of the transition of outdoor-to-indoor, 3) the
non-stationarity and time variance, and 4) development of signal processing techniques that
enable to conduct the investigations in items 1) to 3).

Typical channel models for radio communications and localization purposes, proposed
sofar, only considered single-link propagation. Lately, in radio communication systems, the
focus shifted towards multi-link systems but localization aspects are, if at all, only scarcely
considered in these research activities. This is due to the different purpose in radio commu-
nications, namely the statistical description of the radio channel for evaluation of transceiver
systems. The research activities in WHERE2 WP1 address these deficiencies and work is
on-going towards a description of multi-link channel models for localization purposes.

In the following the intermediate research results, conducted in WHERE2 WP1, for the
purpose of characterizing the multi-link radio channel are presented. This report is structured
in two parts, a body part that provides a summary of the reported activities organized topic-
wise, and an appendix containing all related publications and reports produced within WP1.
The latter documents are meant to provide the readers with more detailed information on the
activities if needed or wanted.

Section2k A description of a measurement campaign conducted by DLR and AAU is pro-
vided. The purpose of the campaign is the characterization of radio channels for co-
operative localization and the validation of reverberant in-room channels. First results
using these data are already presented in this deliverable.

Section 3k Results on the correlation of large scale parameters of outdoor-to-indoor multi-
link radio channels are summarized. The focus is on the correlation of time dispersive
parameters in the multi-link and multi-carrier-frequency case and the bias of the time
of arrival estimates of the first component, due to non-line of sight situations.

Sectiond: This section presents recent and on-going work on in-room radio propagation
channel models. A distance-dependent delay-power spectrum model of in-room chan-
nels is considered. The proposed model is used to characterize various distance depen-
dent parameters such as the received signal strength, mean delay and rms delay spread.
The model allows for the prediction of these parameters for in-room multi-link sce-
narios. A model that describes the response of the indoor radio channel is summarized
in Section4.3] The model’s uniqueness is the consideration of the so-called avalanche
effect. The structure of the model allows for an efficient implementation of multi-link
channels.

Section 5k The sparse radio channel parameter estimation is addressed. The avalanche ef-
fect observed in measurements makes it extremely difficult to estimate reliably param-
eters of multipath components. The presented method allows for the joint estimation
of the parameters and the number of dominant multipath components. The method is
also crucial for delay-power-profile based fingerprinting.

Section[6: Conclusions.
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Appendix[Al: The appendix contains a collection of already published or soon to be pub-
lished articles or reports produced within the WHERE?2 project. This collection con-
tains more detailed information on the various sections in the deliverable.
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2 MULTI-LINK AND REVERBERANT CHANNEL MEASUREMENT CAM-
PAIGN

A measurement campaign, not part of the WHERE? project, with the focus on indoor multi-
link and reverberant in-room channels was conducted by DLR and AAU. The measurement
data is used from both parties within the WHERE2 project and can be shared with other
partners upon request.

The measurement campaign has two main goals. Firstly to validate models for in-room
channels including reverberation effects and secondly to provide measurement data for coop-
erative localization methods. First results using these data are already presented in this deliv-
erable. For the measurement campaign the measurement platform for time-variant wireless
channels from DLR, introduced in WHERE2 D1.4, was used. The high spatial resolution of
the platform allows for combining several transmitter positions to a virtual array. Together
with the circular receiver array, this enables a bi-directional channel characterization.

Reverberant Channel Measurement: Towards the end of the previous WHERE project
a delay-power spectrum model based on the observations from measurements was
proposed. Previous measurement campaigns e.g. in the WHERE project, were not
fully suitable for validation of the model due to limited amount of data in the spa-
tial domain. Thus for the validation of the proposed model it is necessary to have
transmitter-receiver distances covering almost all possible distances in the room. The
data should also allow for the development of further models accounting for the phys-
ical mechanisms leading to the reverberation phenomena. Thus several experiments,
for instance with closed and opened windows or people placed around the conference
table, were conducted.

Cooperative Localization Measurement: There is to our knowledge no measurement data
for cooperative localization available, which contains detailed information on the
transmitter and receiver positions, the antenna pattern and their rotation. We have
defined scenarios that cover both LoS and NLoS links between transmitter and re-
ceiver. The choice of transmitter and receiver locations offer a robust approach for
distance-based evaluation.

The obtained measurement data was already utilized in Section [4.1|and will be further used
to evaluate multi-link and time variant channel parameters. A detailed description of the
measurement campaign is provided in Appendix

71/(123



ICT-248894 WHERE2 D1.3

3 CROSS CORRELATIONS OF MULTI-LINK LARGE SCALE PARAMETERS

Augmenting global navigation satellite systems (GNSSs) based positioning with signals of
opportunity improves the position accuracy compared to a GNSS-only solution. The sig-
nals of terrestrial mobile radio standards can be exploited in addition to GNSS signals. A
promising augmentation approach is to apply time based localization to terrestrial radio sig-
nals which provide considerably higher received power levels compared to GNSS [2]. Usu-
ally, the links between the mobile terminal and the anchor nodes or base stations are blocked
(e.g., by walls or buildings). Moreover the geometrical conditions are worse such that the
mobile terminal position can not be resolved accurately. Cooperative positioning, using time
of arrival measurements from multiple peer-to-peer links, has been proposed to improve the
performance in terms of accuracy and coverage problems.

The wireless channel has a significant impact on localization based on time measure-
ment. The position error is directly related to the range estimation error of individual radio
links. This section presents the evaluations of channel parameters in terms of mean delay,
delay spread, and positioning related parameter non line of sight (NLoS) bias.

The focus in Section [3.1|is on correlation of time dispersive parameters in the multi-link
and multi carrier frequency case. In Section [3.2]the bias, due to non-line of sight situations,
of the time of arrival estimates of the first component is studied for the same outdoor-to-
indoor measurements.

3.1 Time Dispersion Parameters

The mean delay and rms delay spread are usually of interest for evaluation of time dispersion
characteristics. The multi-link rms delay spread and mean delay for different carriers at
2.45GHz and 5.2 GHz are addressed in Appendix[A.2]based on a comparison measurement.
In this measurement the accurate transmitter and receiver location information are available.
From the results, the outdoor reflections, showing up as clustered structure in the channel
impulse response (CIR), introduce significant impact on the delay spread. Moreover it is
noticeable that rms delay spread or mean delay do not appear to be significantly different at
2.45GHz and 5.2GHz. Besides, the obtained power delay profiles (PDPs) for both bands
show the similar shapes. Therefore, the delay spread should be similar. This observation is
important since channel models, relying on the rms delay spread for generating wideband
CIRs are therefore able to use the same statistics at different carrier frequencies.

For multi-link scenarios, the inter-link time dispersion parameter correlations is an open
issue, especially in the scope of cooperative networks. Similarly to the estimation in Ap-
pendix [A.3] the inter-link correlation coefficient can be obtained for time dispersion param-
eters to evaluate the correlations. Based on the measurement described in Section [2] for
indoor cooperative scenarios, it is interesting to investigate the multi-link cross correlation
of the time dispersion parameters.

3.2 Positioning Related Parameters — NLoS Bias

One of the channel characteristics affecting the range estimation error is the positive bias on
the first detectable path (FDP). This occurs in situations where the geometric line-of-sight
(GLoS) path is blocked. This bias, i.e. the difference between the geometrical distance from
the transmitter to the receiver and the propagation distance of the first detectable path is
known as the non line-of-sight (NLoS) bias. This bias results in errors of the ranging esti-
mates. Without loss of generality, the NLoS bias could be regarded as a large scale parameter
for localization similar as the path loss, K factor, and delay spread in communication.

In order to obtain the characteristics of NLoS bias, analysis based on real channel mea-
surement is desired. The GLoS distance can be obtained by using the tachymeter system.
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For those scenarios where the link between transmitter and receiver is blocked, to determine
the position of the transmit antenna a tachymeter giving a nominal accuracy in the sub-cm
domain was utilized. A similar accuracy is achieved for the receive antenna by using a rotary
encoder mounted on the motor of the model railway. The GLoS distance can be calculated
straightforward by measuring the coordinates of transmitter and receiver. Concerning the
delay of FDP, a super-resolution algorithm, namely SAGE, is used to estimate the channel
parameters. Thereafter, the NLoS bias can be obtained.

Based on the measurement described in Section [3.1] we obtained results that show that
there are no significant differences of NLoS bias between both carrier frequencies. These
results are presented in more detail in Appendix [A.2] Moreover to study the multi-link
NLoS bias, the correlation coefficients of the NLoS bias between different transmit antenna
positions indicate no correlation between NLoS biases from different links as shown in Ap-
pendix[A.3] However, it is still an open issue to evaluate the inter-link NLoS bias correlation
in the cooperative scenarios based on the indoor measurement presented in Section 2] In the
indoor scenarios is the number of inter-links larger than in usual cellular networks.
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4 REVERBERANT CHANNELS

This section considers indoor radio propagation of reverberant channel scenarios. The re-
search is motivated by observations of the delay-power spectrum in research literature. In
Section [4.1] a distance dependent delay-power spectrum model of in-room channels is con-
sidered. The proposed model is used to characterize various distance dependent parameters
such as the received signal strength, mean delay and rms delay spread. A model to de-
scribe the response of the indoor radio channel, which generates similar delay-power spectra
as the model in Section .1} is summarized in Section 4.3] The model’s uniqueness is the
consideration of the so-called avalanche effect.

4.1 Modeling the Delay Power Spectrum of Reverberant In-Room Channels

Experimental observations [5, 6] of the behavior of the delay-power spectrum for reverberant
in-room channels show that the tail of the delay-power spectrum exhibits the same constant
exponential decay regardless of the transmitter and receiver positions. Furthermore, a peak
at the early part of the delay-power spectrum is strong at short transmitter-receiver distances
and gradually vanishes as the distance increases. A similar behavior is observed in room
acoustics [[7]] and electromagnetic fields in cavities [8].

Based on the observations from [5, [6], we propose in Appendix|[A.4Ja model for the dis-
tance dependent delay-power spectrum with a “dominant” and a “reverberant” component.
The dominant component represents the early part of the delay-power spectrum consist-
ing of a directly propagating component and possible first-order reflections from the floor,
ceiling and walls. The reverberant component represents the multitude of higher order re-
flections in the room which yield the diffuse tail of the delay-power spectrum. The model
allows to predict the path loss, the mean delay and the rms delay spread as a function of
transmitter-receiver distance via closed form expressions. Predictions of the model are in
good agreement with experimental observations. A comparison to the widely used log-
distance path loss model shows that the log-distance model blends the contribution of the
dominant and reverberant component. As such the path loss exponent is below the free
space path loss exponent. Furthermore, we observed that the log-distance path loss model
for short distances overestimates the path loss were as for other distances the path loss is
underestimated. The proposed model shows good agreement over the full distance range.
Additionally the proposed model allows for the description of the mean delay and rms delay
spread versus distance, which could be used as additional parameters in radio localization.

The proposed model for the delay-power spectrum in Appendix can be used for any
transmitter receiver position in the room. It allows for prediction of the distance dependent
path loss, mean delay and rms delay spread for multi-link channels. Current preliminary
observations indicate that one obtains for the same room different path loss exponents for
the log-distance model from measurements where mobile (eg. receiver) moves freely but
the anker (eg. transmitter) is positioned at different locations in the room, eg. the center
of the room or close to a corner. However this has yet to be verified by experimental data.
Furthermore, it is of interest to explore the distance dependency of other parameters such
as higher order moments of the delay power spectrum, kurtosis or for instance the Rice
factor from the proposed delay-power spectrum model. Another open issue is the coupling
between neighboring rooms which would allow the extension of the predictions of the model
to neighboring rooms.

4.2 Modeling the Reverberation for In-room Channels

The reverberation time, which is the decay rate of the exponentially decaying tail of the
delay power spectrum, plays an important role in radio localization. As is shown in Ap-
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pendix [A.4] the reverberation time influences several distance dependent parameters used in
radio localization such as for instance the received signal strength, or the mean delay and
rms delay spread. The distance dependent behavior of the delay-power spectrum shows that
for a specific transmitter-receiver distance region, denoted as reverberation region, the early
dominant peak can no longer be distinguished from the exponential tail. The reverberation
time plays a vital part in characterizing the start and end points of the reverberation region.
In delay dependent distance estimation often the strongest peak in the power delay profile
is detected and considered as the geometric line of sight. Such an approach will lead to
strongly biased distance estimates for distances in the reverberation region where the peak
is part of the exponential tail. As we can see from these few examples it is of great interest
for radio localization to model and estimate the reverberation time.

In room acoustics [[7] a reverberation effect in the room describes the decay rate of the
tail of the delay-power spectrum. The well known room acoustic models of Sabine and
Eyring express the relation between the reverberation time and geometry in terms of the
average wall absorption coefficient. In [6] the Sabine model was considered for indoor
radio propagation. Results such as average wall absorption or the decay rate are presented.
However, a thorough experimental model validation is missing. The Eyring model is used
in [5] to predict the reverberation time. The used average wall absorption coefficient for the
prediction is calculated from the electromagnetic properties of wall materials. The predicted
and measured delay-power spectra are in good agreement. Unfortunately the power values
were normalized before the comparison of the delay-power spectra.

For validating the model assumptions of the reverberation effect, we conducted an ex-
periment within the measurements described in Section [2] with various numbers of open
windows in a room. Opening the windows should alter the average wall absorption coeffi-
cient of the room. This in turn will result in a change of the decay rate of the reverberant
component in the room. Preliminary results of the predicted decay rates show a good agree-
ment to the experimentally obtained values for open windows. However these preliminary
results need further investigation to confirm the validity of the assumptions for radio signals.
Additional open issues concerning the decay rate are for instance the influence of additional
absorbers in the room eg. the human body, possible effects due to coupling from neighboring
rooms, and the changes of the decay rate for various room sizes.

4.3 Graph Based Modeling of Reverberant Multi-link Channels

It has been observed from measurements of channels [[10] that the spatially averaged channel
impulse response for single-link in-room scenarios exhibits an avalanche effect: The earliest
signal components, which appear well separated in time, are followed by an avalanche of
components arriving with increasing rate of occurrence, gradually merging into a diffuse tail
with exponentially decaying power.

In Appendix [A.5] we follow a new approach to design a model of the channel response
which includes recursive scattering and thereby inherently accounts for the exponential
power decay and the avalanche effect. The environment is modeled in terms of a propa-
gation graph in which vertices represent transmitters, receivers, and scatterers, while edges
represent propagation conditions between vertices. A closed form expression of the channel
transfer function valid for any number of interactions is derived. We discuss an example
where interactions are assumed to cause no time dispersion and thus delay occurs only due
to propagation in between scatterers. For this example, a stochastic model of the propaga-
tion graph is stated based on which realizations of the channel transfer function and impulse
response are generated for numerical evaluation. The results reveal that the graph’s recursive
structure yields both an exponential power decay and an avalanche effect in the generated
impulse responses.
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The propagation graph modeling framework and associated analytical results proposed
in Appendix [A.5]also encompass MIMO and multi-link systems. An appealing asset of the
modeling framework is that the computational complexity is dominated by the number of
scatterers rather than the number of transmitter-receiver links. However, it is an open issue
to amend the stochastic example model presented in Appendix to incorporate multiple
links. Such an amendment will enable the study of avalanche effects in multi-link channels
via numerical simulations. An additional open issue is the validation of such multi-link
models using measurement data.

44 Stochastic Model of Avalanche Processes in Reverberant Multi-link Channels

The delay dispersion of radio signals is an important effect, which impacts e.g. the accu-
racy of time of arrival-based (TOA-based) range estimators. For TOA-based estimation, the
early part of the channel impulse response is particularly important, as this part governs the
estimation errors. Radio channel models relying on a random spikes representation of the
channel impulse response are commonplace for wideband and ultrawideband communica-
tions. State of the art models rely on essentially the same principle developed by Turin et al.
[12] during the 1970s: The received signal consists of a linear combination of delayed copies
of the transmitted signal. The delays are modeled according to a stochastic point process of
varying kinds. Common to all models of this type is that assumptions on the intensity (or
arrival rate) must be made.

The avalanche effect observed in measurements of indoor reverberant channels [[10] in-
dicate that the arrival rate for the signal components should increase with the delay, while
the power of each component should decrease in order to allow for an exponentially de-
caying overall delay-power spectrum. The increasing arrival rate may impact localization
applications relying on range estimates derived from estimated propagation delays (such as
TOA, DTOA systems). The original model by Turin et al. relies on a Poisson point process
of which the intensity function is obtained via extensive measurement campaigns. Sim-
ilarly, the delay point process in the celebrated Saleh-Valenzuela model and its derivatives
are based on a Cox-process, where the intensity parameters are obtained from measurements
[13]. Unfortunately, the extraction of the arrival rate from measurements is non-trivial, and
error prone, especially in indoor scenarios where reverberation effects prevail. This hassle
is no less when considering multi-link channels.

It is therefore of interest to explore the connection between the geometric properties of
the radio propagation environment (e.g. a single room, or a building) and the arrival rate.
There are several related open issues: Determination of the connection between geometry of
the propagation environment and the arrival rate; statement of stochastic models accounting
for this connection; and extension of Turin-based models to multi-link channels. Finally, an
interesting open issue is the directional properties of the reverberant channels.
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5 SPARSE VARIATIONAL BAYESIAN (VB) EXTENSION OF THE SAGE
ALGORITHM

When applying high resolution algorithms to the estimation of wireless multipath channels
from multidimensional channel measurements, an accurate determination of the number of
dominant multipath components is required in order to reproduce the channel behavior in a
realistic manner — an essential driving mechanism for the design and development of next
generation MIMO-capable wireless communication and localization systems.

In Appendix [A.6]a sparse Variational Bayesian (VB) extension of the SAGE algorithm
[15] for the high resolution estimation of the parameters of relevant multipath components
in the response of frequency and spatially selective wireless channels is proposed. The ap-
plication context of the algorithm considered is parameter estimation from channel sounding
measurements for radio channel modeling purpose.

The new sparse VB-SAGE algorithm extends the classical SAGE algorithm in several
respects: by monotonically minimizing the variational free energy, i) distributions of the
multipath component parameters can be obtained instead of parameter point estimates and
ii) the estimation of the number of relevant multipath components and the estimation of
the component parameters are implemented jointly. The sparsity is achieved by defining
parametric sparsity priors for the weights of the multipath components.

The Gaussian sparsity priors are revisited within the new VB-SAGE framework and ex-
tensions of the sparsity results for complex Laplace priors are investigated. The structure
of the new VB-SAGE algorithm allows for an analytical stability analysis of the update ex-
pression for the sparsity parameters. This analysis leads to fast, computationally simple, yet
powerful, adaptive selection criteria applied to the single multipath component considered
at each iteration. The selection criteria are adjusted on a per-component-SNR basis to better
account for model mismatches, e.g. diffuse scattering, calibration and discretization errors,
allowing for a robust extraction of the relevant multipath components.

The performance of the sparse VB-SAGE algorithm and its advantages over conven-
tional channel estimation methods are demonstrated in synthetic SIMO time-invariant chan-
nels; the algorithm has also been applied to real measurement data in a MIMO time-invariant
context.

The future extension of the sparse VB-SAGE algorithm should target variational Bayesian
estimation of additive white noise and estimation of diffuse multipath part of the channel re-
sponse. Diffuse multipath contributions can be represented as non-white additive noise with
zero mean and covariance matrix that models temporal and spatial structure of diffuse com-
ponents. Variational methods can be applied to optimally estimate this covariance matrix
from measurement data, thus effectively providing a framework for extending the sparse
VB-SAGE algorithm to the estimation of diffuse multipath components.
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6 CONCLUSIONS

This intermediate deliverable summarizes the ongoing activities of T1.2 in WHERE2 WP1
on the topic of multi-link channel models. The focus in this deliverable is put on the charac-
terization, i.e. measurement, modeling and parameter estimation, of indoor and outdoor-to-
indoor single- and multi-link channels.

An indoor measurement campaign for characterizing the radio channel for cooperative
localization (multi-link channels) and reverberant in-room channels was introduced in Sec-
tion 2] The measurement campaign was an initiative of DLR and AAU. The data is not part
of the WHERE?2 project but is extensively used and analyzed within the project. Results
using these measurements are included in this deliverable.

First results of the characterization of the cross-correlation of multi-link large scale pa-
rameters were presented in Section [3] The work so far focused on the characterization of
delay dependent large scale parameters and the range estimation error due to the non-line
of sight bias. These investigations were done specifically for multi-link channels and for
multi-carrier frequencies for the outdoor-to-indoor channel.

Indoor propagation was considered in Section {4 for single room scenarios. Motivated
from measurement observations, a model for the delay-power spectrum, allowing to char-
acterize several distance dependent large scale parameters such as received signal strength,
mean delay and rms delay spread, was presented. A model for the channel response, which
includes the avalanche effect, was presented too.

In Section [5] a method to estimate jointly the number and the parameters of relevant
multipath components was proposed. Such methods are specifically useful when estimating
relevant parameters from channel responses exhibiting an avalanche effect.

The presented results and including future activities are the basic foundation for the de-
scription of a multi-link channel model. Together with the results for non-stationary channels
of D1.4 and investigations with ray-tracing tools in D1.5 and D1.6, a description for multi-
link channel models for localization purposes will be prepared and continuously shared with
the other work packages in WHERE2.

14 /[123]
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A APPENDIX

The appendix contains a collection of articles and reports with detailed information to the
summaries of the different sections in this deliverable, which are results of the WHERE2
project. Table|[T]lists titles of the following sections in the appendix.

Table 1: Overview of the collection of papers and reports.

Appendix Title Page

A1 [Measurements for Validation of Models for Reverberand 16
and Cooperative Channels| L

A2 Qutdoor-to-Indoor Channels at 2.45 GHz and 5.2GHz fonn |60
|_Geolocat10n Applications| L

A3 [Multiple-Links NLoS Error Evaluations for Geolocation| (66
|_Channe1 Modelling| |

A4 odel for the Path Loss of In-room Reverberant Channels| |72

A5 R:odehng of Reverberant Radio Channels Using Propaga- 78
tion Graphs

A6 Sparse Variational Bayesian SAGE Algorithm with Appli-| )
fcation to the Estimation of Multipath Wireless Channels| u
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Al Measurements for Validation of Models for Reverberant and Cooperative Chan-
nels

The internal measurement report from the AAU-DLR measurement campaign can be found
on the next pages.
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CHAPTER 1

MOTIVATION AND PURPOSE
FOR THE MEASUREMENT
CAMPAIGN

The measurement campaign has two main motivations. Oneatioti is to pro-
vide measurement data to validate models for in-room cHanodels including
reverberation effects and the other motivation is to previteasurement data for
cooperative localization methods.

1.1 Motivation for Validation of In-room Reverberant Model

A path loss model was developed based on observations oétlavior of the delay
power spectrum. Previous measurement campaigns e.g.\WH#ERE project, are
not fully suitable for validation due a limited amount of da&t the spatial domain.
For the validation of the proposed model it is necessary e lransmitter receiver
distances covering almost all possible distances in thearéturthermore the data
should allow for spatial averaging at the transmitter armbiker side in order to
minimize the influence of small scale fading on the path loss.

One further motivation is to use the experimental data toditcbr confirm the
physical reasoning for the observed reverberation behaVioe data should also
allow for the development of further models accounting &werberation phenom-
ena.

1.2 Motivation for the Cooperative Localization Measure-
ments

There is to our knowledge no measurement data for cooperaialization avail-
able. We have defined scenarios that cover a. LoS and b. Nb&S lietween
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Figure 1.1: Measurement team. (From left to right: Steickd®., Jost T., Wang
W., Raulefs R. and Pedersen T.)

transmitter and receiver. The three tracks of the train cpatential positions
from three sides. This offers a robust approach for disténased evaluations.

1.3 Measurement Team

The measurements were conducted in cooperation betweédnstitate for Com-
munication and Navigation from German Aerospace CentelR)bdnd the Navi-
gation and Communication Section of Aalborg University (§)AThe people in-
volved during the planing phase of the measurements weral&&aulefs and
Wei Wang from DLR and Bernard Fleury, Troels Pedersen, andh&e Stein-
boeck from AAU.

During the measurement campaign the main actors were ThaosgsRonald
Raulefs, and Wei Wang from DLR. From AAU Troels Pedersen aadh&d Stein-
boeck participated in the measurements. The team was fagpoy numerous
other people during measurements, e.g. people taking plustparticipating in
the experiment described in Section 5.2.3. The measuretaant is shown in
Fig. 1.1.




CHAPTER 2

ENVIRONMENT

2.1 Measurement Environment

We consider an office environment at DLR premises. A floor pashown in
Fig. 2.1. The building has 3 story heights above ground flodraabasement. The
rooms considered are on the ground floor. The main focus wakemeeting
room indicated as R4, because it was the largest room alail&lg. 2.2 shows
the meeting room R4, and two offices R3 and R2. At a room heigpi7@ m is a
intermediate ceiling of approx. 2 cm hard “mineral wool’tsda The mineral wool
slabs are mounted with metal frames to concrete ceiling apfiroximately 30 cm
distance. The floor was wooden with concrete underneathotlitez walls mainly
consist of windows with metallic coating occasionally imtgted by concrete pil-
lars. The inner walls are drywalls and are the same for a#rinvalls. There are
white boards in each room with the size of £ B2n7.

The transmitting antenna was mounted for the measuremerasydel train
at a height of 1.26 m. We considered two tracks of the modgi irethe meeting
room R4, indicated with T1 and T2 and one track in in the offi@ddbeled as T3.

The circular receiver antenna array with 8 elements wasglan several po-
sitions in the three rooms marked with red crosses. Thewecpositions labeled
with Rpl to Rp9 are measured from all tracks and are at a heifghtl m. For
the cooperative localization 10 additional receiver posg labeled as T1Rpl to
T1Rp5 and T2Rpl to T2Rp5 at a height of 1.2 m were added. Thenehavas
measured for these positions only with track T3 and T1 or Epeetively.

Doors and windows are closed during the measurementswofiecindicated.

The positions of white boards, heaters, windows, pillaable, the receiver
coordinates and several other things with respect to this Wwale been measured
as well. The results are indicated in Fig. 2.4.

The distance to the tree line outside of the building (see Eig. 4.2 in the
windows) is approximately 22 m.
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Figure 2.1: Ground floor of the DLR building. The red rectangutlines rooms
R2, R3 and R4 considered in the measurement campaign.

W9 W8 w7 W6 W5 W4 W3 w2 W1
/j y R3 X Rp1 1 Rp2 X
XX XXX
T1Rp5 T1Rp4 T1Rp3 T1Rp2 T1Rp1
] U X C O HC HC HC
X Rp9 Rp6
T3 R4 Rp5 %
D GHD ] GHD D G
X Rp7
R2 X Rp8 T2Rp1 T2Rp2 T2Rp3 T2Rp4 T2Rp5
/\ /\ X ot " RS X
—
H . ,
== \Whiteboards — Transmitter tracks 0°
= Metal coated windows X Receiver positions

Figure 2.2: DLR premises for the measurement campaign.
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2.2 Measuring Distances

The receiver and transmitter positions have been measutedvwachymeter and
the coordinates are available in different formats. The ingpwf the transmit-
ter was recorded with the tachymeter. In addition duringrfeasurements were
odometer pulses recorded with the channel sounder reagiiter

The model railway is running on a cogwheel to prevent wheppslg. The
HEDL 5540 rotary encoder mounted on the model train enginmtsothe engine
turns by giving 500 impulses per full rotation. This allonetemining the odome-
ter factor defined as the number of impulses per meter fromsanements. To
obtain this valueK = 21 train runs have been performed with traveled distangce
and counted encoder impulsasfor each rurk = 1,...,K. The odometer factqp
is calculated as the sample mean

Nk

- 2.1)

Xl =
M =

p:
k

Based on théK measurementsp is determined as 105282 nr L. It indicates
that the rotary encoder counts around 105212 impulses gezléd meter. This
translates inta~ 105 impulses for a traveled distance of 1 mm. In general ayrota
encoder with less impulses per motor turn might be used, thighdrawback of
less spatial resolution. An estimateof the traveled distance can be calculated
straightforward as 0
N k
(10 % o (2.2)
The estimation erro€yx betweenri and the true distanasy, normalized tamy
is defined as fre—me
(k e (2.3)

Taking allK measurements into account a mean eprer —0.0024 mnmym with
standard deviatioo = 0.2266 mnym is obtained as shown in Fig. 2.3. By storing
the number of rotary encoder impulses synchronously witth eaeasured CIR
snapshot, since the start of the train movement, a travaesdnde for each CIR
snapshot can be obtained in a straightforward manner.

Unfortunately, the channel sounder raw data file formatiples/not the recorded
number of odometer pulses. Instead a distance value wittotifggured number of
pulses per meter is stored. The channel sounder has a lonitat the number of
odometer pulses (100000) per meter. Thus one can calchlamotrected moved
distanced;;ye along the track since the start of a measurement run as:

d'[rue = :Ni/'dNaw (2-4)
real
wherelnay Was set to the maximum possible number of odometer puls€@9QD)
in the channel sounddgey corresponds to above obtained 105212 andiyay is
the distance recorded in the measurement data. The valags,aindlya,y can be
retrieved from the raw data files using the Matlab functiorkKR&v from MEDAV.
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Figure 2.3: Estimation error of the distance for e- 21 measurements obtained
with p = 105212.
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Figure 2.4. Measurements of the environment taken duriegrteasurement cam-
paign.
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CHAPTER 3

CHANNEL SOUNDING
EQUIPMENT

3.1 Channel Sounder and Setup

In the diagram of Fig. 3.1 is the general measurement setoyrsh The three
channel sounder units (transmitter, receiver and clocleiggar) were placed out-
side of room R4 in the corridor. The transmitter antenna waseal on a model
train moving along T1, T2, or T3. During movement the trairowetter creates
pulses which are recorded from the receiver unit and stagether with the mea-
surement data. The receiver unit of the channel sounderatetihe multiplexer of
the receive antennas.

3.1.1 Synchronization of Transmitter and Receiver

The transmitter and the receiver were both connected via dgpe of coaxial
cables of length approximately 60 m with the rubidium cloekgrator unit of the
channel sounder.

3.1.2 Transmitter Measurement Setup

The transmitter setup is shown in Fig. 3.1. The transmitrardds mounted on
a rail road car of a model train is shown in Fig. 3.8b. The hegjthe transmit
antennais 1.26 m.

3.1.3 Receiver Measurement Setup

The antennas were connected with short cables to the inpuke anultiplexer
(see e.g. Fig. 3.2). The output of the multiplexer was cotatewith a 9 m long
low-loss RF-cable SUCOFLEX 100 from Huber&Suhner with atiztion of 6 dB,
labeled as “Z10A" to a 10 dB attenuator (R1) which was disectbnnected to
the input of the low noise amplifier (LNA). The LNA has a gain%0 dB. The

13
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R1 R2
RF 1008 || > -10dB RF-
Output 8:1 < Input
MUX L] 50dB - 1
Sounder 9m long 9m long m coax. | Sounder
RF-cable RF-cable cable

"ZKME10A" Z10A’
Sync. ‘ Sounder
Input MUX-
Tx CTRL

Control cable

Odometer signal cable Odo-
meter

Input

Clock sync. cable Tx

Clock sync. cable Rx Sync.
Input
Rx

Rubidium Clock
Generator Unit

Figure 3.1: Overview of the measurement setup for Tx and Rx.

RF-
8:1 Input
MUX 9m long Sounder
RF-cable cable
"Z10A"
Sounder
MUX control cable MUX-
CTRL

Figure 3.2: Receiver measurement setup.

noise figure of the LNA is about 1.5 dB and the effective bamiilviof the LNA
is 120 MHz. The attenuator R1 from Rohde & Schwarz was usedewept satu-
ration of the LNA input for very short distances between $raitter and receiver.
Directly on the output of the LNA was the attenuator R2 simdla R1 from Rohde
& Schwarz (10 dB) connected to prevent saturating the RFtinpthe channel
sounder. From R2 a short coaxial cable (1 m) was used to cbtméte receiver
input of the channel sounder. The attenuator R1 was remavethéasurements
when the Tx and Rx were separated in different rooms in oadkeép a high SNR
for those measurements.

3.1.4 Receive Antenna Array and Multiplexer

In Fig. 3.3 is the topview of the receiver array shown. Theadirection of the

array is from the center towards antenna 1. The center ofthg & the coordinate
system. The antennas are equidistantly spacet @fba circle with diameter of
75.18 mm. The receiver antenna 1 was connected to multipfet 1, antenna
2 to port 2, and so forth for all antennas. The cable connestioom the antenna
array to the multiplexer are shown in Fig. 3.4c. A laser mminwas mounted on

14
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Figure 3.3: Rx antenna array topview. THesymbol in the drawing marks the 0
direction of the antenna array.

the array pointing into the°0Odirection. This laser pointer was used in order to
rotate the array such that thé @irection is parallel to the wall along the corridor
(opposite of the windows) as indicated in Fig. 2.2. The amtearray and the
multiplexer were mounted on a tripod. A height of either 1.bnil.2 m to the
upper edge of the ground plane was used during the measusemen

The utilized time division multiplexer was manufactured WD GmbH in
Dresden, Germany. This multiplexer contains a 8-of-1 pioddi switch with
impedance matching inputs. In other words, if one antenhan(eel) is switched
on, thus connected to the out gate, the other seven antectmamgls) are closed
and loaded with 5@. The matched impedance at off-channels witbénsures
that there are no reflections from these antennas. A validagist on the multi-
plexer in the lab at DLR confirms the specifications of the ipldker datasheet
described above.

Antenna Array Calibration

Generally, if the array’s position is known, with a suffidiemmount of measured
steering vectors, it is possible to identify the antennébcation matrix and multi-
plicative constants by solving the nonlinear least squareslem.

The calibration for the antenna array is performed in a fpees like environ-
ment at DLR. Referred to the carrier frequency, a narrow tsgdal was trans-
mitted through a non-reflecting propagation channel. Thésams only one LoS
path is expected during the calibration measurement. Thieoament ensures
far field waves impinging on the antenna array, and mainly onke line of sight
component exits. The transmit antenna and receive anteana approximately
20 mseparated from each other.

Fig. 3.5 gives the definition of the incoming angels utilizedhe calibration
measurement. The arrow in the plot represents the impingag, and the corre-
sponding azimuth angle and elevation anglp definitions for the provided coor-
dinate system are depicted. During the calibration measemg the antenna array

15
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© ‘ (d)

Figure 3.4: (a) connection of the cables and the antennasnsiiiom the
bottom of the array; (b) view from the side of the array andlesbsubref-
fig:switchrxantcables connection of the cables to the iplekier; (d) to the left,
the multiplexer and receiver antenna array on the tripodthéoright the model
train with the transmit tower.
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Figure 3.5: Definition of the incoming angles.

Azimuth ary

A

y

Figure 3.6: Rotation of antenna array to change the incomaiguth angle.

was rotated in vertical plane witlf Steps to change the incoming azimuth angle.
The array was rotated in the horizontal plan inskeps to change the incoming
elevation angle as shown in Fig. 3.6 and Fig. 3.7. The azirantile was taken
from 0 to 355. For each azimuth angle, the antenna array was rotatecdviatiele
from 0 to 90.

3.1.5 Transmit Antenna

Transmit antenna: Huber&Suhner Type SOA 5600/360/3/2D/\{] mounted on
a circular groundplane of diameter 235.16 mm. The antenrsameaunted on the
tower of the model train at a height of 1.26 m measured fronfltioe to the upper
edge of the groundplane.

17
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Vertical direction

Elevation angle

Figure 3.7: Rotation of antenna array to change the incomliexation angle.

Figure 3.8: (a) shows the Hubner&Suhner transmit antennantad on the
groundplane disc. (b) shows the transmit antenna mountettieotower of the
model train at the height of 1.26 metre.

18
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3.2 Sounder Settings

In Table 3.2 are the used sounder settings summarized.

3.2.1 Sounding Signal

The duration of the sounding signallig, = 12.8us . The measurement bandwidth
is 120 MHz, withN; = 1536 frequency tones. The inter-tone spacing is 78.125kHz.

3.2.2 Sounding Mode

The sounder was operating in the Fast Doppler (FD) and tintergode. The
timing scheme of the sounder is shown in Fig. 3.9.

The duration of the sounding pulse is denotedigy The multiplexer sequen-
tially switches theNrx elements of the receive antenna array. For each element
measured, two sounding pulses are transmitted, thus tlealtimationTr, between
the start of the measurement of two antenna elements is

Trx = 2 Trx (3.2)

The time duration of a measurement cycle in which all recaiviennas are mea-
sured once, is
Tcycle = NRx : TRx = 2NRxTTx (3-2)

In “Fast Doppler mode” the sounder measures a “burstNgfs: cycles consecu-
tively. The duration of one burst is
Tburst: Nburst' Tcycle = 2NRbeurstTTx (3-3)

After each burst the sounder stores the recorded data am@l isrfor data storage
is inserted. After the data is stored, the next burst is ntedsuThus the time
interval between consecutive bursts are

Trep = Nreprurst (3-4)
= 2l\lel\lburst'\lrepTTx (3-5)

for some constani.p, Which is calculated by the sounder based on its hardware
constraints.

Let the data acquired during one sensing period of a singénaga element be
called a sub-channel sample. Thenitesample is acquired at center time

: [ .
ti=(i—1 modNrxNours) Trx + {7J Tep, 1=123,... (3.6)
NRbeurst
Theith sample is acquired from the antenna element with index
m(i) =i modNgy, i=1,23,... (3.7)
During one burst, the transmitter moves
dourst= Vrx Tourst~ 0.0035\, (3.8)
and in between each burst it moves
A
Grep= VrxTrep = = 3.9
rep = VTx lrep 88 (3.9)
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Table 3.1: Timing Scheme Settings
Parameter Symbol Value
Number of receive antennas NRrx 8
Number of cycles per burst Nopurst 20
Number of bursts in the burst repetition time Nrep 32
Transmit pulse length Trx 12.8us
Interval between consecutive Rx measurementsTry = 2Ty 25.6us
Burst duration Teycle = 16T« 204.8us
Burst duration Tohurst= 320Ty 4 096us
Burst repetition time Trep= 102407, 131.072 ms
Tre=25.6 s
T+,=12.8 us
t t ty ...
Tx ||;||;||;||;||‘||‘||‘||‘||;||;||
Rx Ant 1 - \ \ I : : : : — \
Rx Ant 2 | /4 [ [ | | [ [ [ | ——
Rx Ant 3 I I T I I I I I I I
Rx Ant 4 | | | |_:| | | | | | |
| | | | | |
Rx Ant 5 \ \ \ | E:j : : : | \
Rx Ant 6 [ [ [ [ [ | I [ I [
Rx Ant 7 I I I I I I |- I I I
Rx Ant 8 ! ‘ ‘ ‘ [ [ —/ \ |
| | | | | | | |

1 2 20 1 2 20
CIT—1----[1 I — S m—" ]

Tburst=4096 Ms

K/ﬂ/_\“/

T,p=131.072 ms

Figure 3.9: Timing schema used for the measurements.

Table 3.2: Setting of the channel sounder.

Parameter

Value

Carrier frequency; [GHz]
BandwidthB [MHZz]

Number of sub-carriers;
Carrier separationf [kHz]
Tx velocity [m/s]

Odometer pulse correctidpg

5.2
120
1536

78.125
~0.05

105212.523942

20



CHAPTER 4

RECORDING OF SPHERICAL
PANOGRAPHS

During the preparation time panographs were made (fulf 3@zimuth and full
180 in co-elevation) for all receiver positions at the heightied Rx antennas. The
panographs show the whole scene viewed from each of theveeqmisitions. This
allows for overlaying direction estimates on the photos.

One way of creating panographs with 360180 is to use multiple rows and
columns of photos to “stitch” one big panograph. The photasukl overlap and
should have enough features in the overlapping area to thiegimages in an auto-
matic stitching process. For the purpose of creating a nahimmmber of images,
a very short focal length, resulting in large viewing angkegreferred. We used
the website [2] to get the viewing angle for the used focagibrand the size of the
image sensor of the camera. The viewing angles allow to leacthe number of
images needed for the 360 180° panograph.

4.1 Equipment and Stitching Software

For the purpose of creating panoramic images, specificatlpars where objects
are very close, it is important to align the cameras “nodafthpprecisely to the
center of rotation. This is important in order to have neat fam objects aligned
in different images taken from different viewing angles.chse of misalignment
ghostly artifacts of the object can appear on different s in the panograph
and the stitching process can fail. Note, in case the focgjtteon the camera is
changed, the nodal point changes too.

In order to mount the camera in its nodal point and to rotagecéimera cor-
rectly in azimuth and elevation, we used the panorama sygi8ystem 6/8 from
Novoflex (see Fig. 4.1). To find the nodal point of the camertesy and to adjust
it correctly with the panorama system, we used the methoctithesl [3].

The used camera is a Nikon D5000 with a crop factor of 1.5 (ensgnsor
size 15.823.6 nf). The camera was equipped with a AF-S DX Nikkor 18-55 mm
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1:3,5-5,6G VR lens system. The focal length of the lens systas set to 18 mm.
The resulting field of view is in portrait orientation 474 66.7. We chose a 30
step size in azimuth leading to 40% overlap of the imageslevagon we chose
to take 5 rows in total. One row in the azimuth planée{@vation) and four rows
with +30° elevation andt:60° resulting in approximately 50% overlap.

For the stitching process we used the software “Stitcheintitdd 2009” from
Autodesk. The software allows for the creation of 3860L80° panographs from
multiple rows and columns of images. The software suppotitsipie output for-
mats. One of the formats creates a panograph with a eqaingafar coordinate
system for azimuth and elevation angles. This allows foy eaapping of e.g.
directional Bartlett-spectra on the panograph.

4.2 Calibration and Use of Panographs

For calibration purpose and for stitching purpose colorestgrs were used. All
posters show a numbered grid to assist in the stitching psoc&he right lower
corner of the red posters is used for reference purposes.cbhier is at the height
of the receive antenna. Furthermore the distances in tha todhe right lower
corner of the red posters were measured. This allows tole#dcreference angels
from the receiver position to these posters. In additionvkn@bjects or other
features (corners) of the room can be used to calculateereferangles. This
allows to easily find the Odirection (azimuth and elevation) in the panographs.
The stitching software automatically adjusts the elevatingle to zero degree.
This angle can be refined with the reference corner of the ostéps, if necessary.
The 0 azimuth is coarsely adjusted with the stitching softwarseblzon the known
0° direction such that the center of the image corresponds o @zimuth and
elevation.

After this adjustment in the stitching software we expod ganograph in an
equi-rectangular coordinate system for azimuth and at@vat

The size of the panograph in pixels corresponds to an imate#480 in
azimuth and+9(° in elevation. When importing the image into Matlab we map
the image size in pixels to a coordinate system in degreesefiAement of the
0° azimuth direction using the reference points is done by k&nspifts of the
image. The resulting calibrated images are stored for legerin Matlab with the
0° direction in the center of the image. The filenames of théocatied images for
the use in Matlab are listed in Table 4.1. An example imaglasvs in Fig. 4.2.
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(d)

Figure 4.1: The panorama system VR-System 6/8 mounted drighe in (a) and
with the camera in (b),(c), and (d). In (d) the setting of thedl length can be seen.
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Elevation []

Azimuth [’]

Figure 4.2: Spherical panoramic photo from Rpl perspectivequi-rectangular
coordinate system for azimuth and elevation is used. Theecehthe image cor-
responds to Oin azimuth and elevation.

Table 4.1: Panograph file names.

Receiver Position Coarse adjustment  Calibrated file
with high resolution for Matlab usage

Rpl rplhighres.jpg rpImatlab.jpg
Rp2 rp2highres.jpg rp2matlab.jpg
Rp3 rp3highres.jpg rp3matlab.jpg
Rp4 rp4highres.jpg rpdmatlab.jpg
Rp5 rpshighres.jpg rpSmatlab.jpg
Rp6 rp6highres.jpg rpmatlab.jpg
Rp7 rp7highres.jpg rpZmatlab.jpg
Rp8 rp8highres.jpg rp8matlab.jpg
Rp9 rp9Qhighres.jpg rp9matlab.jpg
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5.1 Experiments for Validation of In-room Path loss Model

The purpose of these measurements is the evaluation of Htu®iin reverberant
channel model. For this evaluation it is necessary to havasorements with dis-
tances between Tx and Rx ranging from the smallest posdiiknde to the largest
distance possible in the room. Thus the Rx is positionedarr¢lom corners and
the tracks for the Tx pass closely by the Rx. By choosing aRtke circular an-

tenna array and placing the Tx on the model train, spatiabaymeg is possible for
the evaluation of the path loss model. Furthermore the uigeatircular array al-

lows the creation of virtual Rx antenna patterns in ordevtiuate the differences
for localization with different virtual Rx antenna orietitas.

5.1.1 Experiment 1.1: Noise Measurement

This experiment consists of a short measurement where tligesiwitched off and
only “noise” at the receiver is measured. This should previdormation on any
present interference from e.g. the WiFi networks and allewesstimate the noise
level. This obtained noise level might be different from tre later during the
measurements due to the maximum dynamic range of the system.

5.1.2 Experiment 1.2: Path loss measurements for Rpl to Rp9

For each of the indicated receiver position Rpl to Rp9 aresareanents conducted
when the model train (transmitter) moves along the trackadd. T2. No people
are in R4. People are working in R2 and R3. The used Tx towghhées 1.3 m.

5.1.3 Experiment 1.3: Static Measurements

Four static measurements for the receiver position Rp4 emducted. The four
positions of the transmitter are the start and end pointsacktT1 and track T2.

These measurements are control measurements to see ifvihenarent can
be considered static.
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5.2 Reverberation Effect Experiments

In this experiment we conduct measurements with open wisdoweople present
in the room. The windows are metal coated and when they amedpge expect
a different reverberation in the room. By opening the windove alter one wall
of the room from low “absorption” (strong reflections fromettvindows) to high
“absorption” coefficients (no reflections from the open vaw). Thus a lower
power level for the reverberant field is expected.

The inner-walls of the building are drywalls and their attetion (absorption)
is unknown. It is unclear if the observed reverberationatffie the meeting room
is generated by the room itself or by the larger structur@etuilding. If a change
in the reverberation due to opening the windows in the neighb rooms is ob-
served, we conclude that the larger structure of the bgldmeates the reverbera-
tion effect.

The underlying idea of the reverberation is based on refliestin the room
with an average absorption coefficient. By adding persotisgtooom, the average
absorption coefficient should change, thus the reverloeratifect should change.
We make the hypothesis that this alters the reverberantifietee room.

5.2.1 Experiment 2.1: Open Windows in Room R4

We use for the measurements track T1 for the transmitter. r@teiver locations
are Rplto Rp4. We conduct multiple measurements with éiffenumber of open
windows until all windows in the room are open.

5.2.2 Experiment 2.2: Open Windows in Room R2 to R4

All windows in rooms R2, R3 and R4 are opened and we conductunements
for the receiver locations Rp2 to Rp4 and the transmitteringpalong track T1.

5.2.3 Experiment 2.3: Absorption of Human Bodies in the Room

Measurements are conducted with people in the meeting r@tingsaround the
conference table. The receiver positions Rp2 to Rp4 arefosdchcks T1.

5.3 Cooperative Localization Experiments

The purpose of these measurements is to provide measurdatarfor analyzing

the multi-link radio channel for localization purposes. ratom R4 the measure-
ments are conducted for line of sight situations. Additlom@asurements from
the neighboring rooms R2 and R3, corresponding to non-Ifreght situations,

are conducted as well.

5.3.1 Experiment 3.1: Cooperative Localization

Los Multi-link Measurements: Room R4 covers a scenario with only coopera-
tive LoS links. We use the train track T1 with Rpl and Rp2 armkwersa T2
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with Rp3 and Rp4 from the experiment described in Sectior25.This set is ex-
tended by five additional points on the opposing track. Tamftirack T[1,2] and
the T[1,2] P[1..5] points were all measured with the same antenna heigfth
this we can investigate a mirroring effect as both measunésmieave the same
conditions with the same sampling distances on both siddge riieasurements
for the points Rp[1..5] provide the possibilities to use adaeference points for
modeling anchors with perfect position information.

NLoS Multi-link Measurements: In room R3 a 3rd track and two more addi-
tional reference points (Rp6 and Rp7) are added. The 3rll Tra@allows to mea-
sure NLoS effects for the cooperative links establishecbonT R4 together with
a robust approach by using distance-based measuremengsroBist approach
is guaranteed as the geometrical constellation of the 4réER vs. T[1,2]) is or-
thogonal to each other. The additional reference points &m@bRp7 have LoS
conditions to the track T3 to differ between having only L&S3) and NLoS (R4).
This is further extended to room R2 and the points Rp8 and Rp8link between
track T3 and Rp8 can be considered as strong NLoS (weak L@8) aa the ma-
terial in between transmitter and receiver is not concrétee link between track
T3 and Rp9 is blocked by a metallic white board and thus a weaiSNink is
expected.

5.4 Fluorescent Tube Experiment

5.4.1 Experiment 4.1: Fluorescent Tube

In previous measurement campaigns was reported that ditoh fluorescent
tubes create a time varying channel. An experiment at fixaastnitter and re-
ceiver positions is conducted to test this phenomenon irgiven environment.
The continuous radio channel is measured. In the few firsirgbcof the mea-
surements, the fluorescent tubes are switched off and afteuple seconds the
fluorescent tubes are switched on.

5,5 Measurement Protocol

In the following we summarize the measurement process aeceoeptions which
happened during the experiments. We refer the reader t@Fgwhich shows a
schematic of the measurement environment and to Fig. 4\®ispa spherical

panorama image from Rpl. The measurements are identifieceaar®s num-

bered from 0.00 to 6.03, for practical reasons. Scenarinsegpart of multiple

experiments. A mapping of the scenarios to the correspgrehperiments can be
found in Table 5.1.

5.5.1 Measurement of Noise (Experiment 1.1)

A measurement of the noise was conducted before the measuteof the differ-
ent scenarios were done. The measurement was conductetthevittceiver at Rp4
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and with the transmitter at the start position of T1. The ngmal of this measure-
ment was to see the input on the receiver when the transnsttarned off. This

should help to identify if there are any WiFi networks traitsimg and if there are
any other disturbing sources in the measured band widthth&umore it should

provide an indication of the noise power. Before this measent was recorded,
a detailed check of the noise power, the signal power and B€ Aettings was
done. Adjustments such as adding the LNA and tests withrdifteattenuators
were conducted to optimize for the full range of the AGC anddbieve as much
SNR over all transmitter and receiver positions as possible
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Table 5.1: Mapping of Scenarios to Experiments.

@ o

0} L (8} c c‘g % o \
|8 |5 |8 |8 |5 |8 |83
Z2|a |»n | O0c|Oc|ITc Ug Lo
d & @ de ) de | d8 | dE | dE
— - — C\l% N% N2 | N <5
¢ |d|g|g8|de|d) ey el

Scen. # Filename O | W |0 |Wws|Ws | e | WS | W@

0.00 AAUDLR201Qnoise01 | x| | | | | | |

1.01 AAUDLR20100101.T1 Rpl X X

1.09 AAUDLR201001.09.T1_Rp9 X X

1.10 AAUDLR201001.10.T1.T2p1 X

1.14 AAUDLR201001.14.T1.T2p5 X

2.01 AAUDLR201002.01.T2 Rpl X X

2.09 AAUDLR201002.09_.T2_Rp9 X X

2.10 AAUDLR201002.10.T2_T1pl X

2.14 AAUDLR201002.14.T1.T1p5 X

3.01 AAUDLR201003.01. T3_Rp1 X

3.9 AAUDLR201003.20_-T3_Rp9 X

3.10 AAUDLR201003.10.T3_T1pl X

3.14 AAUDLR201003.14.T3_T1p5 X

3.15 AAUDLR2010Q03.15T3_T2pl X

3.19 AAUDLR201003.19.T3_T2p5 X

3.20 AAUDLR201003.20_T3_Rp6 X

4.01 AAUDLR201004.01.T1 Rpl X

4.02 AAUDLR201004.02.T1 Rp2 X

4.03 AAUDLR201004.03.T1_Rp3 X

5.01 AAUDLR201005.01.T1 Rp4winl X

5.04 AAUDLR201005.04.T1_ Rp4.win1234 X

5.05 AAUDLR201Q05.05.T1_Rplwinl X

5.08 AAUDLR201005.08.T1_ Rplwin1234 X

5.09 AAUDLR201005.09.T1_Rp2winl X

5.12 AAUDLR201Q05.12 T1 Rp2win1234 X

5.13 AAUDLR201005.13.T1_Rp3winl X

5.16 AAUDLR201Q05.16.T1_Rp3win1234 X

6.01 AAUDLR201006.01. T1_Rp3winlto9 X

6.02 AAUDLR201006.02.T1_Rp4.winlto9 X

6.03 AAUDLR201006.03.T1_Rp2winl1to9 X
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Table 5.2: Noise Measurement for Experiment of Sectiorils.1.

Scen. # TX Rx Pos. Comments Calibration File Filename
0.00 Track (suffix “.KOR") (suffix “.000.DLR1DSK”)
0.00 T1 Rp4 1] AAUDLR2010cal.01 AAUDLR201Qnoise01
Comments:

[1] 20 s were recorded with transmitter switched off.
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5.5.2 Measurements of Scenario 1

The measurements of scenario 1 consist of all measureméhtshe transmitter
on track T1 with the receiver positions Rpl to Rp9 and thetjpos T2Rpl to
T2Rp5. The room was empty and all windows were closed. Thesunement
team was standing outside in the corridor during the measeme process. The
measurements of scenario 1.01 to 1.09 correspond to theimegoe described in
Section 5.1.2. The measurements of scenario 1.09 to 1.1l#tereded for co-
operative localization experiments and correspond to tiperiment described in

Section 5.3.
Table 5.3: Measurements for Transmitter on Track T1.
Scen. # Tx Rx Pos. Comments Calibration File Filename
Track (suffix “.KOR") (suffix “.000.DLR1DSK")
1.01 T1 Rpl AAUDLR2010cal01 AAUDLR201001.01T1.Rpl
1.02 T1 Rp2 AAUDLR2010cal01 AAUDLR20100102T1 Rp2
1.03 T1 Rp3 [4] AAUDLR2010cal01 AAUDLR20100103.T1.Rp3
1.04 T1 Rp4 [5] AAUDLR2010cal01 AAUDLR20100101T1 Rp4
1.05 T1 Rp5  [1].[6] AAUDLR201Qcal03  AAUDLR201Q02.05.T1_Rp5
1.06 T1 Rp6 [2] AAUDLR2010cal03 AAUDLR20100106.T1_Rp6
1.07 T1 Rp7 AAUDLR2010cal03 AAUDLR20100107.-T1.Rp7
1.08 T1 Rp8 AAUDLR2010cal03 AAUDLR201001.08.T1.Rp8
1.09 T1 Rp9 AAUDLR2010cal01 AAUDLR20100109.T1 Rp9
1.10 T1 T2pl AAUDLR2010cal01 AAUDLR201001.10.T1.T2pl
1.11 T1 T2p2 AAUDLR2010cal01 AAUDLR201001.11T1.T2p2
1.12 T1 T2p3 AAUDLR2010cal01 AAUDLR201Q01.12T1.T2p3
1.13 T1 T2p4 AAUDLR2010cal01 AAUDLR201001.13.T1.T2p4
1.14 T1 T2p5 AAUDLR2010cal01 AAUDLR201Q01.14.T1.T2p5
Comments:

[1] All measurements with Rp5 were measured at the end of ;& ITand T2 measurements, because the Rx
needed to be moved from tripod to the table.

[2] Was measured after all measurements in R4 with T1 and T2 fished.

[3] Change of the Rx height from 110 cm to 120 cm.

[4] Plastic strips mounting the Rx antenna MUX loosened ekided to be tightened again. New stronger plastic
strips were used.

[5] Scenario 1.04 was saved with the wrong file name. Manuafterwards.

[6] Scenario 1.05 was saved with the wrong filename. Manuaffarwards.

Figure 5.1. Mounting of the Rx array and the multiplexer or thble for the
receiver position Rp5.
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5.5.3 Measurements of Scenario 2

The measurements of scenario 2 consist of all measureméhtshe transmitter

on track T2 with the receiver positions Rpl to Rp9 and thetjprs T1Rpl to

T1Rp5. The room was empty and all windows were closed. Thesunement

team was standing outside in the corridor during the measeme process. The
measurements of scenario 2.01 to 2.09 correspond to theimegue described in
Section 5.1.2. The measurements scenario 2.09 to 2.14teneléd for cooperative
localization and are described in Section 5.3.

Table 5.4: Measurements for Transmitter on Track T2.

Scen. # Tx Rx Pos. Comments Calibration File Filename
Track (suffix “.KOR") (suffix “.000.DLR1DSK")
2.01 T2 Rpl AAUDLR2010cal02 AAUDLR20100201.T2.Rpl
2.02 T2 Rp2 AAUDLR2010cal02 AAUDLR201002.02.T2_Rp2
2.03 T2 Rp3 AAUDLR2010cal02 AAUDLR20100203.T2-Rp3
2.04 T2 Rp4 AAUDLR2010cal02 AAUDLR20100204.T2_Rp4
2.05 T2 Rp5 AAUDLR2010cal03 AAUDLR2010Q02.05.T2_Rp5
2.06 T2 Rp6 AAUDLR2010cal03 AAUDLR201002.06.T2_Rp6
2.07 T2 Rp7 AAUDLR2010cal03 AAUDLR201Q02.07-T2_Rp7
2.08 T2 Rp8 AAUDLR2010cal03 AAUDLR20100208.T2-Rp8
2.09 T2 Rp9 AAUDLR2010cal02 AAUDLR2010Q02.09.T2_Rp9
2.10 T2 T2pl AAUDLR2010cal02 AAUDLR201002.10.T2.T1pl
2.11 T2 T2p2 AAUDLR2010cal02 AAUDLR201002.11.T2.T1p2
2.12 T2 T2p3 AAUDLR2010cal02 AAUDLR201002.12T2.T1p3
2.13 T2 T2p4 AAUDLR2010cal02 AAUDLR201Q002.13.T2.T1p4
2.14 T2 T2p5 AAUDLR2010cal02 AAUDLR201002.14.T2.T1p5
Comments:

Track T2 is longer than T1. The measurement files are appaigign60 s long.

Figure 5.2: Panograph from Rpl perspective showing trackhitrain and the

antenna tower.
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5.5.4 Measurements of Scenario 3

All measurements of scenario 3 are with the transmitter ackt3 with the re-
ceiver positions Rpl to Rp9, T1Rpl to T1Rp5 and the positidikpl to T2Rp5.
The room was empty and all windows were closed. The measuiteie®m was
standing outside in the corridor during the measurementgss® The measure-
ments of scenario 3 are intended for cooperative locatinadind their purpose is
described in Section 5.3.

Furthermore the measurement of scenario 3.20 was a meastreith the Tx
standing at the end of track T3. In this measurement theslifftorescent tubes)
were in the beginning switched of and after approximatelys@fonds switched

on. This measurement corresponds to experiment 4.1 deddritSection 5.4.1.

Table 5.5: Measurements for Transmitter on Track T3.

Scen. # TX Rx Pos. Comments Calibration File Filename
Track (suffix “.KOR") (suffix “.000.DLR1DSK")
3.01 T3 Rpl AAUDLR2010cal05 AAUDLR201003.01.T3.Rpl
3.02 T3 Rp2 AAUDLR2010cal05 AAUDLR201003.02T3.Rp2
3.03 T3 Rp3 AAUDLR2010cal05 AAUDLR201003.03.T3.Rp3
3.04 T3 Rp4 AAUDLR2010cal05 AAUDLR201003.04.T3_.Rp4
3.05 T3 Rp5 AAUDLR2010cal04 AAUDLR2010Q03.05.T3.Rp5
3.06 T3 Rp6 AAUDLR2010cal06 AAUDLR201Q03.06.T3_Rp6
3.07 T3 Rp7 [1] AAUDLR2010cal06 = AAUDLR201003.07-T3_.Rp7
3.08 T3 Rp8 AAUDLR2010cal05 AAUDLR2010Q03.08.T3.Rp8
3.09 T3 Rp9 AAUDLR2010cal05 AAUDLR201003.09.T3_.Rp9
3.10 T3 Tipl AAUDLR2010cal05 AAUDLR201003.10.T3.T1pl
3.11 T3 T1p2 AAUDLR2010cal05 AAUDLR201Q003.11.T3.T1p2
3.12 T3 T1p3 AAUDLR2010cal05 AAUDLR201003.12.T3.T1p3
3.13 T3 Tlp4d AAUDLR2010cal05 AAUDLR201003.13.T3.T1p4
3.14 T3 T1p5 AAUDLR2010cal05 AAUDLR201Q003.14.T3.T1p5
3.15 T3 T2p1 AAUDLR2010cal05 AAUDLR201003.15.T3.T2p1
3.16 T3 T2p2 AAUDLR2010cal05 AAUDLR201Q003.16.T3.T2p2
3.17 T3 T2p3 AAUDLR2010cal05 AAUDLR2010Q03.17-T3.T2p3
3.18 T3 T2p4 AAUDLR2010cal05 AAUDLR201003.18.T3.T2p4
3.19 T3 T2p5 AAUDLR2010cal05 AAUDLR2010Q03.19.T3.T2p5
3.20 T3 Rp6 [2] AAUDLR2010cal06 AAUDLR201003.20_-T3_Rp6lights
Comments:

[1] Door to R2 was open.

[2] Measurement with the train at the end of the track. Fiss2conds lights switched off. After 20 seconds

lights (flourescent tubes) switched on.
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Figure 5.3: Panograph from Rp6 perspective showing theiantef room R3 and
track T3.
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5.5.5 Measurements of Scenario 4

The measurements of scenario 4 consist of all measureméthtshe transmitter
on track T1 with the receiver positions Rp2 to Rp4. Around itheeting table
were 10 people sitting (Fig. 5.4) and all windows were cloSEte purpose of the
measurements is described in Section 5.2.3.

Table 5.6: Measurements with 10 persons R4.

Scen. # Tx Rx Pos. Comments Calibration File Filename
Track (suffix “.KOR") (suffix “.000.DLR1DSK")
4.01 T1 Rpl AAUDLR2010cal02 AAUDLR201004.01.T1.Rp2
4.02 T1 Rp2 AAUDLR2010cal02 AAUDLR201004.02.T1 Rp3
4.03 T1 Rp3 AAUDLR2010cal02 AAUDLR201004.03.T1.Rp4
Comments:

10 people were sitting in the room around the table. Peopte asked to not move. No Laptops or any other
additional equipment.

Figure 5.4: Ten persons placed around the meeting room table
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5.5.6 Measurements of Scenario 5

The measurements of scenario 5 consist of all measuremdahtshe transmitter
on track T1 with the receiver positions Rpl to Rp4 and operass. The purpose
of the measurements is described in Section 5.2.1. The windpen to the inside
(Fig. 5.5) and the frames of the windows are metallic. Noéitesceiver position
Rpl is window number 4 and at Rp2 window number 1 above thevescarray
when these windows are opened. An influence on the antenpanss due to the
metallic window frame is expected. The order of opening tivedaws at position
Rp2 was changed as compared to the other measurements.tditeom was that
only when all 4 windows are open, window 1 is above Rp2.

Table 5.7: Measurements with open windows.

Scen. # Tx Rx Pos. Comments Calibration File Filename
Track (suffix “.KOR”") (suffix “.000.DLR1DSK?”)
5.01 T1 Rp4 [1] AAUDLR1010cal02 AAUDLR201005.01 T1 Rp4winl
5.02 T1 Rp4 [2] AAUDLR1010cal02 AAUDLR201Q005.02T1.Rp4winl2
5.03 T1 Rp4 [3] AAUDLR1010cal02 AAUDLR201005.03.T1 Rp4win123
5.04 T1 Rp4 [4] AAUDLR1010cal.02 AAUDLR201Q005.04-T1.Rp4win1234
5.05 T1 Rp1 [1] AAUDLR1010cal02 AAUDLR201005.05.T1 Rplwinl
5.06 T1 Rpl [2] AAUDLR1010cal02 AAUDLR201Q005.06.T1.Rplwinl2
5.07 T1 Rp1 [3] AAUDLR1010cal02 AAUDLR201005.07-T1_ Rpl1winl123
5.08 T1 Rpl [4] AAUDLR1010cal.l02 AAUDLR201Q005.08.T1.Rplwin1234
5.09 T1 Rp2 [5] AAUDLR1010cal.02 AAUDLR201Q005.09-T1_Rp2win4
5.10 T1 Rp2 [6] AAUDLR1010cal02 AAUDLR201005.10.T1_Rp2win34
511 T1 Rp2 [7] AAUDLR1010cal.02 AAUDLR201005.11 T1 Rp2win234
5.12 T1 Rp2 [4] AAUDLR1010cal02 AAUDLR201005.12 T1 Rp2win1234
5.13 T1 Rp3 [1] AAUDLR1010cal.02 AAUDLR201005.13.T1 Rp3winl
5.14 T1 Rp3 [2] AAUDLR1010cal02 AAUDLR201005.14 T1 Rp3winl2
5.15 T1 Rp3 [3] AAUDLR1010cal.02 AAUDLR201005.15.T1 Rp3win123
5.16 T1 Rp3 [4] AAUDLR1010cal.l02 AAUDLR201005.16.T1.Rp3win1234
Comments:
[1] W1 open.

[2] W1 and W2 open.

[3] W1, W2 and W3 open.

[4] W1, W2, W3 and W4 open.

[5] W4 open.
[6] W3 and W4 open.

[71 W2, W3 and W4 open.
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(b)

Figure 5.5: (a) The receiver is at position Rpl and W1 to W4apen. (b) The
receiver at position Rp2. The metallic frame of W1 is only mpgpmatly 10 cm
above the antenna array.
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5.5.7 Measurements of Scenario 6

The measurements of scenario 6 consist of measurementshwitransmitter on
track T1 with the receiver positions Rp2 to Rp4. The windows W W9 in the
rooms R2, R3 and R4 were open during the measurements. Emel@d use of
the measurements is described in Section 5.2.2.

Table 5.8: Measurements with window W1 to W9 open.

Scen. # TX Rx Pos. Comments Calibration File Filename
Track (suffix “.KOR") (suffix “.000.DLR1DSK?")
6.01 T1 Rp3 AAUDLR2010cal02 AAUDLR201006.01.T1 Rp3winlto9
6.02 T1 Rp4 AAUDLR2010cal02 AAUDLR201Q006.02 T1_Rp4winlto9
6.03 T1 Rp2 AAUDLR2010cal02 AAUDLR201006.03.T1_Rp2winlto9
Comments:

The windows in room R2, R3 and R4 were open.
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DATA STRUCTURE AND FILE
NAMES

6.1 Import of RAW Measurement Data

The descriptions in the previous sections refer to the nreasent data in the raw
channel sounder format. In order to use this data format at3@dilab version
iS necessary to use the MEDAV import functions. DLR’s MEDAYusider uses
an older file format which is not compatible with the currgmistributed “Hyeff”
filters from MEDAV. One can obtain with the “Hyeff” licenceetimport functions
for the DLR sounder, directly from DLR.

6.1.1 Import Functions and Data Formats

In the following we state some example Matlab code to impuwetrheasurement
data with the Medav functions.

[Error, Header] = RSKHead(0,[measurementFolder filenzine]

[Error, Info] = RSKInfo(0,[measurementFolder filenamej,0

for iLoop=1:Header.DataSets

[Error, Data, Snap] = RSKData(0,[measurementFolder fitea..
[(iILoop—1)«xHeader.SetsPerFDBlock+1 1 iLodgeader.SetsPerFDBIock],...
[25711793],[123456 78], [],0,0,0],0);

[Error, Nav, GPS] = RSKNav(0,[measurementFolder filename]
[(iLoop—1)xHeader.SetsPerFDBlock+1:1:iLogpeader.SetsPerFDBlock],0 );

end

The code above imports in every iteration one burst of dath thie RSKDat a( )
function. The function uses a vector specifying the meamsarg cycles to import.
We specify this vector in Matlab as

[ (i Loop- 1) *Header. Set sPer FDBl ock+1 1 i Loop*Header . Set sPer FDBI ock]

to import all cycles with the burst index.oop. In the raw data file and for the used
measurement settings consists each measured frequeponsesf 2048 samples
from which only a part is non zero. We obtain the non zero pét whe vector
[257 1 1793], which specifies the first frequency sample (257), the stepisi
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Table 6.1: Data fields of the “Header” structure.

Fieldname Value

DataSets 7140

Channels 8

FDDChannels 1

MeasureMode 2
MeasureModeText "Time grid mode’
FDDMode 0

FDDModeText 'FDD disabled’
Periode 2048

TxCount 1

Grid 131.0720
Bandwidth 120000000

RF 5.2000e+009
FDD-RF [250000000 250000000]
IF 80000000
SampleFreq 320000000
FDBIlocksPerDBlock 1
SetsPerFDBlock 20

PreProcessing
PreProcessingText

1
'Rowdata whithout preprocessing’

OdometerPulses 100000
NavDataSource 0
NavDataSourceText 'Receiver unit’
CalibTxPower 0

CalibAGC 87
CalibAttenuation 33

CalibFactor 0
MeasTxPower 0

samples (1) and the last sample (1793) out of the 2048. Theurezhreceive an-
tennas are selected with the vectdr2 3 4 5 6 7 8]. The size of the “Data”
variable isNpyrstx Ne X Nryx (20x 1537x 8). For a detailed overview of the function
description we refer to the headers in the source code ofripert functions. The
fields of the other data structures are listed in Table 6.tleTa.2, and Table 6.3.

6.2 Detection of Erroneous Frequency Responses

Using long cables to the antenna multiplexer creates ramistortions in the mea-
sured frequency responses. The frequency responses witld®iortions need to
be detected automatically such that one can decide to iadluese data or not.
We observe these distortions as a drop in the power of thedrey response for
some arbitrary frequency ranges. The size of these freguanges and their loca-
tions in the considered bandwidth is random over the diffengeasured frequency
responses.

During our measurements were no moving objects in the roaitfantrans-
mitter moved only 035\ during one burst. Thus we assume that the measured
frequency responses st iS constant at each antenna. In order to detect the
frequency distortions from the antenna multiplexer we carapeach measured
frequency response to an averaged frequency response pWweest the measured
frequency response &k j( f) wherej = 1...Ngy is the index for the number of re-
ceive antennas arid= 1... NprstiS the index of the cycles in a burst. We calculate
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Table 6.2: Data fields of the “Info” structure.
Fieldname Value

MeasFileName 'DiRUSKData Data\ WHERE201.01.T1_.Rp1.000.DLR1DISK’
CalibFileName  'D\RUSKData Calibratior\ Where2cal01KOR’

StartTime '02.01.1999; 04:28:10’

EndTime '02.01.1999; 04:28:59’

MeasPlace "

MeasSeries "

MeasLeader "

TxUnit !

TxAntenna 'RUSK DLR 1.51 GHz 1x1-Tx-antenna (Id=1050, SR#547)’
TxPosition "

RxUnit "

RxAntenna 'RUSK DLR external multiplexer 8 times, f=1..68z, Pmax=2W, Serial number 33563, |d=9050’
RxPosition "

Commentl "

Comment2 "

Comment3 "

Comment4 ?

Comment5 "

Scenario [49x1 struct]

Table 6.3: Data fields of the “Nav” structure.
Fieldname Value

Number [12345678910111213141516 17 18 19 20]
RelTime [00000000000000000000Q]

Time [00000000000000000000]

Distancel [1x20 double]

Distance2 [00000000000000000000]

the average frequency response for jfantenna in a burst as

1 Nourst

Hi(f) = Zl Hij(f). (6.1)

Npurst i

We use these averaged frequency responses for each arderateutate the error
between the averaged frequency responses and the frequespmnses of each
cycle in the burst as

8.j(f) =Hi;(f)—Hj(f). (6.2)

Furthermore we estimate the sample based standard devidtibe absolute val-
ues of the error over the measurement bandwidth as

Gij = ﬁz @MW—&Z@MU\- (6.3)

For the case the frequency responses of one antenna in aabeinstt distorted,
varies the standard deviation of the errors only due to nreasent noise. If a
distortion of a frequency response occurred is the stardigwition of the errors
larger. We chose a threshold to detect distorted frequessponses. The threshold
is calculated as the product of some constant vglaad the minimum standard
deviation of the error in a burst for each antenna. Thus weeaelthe index set
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D;,j of distorted frequency responses as
Dij = ]1(6i7j >(q rr1iin8i7j), (6.4)

wherel is the indicator function. We obtain for each burst such aexD; ; set.

6.3 Measurement Data in Matlab Format

The mentioned import functions in Section 6.1 for the chaspender data only
work in specific 32 bit Matlab versions running on Windowsohder to allow for
the use of the measurement data in 64 bit Matlab versions ahdnox systems
are the data files converted in Matlab data files. The filenaaneghe same as
the raw data files except that the suffix “.000.DLREK” is replaced by the file
ending “.mat”.

The data contained in these files are the “Header” and “Infaictures. In
addition are the frequency responses of each burst stotediimown variable (eg.
“Data0000001",..,“Data0001000"). This allows for easy access to specifistisur
and not opening the complete data at once, which would eesuliuge memory
consumption. Additionally are to each burst the indiceshef detected distorted
frequency responses saved. For the threshold we choseltieegva 1.2, based on
some experimental tests. These indices are stored asllogitbles and denoted
eg. “IndexGood0000001” or “IndexBad0000001” for the good &ad indices of
burst one. Similarly, for each burst are the “Gps” and “Navustures stored with
the corresponding indices, eg. as“Gps0000001” and “Ne000".
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Abstract—Time Based (TB) localization in terrestrial mobile we focus on small cell size scenarios and, in turn, on the
radio as an augmentation for global navigation satellite sstems 9.6 GHz and5 GHz bands.
has recently gained plenty of interests. As an essential tbo The wireless channel has a significant impact on TB lo-

to develop suitable algorithms for positioning applicatims in . " S
mobile radios, channel models for wireless transmissions dve calization. The position error is directly related to thega

growing significance. Currently there is a lack of investigions —€stimation error of individual radio links. Two differentajor
on comparing the propagation characteristics at2.45GHz and channel characteristics affect the range estimation :dirstly,

5.2GHz for positioning applications. Therefore, we present a ranging based on the first detectable wave is positivelyedias
statistic evaluation based on a channel measurement camjgg. if the Geometric Line-of-Sight (GLoS) path is blocked. This

Several propagation characteristics are researched likehe re- . . - . -
ceived power and the delay spread. While some measures likePias, i.e. the difference between the geometrical distémoce

the received power is carrier frequency dependent, most ofne  the transmitter to the receiver and the propagation distanc
measures like the non line-of-sight bias or the delay spreadre of the first detectable path is known as the non Line-of-Sight

independent of this measurement parameter. Instead they & (NLoS) bias. Secondly, due to multipath the correlator dase
more influenced by the location and the environment. synchronizer which is generally used for range estimation i
biased positively or negatively by the superposition ohpat
So far only few articles on the propagation channel at around
Global Navigation Satellite Systems (GNSSs) such as thet GHz and around.7 GHz for outdoor to indoor scenarios
Global Positioning System (GPS) provide very accurate pbhave been published, see e.g. [3]. However, these activitie
sitioning as long as line-of-sight (LoS) conditions betweehave been conducted for communication applications, omitt
satellites and receiver prevail. However, in critical siéms important measures needed for ranging applications such as
like urban canyons, the position accuracy by GNSSs vettye NLoS bias and the spatial correlation characteristics.
much deteriorates due to shadowing, diffraction, and réflec This paper aims to compare outdoor to indoor broadband
of satellite signals. In indoor environment GNSS receigeifs wave propagations a@.45 GHz and5.2 GHz for geolocation
fer from severe multipath effects, signal blockage resglin applications based on a DLR channel measurement campaign
very low receive power handicapping the tracking of sdtellifor a time-variant mobile channel.
signals. In Section Il, the setup of the channel measurement cam-
Augmenting GNSSs based positioning with signals of opaign is addressed. Thereafter, Section Il discusses dte d
portunity helps very much in these environments and immoverocessing methods and Section IV the corresponding sesult
the position accuracy compared to a GNSS-only solution. Tireluding the received power, Root-Mean-Square (RMS)ydela
signals of terrestrial mobile radio standards can be etquoi spread, and NLoS bias. Section V will conclude this paper and
in addition to GNSS signals. A promising approach is to appprovides an outlook to future work.
Time Based (TB) localization to terrestrial radio signalsieh
provide considerably higher received power levels conmpare
GNSS. In particular we focus our attention on the Long Term The measurement was accomplished in the Single Input
Evolution (LTE) system operating &0 MHz and 2.6 GHz, Single Output (SISO) manner with a MEDAV RUSK broad-
and to WIFI networks operating &4 GHz and5 GHz. The band channel sounder at the Institute of Communications
potential of these signals for localization has been adedks and Navigation of the German Aerospace Center (DLR) in
in [1] and [2]. For the LTE system the frequency band a&eptembe010. A spread spectrum signal — in particular an
800 MHz is used for scenarios with large cell size like in ruraDrthogonal Frequency Division Multiplexing (OFDM) signal
areas; th&.6 GHz band is foreseen for small and medium cell- has been sent by the transmitter at operating center fre-
size scenarios like in urban areas and for femtocellsy®&lz  quency2.45 GHz and5.2 GHz. The parameter setup of the
band is another potential center frequency for femtoc&ls. channel sounder is summarized in Table 1.
localization requires simultaneously receiving signaisnf The transmit antenna depicted on the left side of Fig. 1 was
several base stations which is critical in rural areas. &loee, positioned at four different locations referred to asITte Tx-

I. INTRODUCTION

II. CHANNEL MEASUREMENT



TABLE |
CHANNEL SOUNDERSETUP

S-Band C-Band ) l T2 (4m) ] © Tx-1
RF centre frequency 2.45 GHz 5.2GHz S P e
Bandwidth 90 MHz 90 MHz T— = 4 .
Transmit Power 5W 22 37 dBm 5W 2 37dBm i = T1 (21m)] TE02
Signal period 6.4 s 6.4 s 1 1724\% TEO1 | 20m v
Measurement time grid 38.9 ms 38.9ms = | 02
Antennas Omni-directional (V)  Omni-directional (V) : — 5
i m
: ‘ ©Tx-3
. . . . . I
4 on the rooftop of office building T& in a height of12m —
above ground as shown in Fig. 2. Two other transmit locations 17m 15m
Tx-5 and Tx#6 in front of the office building TE1 were used Tx-6 | x5 _—
with an antenna height d m above ground as depicted in 31m X-

Fig. 2. The same antennas at both transmitter and receiver we
used for2.45 GHz and5.2 GHz. The transmitter was emitting aFig- 2. Measurement Scenarios. Transmit antenna posifiors to Tx-4

. . re located on the rooftop, whereas T@nd Tx6 are located in front of the
signal with a power 085 .dBm and a rectaqgular sp_ect_ral S_hap ilding. The receiving antenna mounted on the model rgilmms along the
of B = 90 MHz bandwidth. The transmitted periodic signalracks Tl and ™.
was vertical polarized with a repetition rate @fl ps leading

to a maximum resolvable propagation distanceldf2 km.

The channel sounder recorded the Channel Impulse RespcfiSE!Y determined using a Leica tachymeter giving a nominal
(CIR) h(i,n) every T, = 38.912 ms, wherei denotes the accuracy in the sub-cm domain. To get a similar accuracy
snapshot number and = 0,...,N — 1 the delay bin of for the receiv antenna mounted on the model train, the train

the CIR at delayr(n) = %. The same Rubidium standard’un by a cogwheel, is equipped with a rotary encoder giving

frequency normal was usgd for both transmitter and receiii? impulses per motor turn. This results in a precise travelled

clocks to keep them synchronized. The receiver was locafdigiance measure for each captured CIR snapshot. Morésdetai
inside office building TE1 as shown in Fig. 2. Both buildings f the hardware setups are described in [4].

TEO1 and TE2 can be characterized as standard three story 1. DATA PROCESSINGAND EVALUATION

office buildings of concrete with metalized window glassrQOu
primary goal was is assess the dynamic nature of the chanpg

o . ) . . GHz and5.2 GHz, the normalised received powgX(i),
which is typically experienced by a moving receiver. Thu MS delay spread (i), mean delayn(i), and the NLoS bias
instead of static point measurements with a fixed receiver. ' '

th g A ted del train shon i) are investigated.
€ receving antenna was mounted on a model train SNOWrga0h measured CIR(i,n) at snapshot is normalized

on the right side. of Eig. 1 moving ‘,Nith a speed of .a.bo% power by the free space loss of the GLoS, and shifted

0.05m/s as dgscrlbed in [4]. For all six transmitter positions, delay such that the first delay bin corresponds to the

the .mofdel train was running on tracks Bnd T2 for both  yigiance petween receiving and transmitting antennag 4.

carmer frequency. normalized CIR is denoted ds, (i, n) with delayr, (n). The
normalised received powd? (i) is calculated as

0 compare the channel characteristics at center fregegnci

N-1
P(i) = |hn(in)?. (™)
n=0
The RMS delay spread(:) is calculated as
N-1
> (ra(m)=m(i))2t (i n)])
o(i)= | =g (2)
St (i m)l?)
Fig. 1. Left plot: transmit antenna located on the rooftoghR plot: model n=0
train including mounted receive antenna with the mean delayn(z')
As it was not possible to transmit both frequencies at Ni:lT (n)-t (|h (i n)|2>
the same time from the same position, it was necessary to L= " e
perform measurements for both bands in series. The inter- m(i)="—5— ’ 3)
band switching was done after the model train completed its Zt <|hn(i n)‘2>

run on both tracks. The position of the transmitter was pre- —0

3



wheret(z) stands for a thresholding function with

t(x)Z{x Tza (@)

0 otherwise

-25
-30
-35
-40
x; IS calculated as the maximum efminus20 dB.

For NLoS scenarios, the GLoS path is blocked by build-
ings, trees or other objects. As a result, its pow&f.s
is extremely low, such that it cannot be detected. Hence,
the First Detectable Path (FDP) has a larger propagation
distance than the GLoS path resulting in a bias for range
estimation. The GLoS path delay’>°“(i) for each snapshot 00 150 20 250 300
i is determined by the measured distance between transmit and Detay ™ speed of lighit[m]
receive antennas divided by the speed of light. Therefbee, tFig. 3. CIRs normalized in power to the free space loss of theS3path for

NLoS biase(i) is calculated as 2.45 GHz over travelled distance. The grey line represents theSadistance.
The transmit antenna was located atJ»and the model railway run on track

e(i) = c- PP () — ¢ 76E05(4), B) T1.
wherer PP (i) is the delay of the FDP. To estimaté P (i)
super resolution results provided by the Space-Altergatin
Generalized Expectation-maximization (SAGE) algorittsh [
have been used.

Due to the measurement setup, the accuracy of the position
measurement and the size of the antennas the nominal GLoS
distance error in the measurement campaign is within cm
domain. Nevertheless, several recordings under LoS dondit
were made for verification and calibration purposes.
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IV. CHANNEL CHARACTERISTICS
A. Received Power 0

Fig. 3 and Fig. 4 show examples of measured CIRs at

frequencie.45 GHz and5.2 GHz respectively, with the grey Fig. 4. CIRs normalized in power to the free space loss of theSpath for

line representing the GLoS distance. It can be seen that il%GHz over travelled distance. The grey line represents theSGdistance.
. . he transmit antenna was located atJand the model railway run on track

CIRs measured at both frequencies show similar trends.eAt

start of track T the receiving antenna was close to the window

and the NLoS bias is therefore small. When the receiving

antenna was moving on the track Tnto the corridor, the

NLoS bias noticeable increase. A clustered structure in the

CIR can be seen at both bands. This is most probably caused

by reflections between the two buildings TEand TH)2. Due

to the use of metallized window glass, reflections between

the two buildings are of high power. The received power

normalized to the free space loss is shown in Fig. 5. Due to

the normalization of the power the values depicted reptesen

the propagation loss. When the transmit antenna is located

at Tx-1 or Tx-2, the electromagnetic waves enter the rooms

of TEO1 directly through the windows facing TB. Wave

propagation ab.2 GHz experiences higher penetration loss by Tol Tez Ted Txd Ted Trs

the metalized window glass compared2d5 GHz. Whereas

the propagation loss &t2 GHz is close t@.45 GHz when the Fig. 5. Normalized received powd? (i) in dependence of transmit antenna

transmit antenna is located further away from Ix- location and frequency band. The error bars are indicatimg standard
deviation of the calculated values.
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B. Time Dispersion Parameters

The statistics for RMS delay spread and mean delay are
shown in Fig. 6 to Fig. 9. For the transmit antenna locatiorspread. When the transmit antenna location is changed from
Tx-1 to Tx-4 the RMS delay spread and the mean delayx-1 to Tx-4, the power levels of reflections between both
slightly decrease. Outdoor reflections showing up as dledte buildings seen at the receiver are reduced due to the change
structure in the CIR introduce significant impact on the gelaf the impinging angle at TE. As a result, the delay spread
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and frequency band. The error bars are indicating the strdfaviation of Fig. 8. Cumulative density function of calculated RMS detgyead.
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Fig. 7. Mean delayn(n) in dependence of transmit antenna location and
frequency band. The error bars are indicating the standavihtibn of the
calculated values.

Fig. 9. Cumulative density function of calculated mean ylela

when the transmit antenna is located in the front of0TE

becomes smaller. According to Fig. 8 and Fig. 9 it is notiteabthe NLoS bias is obviously larger as visible in Fig. 10.
that there are no significant RMS delay spread or me#vhen the transmit antenna is located at 5[xthere is still
delay differences between wave propagatiof.a5 GHz and a small "visible sight” from the transmit antenna to the oute
5.2 GHz Also, the CIR examples depicted in Fig. 3 and Fig. wall of TEO1 facing TE)2. The NLoS bias is slightly larger
show a similar structure. Therefore, the delay spread shmeil compared to the values obtained, when the transmit antenna
similar. Channel models, which rely on the RMS delay spredsl located at Tx4. It seems that the NLoS bias depends on
for generating wideband CIRs are therefore able to use tfe incident angle of the waves to the building. When the
same statistics for different frequencies. transmit antenna is located at Bxa direct LoS to the outer
C. NLoS Bias wall of ?I'Eo'l facing TE'02' is not present. As a result, the

' NLoS bias is larger. Similar as for the RMS delay spread,
As one of most essential factors in channel modelling f@here is no significant difference for the NLoS biagalts GHz

positioning applications, the NLoS biagn) plays a crucial compared td5.2 GHz. Therefore, it seems that the NLoS bias
role in algorithm performance. Fig. 10 to Fig. 12 shovk frequency independent.

statistics of the estimated NLoS bia§:). When the transmit

antenna is positioned on the rooftop of building OPE the V. CONCLUSIONS

NLoS bias does not vary much in its mean value for eachlIn this paper, based on a broadband wireless channel mea-
antenna position. Only a slight increase for the NLoS biasirement campaign, we studied propagation characteristic

is visible when the transmit antenna is moving from Tx-2.45 GHz and5.2 GHz for geolocation applications. It shows
towards Tx4. At these positions the waves are propagatirtgat the received power is influenced slightly by the inctden
directly into the room where the tracklTstarts. However, angle of the waves to the building. It has been noticed that



frequencies. Moreover, no significant differences for theSl
bias at2.45 GHz compared t&.2 GHz could be found.
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there are no significant differences for RMS delay spread
and mean delay &.45 GHz and5.2 GHz. Therefore, channel
models relying on the RMS delay spread to generate wideband
CIRs are able to use the same statistics for different carrie
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Abstract—Time Based (TB) localization by terrestrial cellular
communications mobile radio as a complementation to Global
Navigation Satellite Systems (GNSSs) has gained plenty of in-
terests. Apart from multipath considered in standard commu-
nication channel models, the Non Line-of-Sight (NLoS) error
due to an undetectable Line-of-Sight (LoS) path, defined as
the additional propagation distance between the first detectable
path and the Geometric LoS (GLoS), needs to be taken into
account. In TB localizations, the range estimates from at least
3 different links to Base Stations (BSs) are required to solve
the 2 dimensional navigation equation. In this paper we analyze
the link-level NLoS errors based on a channel measurement
campaign. It turns out to be, that the NLoS errors for difference
links are i.i.d. processes.

I. INTRODUCTION

Positioning by using GNSSs, such as the Global Positioning
System (GPS) operating at L-band, promises very accurate
location information, when a LoS condition to the satellite is
present. However, positioning in urban canyons, where LoS
might be absent, GNSSs does not provide accurate positions.
For some indoor areas, like rooms with metalized windows,
satellite signals can not be tracked by GPS receivers because of
low signal power. TB localization, utilizing available ground
cellular communication networks [1][2], are investigated as
a complementation to GNSS with the advantage of higher
power level in comparison. By suitable Hybrid Data Fusion
(HDF) algorithms to combine measures obtained from GNSS
and terrestrial cellular networks, the accuracy of the estimated
position can be improved.

As an essential tool for receiver development in terms of
TB localization in cellular communication networks, wireless
channel modelling has a growing significance. Due to a dissim-
ilar focus between communications and positioning, channel
models for both applications are different.

o For communications in cellular networks, multipath mod-
eling is more used to evaluate the Bit Error Rate (BER),
and is considered as the most essential part for algorithms
evaluation, like the channel estimation, coding/decoding,
and synchronization.

o TB positioning using cellular networks focuses on inves-
tigating of the position error, which is directly related to
the range error of individual links. The ranging accuracy
strongly depends on the presence of a GLoS propagation

path. Two different major channel characteristics effect
the range error. First a positive bias is introduced if the
GLoS path is blocked, such that the ranging is based on
the first detectable reflected wave. Generally this bias,
between the geometrical distance from the transmitter
to the receiver and the propagation distance of the first
detectable path is known as the NLoS error [3]. Secondly
due to multipath the correlator based synchronizer which
is generally used for range estimation is biased positively
or negatively by the superposition of pathes [2].
Additionally, in TB localization, ranges from at least 3 differ-
ent BSs are required to solve the 2 dimensional navigation
equation. Therefore, the evaluation of correlation between
NLoS errors for different links involved in localization is an
important factor to model link level channels. Some research
works have investigated the single link NLoS errors based on
indoor to indoor ultra wide band measurement [4]. In this
paper, we evaluated the link level characteristics of the NLoS
errors based on a broadband outdoor to indoor channel sounder
measurement at premises of the German Aerospace Center
(DLR).

In Section II, the setup of the channel measurement cam-
paign is addressed. Thereafter, Section III discusses the data
processing methods and the evaluations. The corresponding
results, like the distribution of NLoS error and its link-level
correlation are shown in Section IV.

Throughout this paper, E,{-} denotes the expectation over
2 and is replaced by the sample mean for calculation.

II. CHANNEL MEASUREMENT CAMPAIGN

The measurement was accomplished in the Single Input
Single Output (SISO) manner with a MEDAV RUSK broad-
band channel sounder at premises of the German Aerospace
Center (DLR) in June 2008. A spread spectrum signal —
in particular an Orthogonal Frequency Division Multiplexing
(OFDM) signal — has been sent by the transmitter. The pa-
rameter setup of the channel sounder is summarized in Table I.
The measured ¢-th snapshot of the Channel Impulse Response
(CIR), h(i,j),7 = 0,...,M — 1 consists of M = 1537
samples at delays 7; = jA7, with A7 = 1/B. The channel
sounder records one CIR every T, = 1.024 ms providing a
measurement rate of 976 CIRs per second (CIRs/s).



TABLE 1
CHANNEL SOUNDER SETTINGS FOR THE MEASUREMENT

RF center frequency 5.2 GHz
Bandwidth B =120 MHz
A/D Converter 8 bits, 320 MHz
Transmit Power 5 W 22 37 dBm
Signal period 12.8 ps

Number of carrier 1537
Measurement mode Time grid mode
Measurement time grid ~ 1.024 ms

Antennas Omni-directional

The receiver antenna was located 1 m above the ground of
the top floor of the building. Measurements were performed
at Np = 90 points in a distance grid of 1 m covering most
of the floor area as shown in Fig. 1. At each point N = 6000
CIR snapshots were measured within 6 s. The transmitter
was located outside, in front of the building. Fig. 1 depicts
the scenario information of the measurement site. Overall 4
different emitter positions were used, 2 different horizontal
positions (marked as H1 and H2), together with 2 different
heights (V1 and V2) for each horizontal position. In this
paper we denote the transmitter position by «, where o €
{dl (H1,V1), d2 (H1,V2), d3 (H2,V1), d4 (H2,V2)}.
Therefore, 360 point measurements have been obtained. The
heights were H1 =12 m and H2 = 18 m above the ground.
V1 and V2 were 32 m horizontally spaced. The distance
from the transmitter to the outer wall of the building was
approximately 16 m.

For range applications the propagation delay is the most
important factor and therefore the most important part in this
measurement campaign. Hence, receiver and transmitter were
perfectly synchronized by cable connection using one common
rubidium atomic clock serving as frequency normal. This setup
prevents time drifts which usually occur in channel sounder
measurements using separated clocks. A system calibration
before the measurement has been performed to equalize influ-
ences of the analog hardware.

The positions of the transmitter antenna and the receiver
antenna were measured in the World Geodetic System 1984
(WGS84) format using a Leica tachymeter system giving
a nominal accuracy in sub-cm domain. Thereafter, the true
distance from the transmitter to the receiver was determined
based on the measured transceiver coordinates to derive the
GLoS distance for each point.

III. DATA PROCESSING AND EVALUATION
A. Power Delay Profile (PDP) Normalized to GLoS

To calculate a conventional PDP, the Channel Impulse
Response (CIR) is normalized in power by total receive power
or maximum path power, and shifted in delay to the first
incoming path [5].

In positioning, it is essential to take the GLoS distance into
account. To better study the channel PDPs for this purpose,
the CIR h,, (3, j) corresponds to h(i, j) normalized in power by
the free space loss, and shifted in delay by the GLoS distance
divided by speed of light c. The PDP for a measurement at a
certain point with a certain transmitter location is calculated
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where ¢ is the snapshot index for each point, and k£ =
1,...,4Np.

B. Channel Parameters Estimation

For each point, the measured CIRs are divided into blocks
of 100 snapshots. In each block b, the CIRs are averaged
to reduce the noise floor resulting in A(b,j) with increased
signal-to-noise ratio. As the environment was stable, the
averaging does not introduce disturbance to the CIR. To
accurately estimate the path delays, and complex amplitudes
from the measured bandlimited CIR, the Space-Alternating
Generalized Expectation-maximization (SAGE) super resolu-
tion algorithm [6] has been utilized. Without loss of generality,
the channel model can be denoted as the summation of paths

L(b)

h(b,5) =Y ai(b)s(j — n(b) - B) 3)

=1

where a;(b) is the complex amplitude of path [, 7;(b) is the
delay of path [, and s(j) denotes the transmitted reference
signal which is a bandlimited dirac function. L(b) is the
number of paths for block b which is estimated by Minimum
Description Length (MDL) [7]. Values for the parameters of
h(b,j) are obtained by fitting to the measured data h(b, )
separately for each block b based on the Maximum Likelihood

(ML) criterion for the parameters a;(b) and 7;(b).

C. NLoS Error Calculation

For NLoS scenarios, the GLoS path is blocked by build-
ings, trees or other objects. As a result, its power Pgros 1S
extremely low as shown in Fig. 2 and Fig. 3, such that it
cannot be detected. The First Detectable Path (FDP) has a
larger propagation distance than the GLoS resulting in a bias
for ranging applications. The GLoS delay ToA%L%(p, o) for
each point p = 1,..., Np is determined by the measured
distance between transmitter, located at a and receiver point
divided by the speed of light. Shown in Fig. 3 as an example,
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the NLoS error en1os(p, ) for point p is calculated as the
mean of NLoS errors of for all blocks

ENLos (D @) = Ey{c- (ToATPE (b, p,a)} = ToAYL% (p, o)),
“)

where ToA"PP (b, p, o) is the estimated delay of the FDP for

block b while the transmitter was locating at position a.

The GLoS distance errors caused by the size of the antenna
and position measurement errors are in cm domain. However,
in order to improve the accuracy, several LoS calibrations were
done based on the measurements of LoS points. The GLoS
distance was calibrated based on estimated LoS path delay.

D. Inter-Link NLoS Error Correlation Evaluation

As multiple links are required in positioning, the inter-
link correlation of NLoS error becomes essential for suitable
receiver algorithm development. The inter-link NLoS error
correlation coefficient p. (a1, as) is defined by Eq. (1). a3
and oo represent the transmitter position d1, d2, d3 or d4.
Three scenarios are considered in this paper:

o S1 where the transmitters are at the same horizontal place

with different heights ((d1, d2), and (d3, d4)),

o 52 where the transmitter are at same heights with differ-

ent horizontal places ((d1,d3), and (d2, d4)),

o and S3 where the transmitter are at different heights and

different horizontal places ((d1, d4), and (d2, d3)).

E. Spatial Characterization

A covariance analysis has been performed to explore the
spatial evolution of the NLoS error € x1.,5(p, @) in a statistical

manner. The spatial sample covariance function ¢, ;(d) is cal-
culated as the covariance of the NLoS error for measurement
points by

Ca,l (d) = Epm Py {(SNLOS(pJH Oé) _:U‘Pl)(ENLoS(py’ Oé) _“;Dl)}'

(%)
where the expectation is over all sets {p,,p,} of the two
measurement points p, and p, on the line-l (I = 1,2, see
Fig. 1) separated spatially by d, and the mean ,,; is equal
the average NLoS error for point measurement of line-/. In
this paper, the d is forced to be 1 m due to spacing between
neighboring points.

IV. EVALUATION RESULTS
A. PDP with Normalization to GLoS

The Probability Density Function (PDF) of the PDP Py (j)
is presented in Fig. 4. A Gaussian kernel estimator [8] has
been used to estimate the one-dimensional PDF for Pj(j) for
each delay bin j. Around delay O us which represents the
propagation time of GLoS, the probability of attenuation is
spread from —20 dB to —50 dB. For high attenuations the
GLoS path is difficult to be detected. In addition, clusters at
around 0.2 us and 0.5 us are observed. These clusters are well
satisfying the mutipath model in [9].

B. NLoS Error Modelling

Mathematical evaluation and modelling of NLoS error are
essential for future channel models used for positioning appli-
cations. The measured single link NLoS error xr0s(p, @)
overall measurements has a mean value of 1.9 meter and
a standard deviation of 1.8 meter. To find its PDF, several
distributions, like the Weibul distribution, exponential distri-
bution, log normal distribution, and Gaussian distribution, have
been tested for fitting. The exponential distribution is found to
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Fig. 4. PDF estimate of the PDP P(j) after normalized to GLoS
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promise the best fit to the calculated NLoS errors. Fig. 5 shows
the histogram of the NLoS error together with its exponential
distribution fit. In a more accurate and intuitive way, Fig. 6
shows the probability plot of exponential fit to the NLoS
error. To further confirm the exponential fit, the data samples
are evaluated by Kolmogorov-Smirnov hypothesis test. The
calculated p-value of 0.92 promises a good fit to the null
hypothesis of an exponential distribution.

Except for the free space loss, reflection, penetration or
diffraction physically degrade the signal strength depending
on the materials’ electrical properties. For large NLoS errors,
the first detectable path suffers from larger attenuations due to
the longer propagation distance, reflections and/or diffractions.
It is clearly shown in Fig. 7 which depicts the FDP versus the
corresponding NLoS error €y 1,5(p, ). Similar as Section 111
the power is normalized to the free space loss of the GLoS.
As soon as the NLoS error becomes larger, the corresponding
path suffers from additional attenuation.

C. NLoS Error Correlations

As an essential factor for link level channel models, the
inter-link correlation coefficient between €105 (p, ) for dif-
ferent links is essential. As described in Section III, three sce-
narios are considered in this paper: S1 where the transmitters
are at the same horizontal place but different heights ((d1, d2),
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and (d3, d4)), S2 where the transmitter are at the same height
but different horizontal places ((d1,d3), and (d2,d4)), and
S3 where the transmitter are at difference heights and different
horizontal places ((d1, d4), and (d2, d3)). According to Eq. (1)
the correlation coefficients p. (a1, ) are listed in Table II. It
can be seen that the NLoS errors for different links have a
certain correlation if the transmitters were located in the same
horizontal place, but different height. For transmitters located
at different horizontal places, the NLoS errors of different
links have no correlation. In other words, the NLoS errors are
uncorrelated to each other. In cellular networks, the links to
BSs from different cells would therefore result in uncorrelated
NLoS errors. For channel modelling, this implies the fact
that NLoS errors for different links can be generated as an
independent and identically-distributed process.

TABLE II
INTER-LINK CORRELATION COEFFICIENTS OF €N 105 (D, )

S1 pe(dl, d2) | pe(d3,dd)
0.4769 0.6874

52 pe(dl, d3) | pe(d2,dd)
-0.192 0.108

S3 || pe(dL,dd) | p-(d2,d3)
-0.112 -0.072

To evaluate the coherence characteristics of the NLoS error,
the spatial correlation of €y 1.,5(p, @) is investigated which is
calculated as the covariance function. Since the measurement
was performed in a discrete point manner, the measurement
positions along two lines in the area A (see Fig. 1) are taken
into account. Fig. 8 and Fig. 9 show the spatial correlation
results for different transmitter positions. Considering a level
of 0.5, distances are ranging between 0.5 m and 3 m.

V. CONCLUSIONS

In this paper, based on a broadband wireless channel mea-
surement campaign, we studied propagation characteristic for
geolocation channel modelling in terms of the NLoS error.
An exponential decaying PDP is observed in the measure-
ment data. Based on probability density function tests, an
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exponential distribution model for NLoS errors is presented
in this paper. Additionally, the inter-link correlation of NLoS
errors are investigated. The results imply that NLoS errors
for different links are independent and identically-distributed
processes. However, the NLoS errors from those BSs, which
are located at same horizontal places but different heights,
show a certain correlation to each other.
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Abstract—A general path loss model for in-room radio chan-
nels is proposed. The model is based on experimental obser-
vations of the behavior of the delay-power spectrum in closed
rooms. In such a room, the early part of the spectrum observed
at different positions typically consists of a dominant compo-
nent (peak) that vanishes as the transmitter-receiver distance
increases; the late part decays versus distance according to the
same exponential law in delay regardless of the distance. These
observations motivate the proposed model of the delay-power
spectrum with an early dominant component and a reverberant
component. The dominant component is modeled as a Dirac
delta function weighted with a factor decaying according to an
inverse distance power law (d~"). The reverberant component is
an exponentially decaying function versus delay with distance-
dependent onset. Its power decays exponentially with distance.
The proposed model allows for the prediction of path loss,
mean delay, and rms delay spread versus distance. We use
measurements to validate the model. We observe good agreement
of the model prediction for mean delay and rms delay spread.

I. INTRODUCTION

The field of indoor radio-localization has recently attracted
significant interest. One approach for solving the localization
problem is to rely on the measured power of the received signal
[1] and to use a path loss model to infer the corresponding
length of a radio link. Knowledge of the received power is
often used for localization in already deployed systems (e.g.
WiFi) where received signal strength is readily available or
with cheap low power devices in sensor networks. Even when
deploying localization techniques with higher accuracy, path
loss models are used to predict the signal-to-noise ratio and
the probability of connectivity [2], which are both important
criteria for system analysis.

Indoor path loss models, relating the received power to the
transmitter-receiver distance, have been a valuable instrument
to the communication engineer [3]. A vast amount of such
models have been proposed for various propagation scenarios
and environments and have been validated for diverse purposes
in wireless communications. The primary concern so far has
been to predict the power loss with respect to distance. These
models consider indoor scenarios in which path loss is caused
by transmission across multiple walls and floors, and multi-
path fading [4], [5]. Thus, they cover a whole building. Only
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Fig. 1. Typical behavior of the bandlimited delay-power spectrum experimen-
tally observed in an in-room environment at three different transmitter-receiver
distances (schematically presented by the grey box).

few models are available in the literature that characterize
propagation in a single room [6].

In this contribution we propose an in-room path loss model
based on experimental observations of the behavior of the
delay-power spectrum [7], [8] and on analogies to models used
in room acoustics [9] and electromagnetic fields in cavities
[10]. In our model the delay-power spectrum consists of a
dominant and a reverberant component. The model allows
for the prediction of the path loss, the mean delay and the
rms delay spread versus transmitter-receiver distance. The
proposed model is validated with a new set of measurement
data.

II. DELAY POWER SPECTRUM MODEL

We consider an in-room scenario as illustrated in Fig. 1. The
delay-power spectrum is observed at different transmitter and
receiver locations. A system bandwidth high enough to observe
frequency fading (delay dispersion), but to low to separate
single propagation paths in the environment is considered.
The regarded carrier frequencies are high enough, such that
the smallest dimension of the room is large compared to the
wavelength . The delay-power spectrum is the expectation of
the squared magnitude of the impulse response h (7, d):

G(r,d) = E[|h (r,d)’]. (1)

Here 7 is the delay and d is the transmitter-receiver distance.
In [8] it is observed that the delay-power spectrum in such



TABLE I
PARAMETERS OF THE PROPOSED MODEL.

Parameter ~ Meaning
Go Path gain at reference distance dg.
do Reference distance, typically 1 m.
n Path gain decay exponent of the dominant component.
q Ratio Grev(do)/Gdom(dO)'
T Reverberation time of the reverberant component.

an in-room scenario exhibits the typical behavior depicted
in Fig. 1. The tail of the delay-power spectrum exhibits the
same constant exponential decay regardless of the transmitter-
receiver distance. The early part is strong at short distance and
gradually vanishes as this distance increases.

Based on these observations, we model the delay-power
spectrum as a dominant component plus a reverberant compo-
nent:

G(T» d) = Ethom (7, d)|2] + E“hrev (7, d)|2]
== Gdom(T, d) + Grev(T7 d) (2)

Subscript dom indicates the dominant component and sub-
script rev denotes the reverberant component. The domi-
nant component represents the early part of the delay-power
spectrum consisting of a directly propagating component and
possible first-order reflections from the floor, ceiling and walls.
The reverberant component represents the multitude of higher
order reflections in the room which yield the diffuse tail of
the delay-power spectrum.
We model the delay-power spectrum of the dominant com-
ponent as
Gaom(r,d) = Go (%)" 6 (r = 2), 3)

(&
where n is the power decay exponent, §( - ) is the Dirac delta
function, c the speed of light, and Gy > 0 is the gain at the
reference distance d.
We model the reverberant delay-power spectrum as an
exponentially decaying function with onset determined by the
transmitter-receiver distance:

Grey(T,d) = {

T, >4

, otherwise

GO,rev €

“

where G rcv is the reference gain of the reverberant compo-
nent. In analogy to acoustics [8], [9] we call T' the reverber-
ation time.

We remark that the models in [7] and [8] are based on
the room acoustic theory. They both neglect the transmitter-
receiver distance. In [7] the delay-power spectrum of the
reverberant component, i.e. corresponding to (4), is non-
exponential. It has maximum power one and constant onset
at delay zero. In [8] the model only accounts for the expo-
nentially decaying delay-power spectrum of the reverberant
component in (2).

III. PREDICTIONS OF THE DELAY POWER SPECTRUM
MODEL

Based on the model (2) we now derive expressions for the
path gain, mean delay, and rms delay spread as a function of
the transmitter-receiver distance.

A. Path gain
The path gain at distance d is

G(d) = /G(T, d)dr

= Go (%9)" +Gorey T e . 5)
—_—
Gaom(d) Grev(d)

The component Ggom(d) decays with d=™, while Gyey(d)
decays exponentially. Denoting by ¢ the ratio of reverberant
to dominant gain at reference distance dg:

Grev(d()) _ GO,rev T

—dg

= = =T, ©)
¢ Gdom(dO) GO
the path gain can be recast as
do\ ™ do—d
G(d)=Go (%) +Goge . 7

Examples of G(d) are graphed in Fig. 2a. At small distances
G dom(d) dominates and the path gain decays as d~". Beyond a
certain distance, the contribution of the reverberant component
Grev(d) in G(d) leads to a deviation from Ggom(d). This
effect occurs over a certain distance interval, denoted as the
reverberation region Diey = {d : Grev(d) > Gaom(d)}.
At larger distances Ge,(d) vanishes and G(d) approaches
Gaom(d) again.

We remark that the path loss is defined as the inverse of
the path gain: L(d) = G(d)~". For notational convenience we
consider only path gain in the sequel.

B. Mean Delay and Root Mean Squared Delay Spread

The mean delay at distance d as is derived from (2) as

1
pr(d) = @/T G(r,d)dr (8
— g +T ! T - )

n

()3
In (9) the first term is the delay of a directly propagating
component and the second term results from the reverberant
component. Fig. 2b depicts the mean delay versus distance
with the settings specified in the legend of the figures. The
mean delay increases with distance. For distances in the rever-
beration region, the curves approximately follow the straight
line % + T'. It can be seen from (9) that limg_.o pir(d) = 0
and that s (d) has the asymptote ¢ for d — cc. Note that the
range of distance considered in the plot of Fig. 2b is to small
to observe the convergence of ju-(d) towards its asymptote.

Similarly, (2) enables computation of the rms delay spread:
o-(d):

2 _ 1 2 2
D) = g [ 7 Gl = (@)

Insertion of (7) and (9) into (10) leads to

(10)

T2 1

2
cZ(d) = — 2 —
(@) 1+(—f§)”%edu?~°

T
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Fig. 2¢ depicts the rms delay spread versus distance. Notice,
o-(d) in (11) has the following limits

li d) = li d) =0. 12
i (@) = i o (@) 2
Here again, the range of the distance considered in Fig. 2c
is to small to observe the convergence of o,(d) towards 0
as d — oo. For distances in the reverberation region o, (d)
approaches the reverberation time 7. Indeed it can be shown
that

T = sup {o,(d): d>0,n>0,q >0}, (13)

d,n,q
i.e. the rms delay spread is upper bounded by 7' for any
distance.

IV. MEASUREMENT DATA

We validate the proposed model by means of measurement
data from a campaign conducted at DLR in Oberpfaffenhofen,
Germany. The investigated room is sketched in Fig. 3. A
panograph of it is depicted in Fig. 4. The environment was
static and no one was in the room while the measurements
were taken.

The dimensions of the room are 5.1x5.25x2.78 m®. The
three inner walls are made of plaster boards. As visible in the
panograph, the outer “wall” consists mainly of four windows
(W1-W4) and two pillars made of concrete. The frames of
the windows are metallic and the glass is metal coated. The
height of the transmit and receive antenna was 1.26 m and
1.1 m, respectively.

The measurement data were collected using the Rusk-DLR
channel sounder [11] operating at 5.2 GHz. The settings of
the sounder are summarized in Table II. The transmit antenna
[12] was omni-directional with 3 dBi gain. A uniform circular
array of eight monopoles with diameter 75.18 mm was used at
the receiver. The transmitter and receiver were synchronized
to a common clock via cables throughout the measurements.

The equipment used a multiplexer to sequentially sound
the eight channels between the port of the transmit antenna
and the ports of the eight elements of the receive array.
One measurement cycle, in which all eight channel frequency
responses were measured, was completed in 204.8 us. The
sounder was operating in “burst” mode. In each burst 20
consecutive measurement cycles were performed. One burst
lasted 20-204.8 us = 4096 us. Between each burst, the

()

Path gain (a), mean delay (b) and rms delay spread (c) versus distance predicted by the proposed model for dy = 1 m.
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Fig. 4. Panograph (spherical panoramic photo) of the investigated room seen
from Rpl using an equi-rectangular projection.

sounder paused for data storage; the burst repetition time was
131.072 ms.

The receive antenna array was placed at five fixed locations
labeled as Rpl to Rp5 respectively in Fig. 3. The transmit
antenna was mounted on a model train which moved on
two tracks labeled as T1 and T2. Frequency responses were
measured for each receiver position while the transmitter
moved along the two tracks with a constant speed of ap-
proximately 0.05m/s. During one measurement burst the
transmitter moved 204.8 pm = 0.0035\. Over this distance
the channel response can be considered constant. Between two
consecutive bursts, the transmitter moved 6.55 mm =~ \/8.8.

The positions Rp1-Rp5 and the trajectory along the track
were measured with a tachymeter. The odometer of the model
train was connected to the channel sounder to record the
measurement locations.

V. RESULTS

We compute the received power at all receiver and transmit-
ter positions. Notice that one measurement burst corresponds
uniquely to one pair of transmitter and receiver positions. Let
us consider one specific burst. The frequency responses of each
of the eight channels measured during the burst are averaged.



TABLE II
SETTINGS OF THE CHANNEL SOUNDER.

Parameter Value
Carrier frequency f. 52 GHz
Bandwidth B 120 MHz
Number of sub-carriers N, 1536
Carrier separation A f 78.125 kHz
Signal duration 12.8 ps
Cycle duration 204.8 us

Cycles per burst 20

Burst duration 4096 us
Burst repetition time 131.072 ms
Transmit power 0dBm

TABLE III
PARAMETER ESTIMATES FOR THE STANDARD AND PROPOSED MODELS.

Model Go n q T [ns]
Standard 1.11-107°  1.14 — —

Proposed 7' = 18.73ns  6.42-10°% 2.26 0.56  18.73
Proposed T'= 16.02ns  5.79-107% 2.39  0.71  16.02

The averaged responses are then squared and integrated to
obtain the power values of the eight channels. Averaging these
values yields the power measured in the burst. Fig. 5 reports
the scatter plot of power values computed for all bursts versus
transmitter-receiver distance. Since the noise-floor is below
—70 dBm in all measurements, we disregard the noise.

We compute the mean delay estimate fi, and rms delay
spread estimates o, for each burst. We multiply the averaged
frequency responses of the eight channels obtained for a given
burst (see above) with a Hann window. Taking the inverse
Fourier transform of the filtered frequency responses yields
estimates of the impulse responses of the eight channels.
The mean delay and delay spread estimates for the burst are
obtained by inserting the squared average of the eight im-
pulse responses in (8) and (10), respectively. These estimates
computed for all bursts are reported versus transmitter-receiver
distance in Fig. 6. These values are in accordance with values
reported in [5] for office environments.

We use the model assumption (4) on the behavior of the
tail of the delay-power spectrum versus 7 to estimate 7'
from experimental delay-power spectra. More specifically, an
estimate of /" is obtained from a linear least squares estimate
of the slope of the late part of the experimental log power
spectra. As can be seen in Fig. 7 the underlying model
assumption (4) holds true for the experimental delay-power
spectra. Considering the restriction of the log spectra obtained
for any transmitter and receiver positions in the delay range
40 ns < 7 < 150 ns, the linear least squares estimator yields
T =18.73 ns.

We test the behavior of the mean delay (u, — g + T,
see Fig. 2b) and the rms delay spread (o, ~ T, see Fig. 2c)
predicted by the model when d ranges in the reverberation
region. The scatter plot of estimates of the rms delay spread
in Fig. 6 shows a constant behavior for distances larger than
3 m. Therefore, we estimate T" by taking the average of these
estimates for d > 3m. This yields 7" = 16.02ns. Similarly we
estimate 7" from the scatter plot of estimates of the mean delay
versus distance. For each estimate, say [i,(d), the difference
fi-(d) — 4 is computed for d > 3 m. The estimate T is the
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average of these differences. Doing so yields T = 13.07 ns.
The theoretical results for p, and o, in Fig. 2b and Fig. 2c,
respectively, show that for some model parameter settings, the
bound o, ~ T and specifically the asymptote of the mean
delay p, — % + T are not reached. Thus we proceed with the
analysis by considering the two close estimates T = 18.73 ns
and 7" = 16.02 ns.

We estimate the parameters of both the standard path
loss model (G(d) = Gq (%O)n) and the proposed model
from the estimated power values reported in Fig. 5. More
specifically, the estimates are computed by considering the
log-power domain. For the standard path loss model a linear
least squares estimation is performed. We use the Matlab curve
fitting toolbox [13], which provides a non-linear least squares
estimator, to fit the proposed path gain model (7). This toolbox
returns estimates of the parameters Go, n and ¢ with the
estimate 7" provided as input.

The estimates of the parameters of the models are reported
in Table III and the path gains versus distance computed from
the models with these parameter settings are shown in Fig. 5.
The path gain predictions of the standard and proposed models
(for the two sets of parameter estimates) almost overlap.
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Fig. 7. Spatially averaged delay-power profiles obtained for the receiver
positions Rpl to Rp5 when the transmitter was at the start position on track
T1. The straight line depicts an exponentially decaying function with decay
factor 7' = 18.73ns. The dashed lines indicate the range 40ns < 7 < 150ns
used for the estimation of 7'

VI. DISCUSSION

The estimate 7 = 1.14 of the path loss exponent of the
standard path gain model is in the range of published values
obtained from in-room measurement data [6] and references
therein. Traditionally, exponent values lower than 2 are at-
tributed to wave guiding effects. However, the dimensions of
the room do not advocate this interpretation. A reverberation
phenomenon in the room provides a more plausible explana-
tion to the observed low exponent.

The estimates of the mean delay ji,(d) and rms delay
spread o(d) shown in Fig. 6 are in accordance with the
model prediction obtained with 7" = 16.02 ns. The predicted
transition of the mean delay and the rms delay spread from
zero at d = 0 to respectively g + T and T for d ranging in
the reverberation region is well observed.

The parameter estimates of the model computed from the
two estimated reverberation times slightly differ (see Ta-
ble III). However, the path gains predicted by the two model
estimates fall on top of each other as shown in Fig. 7.

The estimate 7" = 18.73ns obtained directly from the delay-
power spectra deviates by only 14.5 % from T = 16.02 ns
obtained from (13). These observations support the hypoth-
esis that the reverberant component impacts significantly the
received power, mean delay, and rms delay spread.

The estimated values for ¢, which characterize the ratio be-
tween the power of the dominant and reverberant components,
is 0.56 and 0.71 respectively. Thus, the reverberant component
plays an important role in the description of the path gain. The
estimates 7 = 2.26 and 2.39 of the path gain decay exponent
of the dominant component are close to the exponent of free-
space propagation.

The estimated reverberation times are close to typical rms
delay spreads observed in office environments [5]. This sug-
gests that these rms delay spreads might have been measured
in the reverberation region and are thus dominated by the
reverberation term. This interpretation is further supported by
the fact that the reverberation region starts as close a distance
as 1.2m in the considered scenario.

VII. CONCLUSIONS

A model of the delay-power spectrum of an in-room rever-
berant channel has been proposed. The model includes a dom-

inant and a reverberant component. The dominant component
follows an inverse distance power law (d~"). The reverberant
component decays exponentially versus delay and exhibits a
distance dependent onset. As a result, its power decays ex-
ponentially with distance. The proposed model allows for the
prediction of path gain, mean delay and rms delay spread. The
model was validated using measurement data and compared to
the standard path loss model. The predictions of mean delay
and rms delay spread agree well with the estimates obtained
from the measurement data. In the investigated environment
the ratio of the gain of the reverberant component to the gain
of the dominant component is 0.56. Hence, the reverberant
component is prominent in this environment. The estimated
path gain exponent of the dominant component in the proposed
model is close to the free-space path gain exponent. Due to
its inability to separate the dominant component from the
reverberant component the standard path gain model yields a
path gain exponent close to unity. This model merely provides
a fit of the path gain that blends the contributions from the
dominant and reverberant component.
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Modeling of Reverberant Radio Channels Using
Propagation Graphs

Troels Pedersen, Gerhard Steinbdck, and Bernard H. Fleury

Abstract— It has been observed from measurements that the . Direct comp.
spatially averaged channel impulse response for in-room se Single dominant
narios exhibits an avalanche effect: The earliest signal copo- components
nents, which appear well separated in time, are followed by @&
avalanche of components arriving with increasing rate of ocur-
rence, gradually merging into a diffuse tail with exponentally
decaying power. A new approach is followed to design a model

Office LOS

) [dB(10 GHz)]
&

Diffuse

of the channel response which includes recursive scattergnand o 95 tail
thereby inherently accounts for the exponential power decaand g_loo /

the avalanche effect. The environment is modeled in terms of =

a propagation graph in which vertices represent transmittes, -105

receivers, and scatterers, while edges represent propage con- _110

ditions between vertices. A closed form expression of the ahnel !
transfer function valid for any number of interactions is derived. 0 50 100 150
We discuss an example where interactions are assumed to caus Delay [ns]

no time dispersion and thus delay occurs only due to propagain _ _
in between scatterers. For this example, a stochastic modef the  Fig. 1. Spatially averaged delay-power spectrum measuittinvan office

propagation graph is stated based on which realizations ofhe of 5x5x._2.6m5wnh a signal bandwidth of 1GHz. The spectrum is the rms
channel transfer function and impulse response are generatl value of impulse responses obtained ak30 receiver positions on a square
for numerical evaluation. The results reveal that the graphs horizontal grid with steps of dm. The delay scale includes some cable delays;
recursive structure ields. both an ex tial d d the transmitter-receiver distance is approximatelyn3.8he vertical axis is

v ponential power decayn with reference to 10:Hz, shifting the curve by —108B. Reprinted from [6]
an avalanche effect in the generated impulse responses. with permission (© 2002 IEEE). See [6] for further details.

I. INTRODUCTION

Engineering of modern indoor radio systems for communiR a homogeneous medium is a well-known phenomenon
cations and geolocation relies heavily on models for thestinstudied by Foldy [14] and Lax [15], [16]. The solution, given
dispersion of the wideband and ultrawideband radio channbly the so-called Foldy-Lax equation [17], has been applied
[3]-[5]. From measurement data, as exemplified in Fig. 1,1 the context of time-reversal imaging by Shi and Nehorai
appears that the spatially averaged channel impulse respdd8]. The solution is, however, intractable for heterogmre
(or delay-power spectrum) for in-room scenarios exhibits andoor environments. In [19] the radio propagation mecs@ni
avalanche effect: The earliest signal components, whipeap is modeled as a “stream of photons” performing continuous
well separated in time, are followed by an avalanche of corfRndom walks in a homogeneously cluttered environment. The
ponents arriving with increasing rate of occurrence, gailgu model predicts a delay power spectrum consisting of a single
merging into a diffuse tail with exponentially decaying psw directly propagating “coherent component” followed by an
A similar avalanche effect is well-known in room acousticéicoherent tail. Time-dependent radiosity [20]-[23] acgting
[7] where it is attributed to recursive scattering of sountpr delay dispersion has been recently applied to design a
waves. Indoor radio propagation environments are padityul model for the received instantaneous power [24]. Thereby,
exposed to recursive scattering as electromagnetic waags rthe exponential power decay and the avalanche effect can be
be reflected back and forth in between walls, floor, and agilinpredicted.

Thus, in the present contribution we hypothesize that sreeir ~ Simulation studies of communication and localization sys-
scattering is the cause of both the observed avalanchet efteens commonly rely on synthetic realizations of the channel
and the exponential power decay. impulse response. A multitude of impulse response models

Recursive scattering phenomena have been previously cerist [4], [5], [25], but only few account for the avalanche
sidered in a number of radio channel models. The worlkiffect. Ray tracing methods can also be used, but to achieve
[8]-[11] use the analogy to acoustical reverberation theotractable computational complexity, the maximum number of
to predict the exponential decay. As a matter of fact, theirgteractions considered is limited [26]. Thus the avalanch
exists a well-developed theory of electromagnetic fields effect is discounted. The models [27]-[29] treat early com-
cavities [12], [13], but in this field too the avalanche effeas ponents via a geometric model whereas the diffuse tail is gen
received little attention. Recursive scattering betweanigles erated via another stochastic process; the connectiorebatw

_ o the propagation environment and the diffuse tail is, howeve
Department of Electronic Systems, Aalborg University, BR20 Aalborg not considered
East, Denmark. Email: {troels,gs,fleury}@es.aau.dk. Tiesent contributions ) o
builds on and expands on the work presented in [1], [2]. In this contribution, we model the channel response fol-



lowing a new approach which includes recursive scattering.
The obtained model thus accounts inherently for the expo-
nential power decay and the avalanche effect. We represent
the environment in terms of a propagation graph, where
vertices represent transmitters, receivers, and scetfevhile
edges represent propagation conditions between verfités.
modelling approach allows for a closed form expression ef th
channel transfer function valid for any number of interaics.

We assess the validity of the hypothesis by considering an
example of a propagation graph suitable for Monte Carlo
simulations. Scatterer interactions are assumed to caose n
time dispersion and thus delay dispersion occurs only due to
propagation in between vertices. We state a §tochastic Imogg_ 2. A propagation grapf = (V, £) with four transmit vertices, =
of the propagation graph allowing for numerical evaluatiofirx1, Tx2, Tx3, Tx4}, three receive verticed, = {Rx1, Rx2, Rx3},
of realizations of the channel impulse response and transfed six scatterer vertice; = {S1,52,53,54, 55,6, }. The edge sef
function. The results reveal that the graph’s recursivecstre the ?{%‘g(gg)th?ngSg%):(Tig‘T’S‘é)P%X)ZL(STIXﬁP?”J?gﬁgig
yields both an exponential power decay and an avalanclag, Rx3), (S6, Rx2)}, and & = {(S1,S2), (S2,S1), (S3,S1), (S2, S4),
effect in the generated impulse responses. (54,53), (54,55)}.

Il. REPRESENTINGRADIO CHANNELS AS GRAPHS between the vertices. Thus, the vertex set of a propagation

In a typical propagation scenario, the electromagneticadig graph is a union of three disjoint set¥: = V, U V, U V,,

emitted by a transmitter propagates through the envirohmevhereV; = {Tx1,..., TxM,} is the set of transmit vertices,
interacting with a number of objects called scatterers. Thg = {Rx1,...,RxM,} is the set of receive vertices, and
receiver, which is usually placed away from the transmitte¥s = {S1,...,SN} is the set of scatterer vertices. The

senses the electromagnetic signal. If a line of sight existansmit vertices are considered as sources with outgoing
between the transmitter and the receiver, direct propaigatedges only. Likewise, the receivers are considered as sinks
occurs. Also, the signal may arrive at the receiver indiyectwith only incoming edges. Thus for a propagation graph,
via one or more scatterers. In the following we represetite edge set can be partitioned into four disjunct sets as
recursive and non-recursive propagation mechanisms usihg= £ U & U E, U &, where&y = £N (W, x V) is the set
graphs. First we state the necessary definitions of directeddirect edges&, = £ N (V; x V) is the set of transmitter-

graphs and associated terms. scatterer edges;, = £ N (Vs x V,) is the set of scatterer-
receiver edges, anfl, = £ N (Vs x Vy) is the set of inter-
A. Directed Graphs scatterer edges. Fig. 2 shows an example propagation graph.

. i ] ] The signals propagate in the graph in the following way.

Following [30], we define a directed graplh as a pair Each transmitter emits a signal that propagates via itsoingg
(V, &) of disjoint sets of vertices and edges. The two mappinggges. The signal observed by a receiver vertex is the sum of
init : £ — V andterm : £ — V assign to edge € € aniinitial  {he signals arriving via the ingoing edges. A scatterer sums
vertexinit(e) and a terminal VerFeXerm(e) respectively. We 5 the signals on its ingoing edges and re-emits the sum-
also say that the edge is ingoing to vertexterm(e) and gjgnal on the outgoing edges. As a signal propagates along
outgoing from vertexinit(e). Edgese and e’ are parallel if 55 edge, or interacts with a scatterer, it undergoes deldy an
init(e) = init(¢’) and term(e) = term(e’). When a graph gispersion in time. The specific delay dispersion endured by
has no parallel edges, an edgecan be identified by the 5 gignal depends on the particular propagation mechanism
vertex pair (init(e), term(e)) € V2. With a slight abuse of 5jong its edges. Assuming these mechanisms to be linear and
notation we write in this case = (init(e), term(e)). With  ime_invariant, this effect can be represented as a cotigalu
this identification,£ C V2. This notation also allows for the yith an impulse response or, in the Fourier domain, as a
graph to have anti-parallel edges, i.e. if the edge (v,v') IS mytiplication with a transfer function. Let us for a moment
in the graph, the edge’ = (v',v) can also exist. A walk (of consider the edge = (Vn,vn) in E. A filtered version
length K) in G is a sequencuy, vz, ..., vx+1) Of vertices of the signal C,(f) emitted by vertexv, is observed at
in V such that(vy, vg41) € &k = 1,... K. A walk which  ertexy, . The signal observed at vertex: via edgee reads
fulfills v; = vy is called a cycle. Aloop is an edge= (v, v), Ac(f)C(f), where A.(f) is the transfer function of edge
I.e., init(e) = term(e). Thus, by definition, a loop is a walk ; ‘| other words, the transfer functiad.(f) describes the
of length1. interaction the initial vertew,, and the propagation from,,

10 vy

B. Propagation Graphs

We define a propagation graph as a directed grdph C. Weighted Adjacency Matrix of a Propagation Graph
(V, &) where vertices inV represent transmitters, receivers Propagation along the edges is described via a transfer
and scatterers. Edgesdhrepresent the propagation conditionsnatrix A(f) which can be viewed as an adjacency ma-



whereY,, (f) is the Fourier transform of the signal observed
by receiverRxm. Similar, to X(f) and Y(f) we let Z(f)
denote the output signal vector of the scatterers:

Z(f) = [Z.(f),- .. Zn (D], (10)

where thenth entry denotes the Fourier transform of the
signal observed at scatterer verfex By the definition of the
propagation graph, there are no other signal sources tlean th
vertices inV;. Assuming linear and time-invariant propagation
mechanisms, the input-output relation in the Fourier domai
reads

Fig. 3. Vector signal flow graph representation of a progagagraph. Y(f) =H(/)X(f), (11)
Vertices represent vertex sets of the propagation gragh agisociated vector

signal_s. Signal transmiss_ion between the sets are repeeskey the edges and WhereH(f) is a M, x M; transfer matrix.
associated transfer matrices. The structure of the propagation graph unfolds in the vector
signal flow graph depicted in Fig. 3. The vertices of the vecto

trix where the entries are weigthed by the correspondififn@l flow graph represent the three s&is V;, and V;

edge transfer functions. Thus, the weighted adjacencyimatf/ith the associated signal(f),Y(f), andZ(f). The edge
A(f) € C(Mi+Me+N)x(Mc+M+N) of the propagation graph transfer matrices of the vector signal flow graph are the sub-

G is defined as matrices ofA(f) defined in (4)—(7).

[A(f)]nn = {A“’"v“n')(f) it (vn, vm) €€, (1) I1l. TRANSFERMATRIX OF A PROPAGATION GRAPH

0 otherwise, . . . .
In the following we derive the input-output relation of a

i.e., entryn,n’ of A(f) is the transfer function from vertex propagation graph. In Subsection IlI-A we first discuss hiosv t
v, 10 vertexwv,  of G. Selecting the indexing of the verticesresponse of a graph is composed of signal contributions-prop

according to agating via different propagation paths. This representat
is, albeit intuitive, impractical for computation of thetrsfer
Ve, n=1..., M, function for graphs with cycles. Thus in Subsections lll1&la
Un € ¢V, n=My+1,..., M + M, (2) 111-C we give the transfer function and partial transfer ricats
Vs, n=M;+M.+1,...,M;+ M.+ N, of a general propagation graph in closed form. Subsectien Il
) ] ] D treats the graphical interpretation of reciprocal chdmne
the weighted adjacency matrix takes the form The section concludes with a discussion of related resnlts i
O 0 o0 the literature.
A(f)= [D(f) 0 R(f)|, ©
T(f) 0 B(f) A. Propagation Paths and Walks
whereo denotes the aII-zero matrix of the appropriate dimen- The concept of a propagation path is a corner stone in mod-
sion and the transfer matrices eling multipath propagation. In the literature, this copicis
M, x M, . most often defined in terms of the resulting signal compaent
D(f) € CM N connect?ngvt oV, () arriving at the receiver. A shortcoming of this definitiorthat
R(f)eC™ connectingVs to V, (5) it is often hard to relate to the propagation environmene Th
T(f) € CN*Me  connecting); to Vs, and (6) graph terminology offers a convenient alternative. We defin
i _ 0 1 K+1 i
B(f) € C¥* interconnecting.. (7) Propagation path as a watk= (v(©, v . . »E+D)in g

such that the initial vertex(?) is a transmitter and the terminal
The special structure oA (f) reflects the structure of thevertexv®*1 is a receiver, i.e.p(® € V, andvE+D € V.
propagation graph. The first/; rows are zero because, weA signal that propagates along propagation patnaverses
do not accept incoming edges into the transmitters. Likewig + 1 (not necessarily different) edges and undergdés

columnsM; +1,..., M; + M, are all zero since the receiverinteractions. We refer to such a propagation path ak-a
vertices have no outgoing edges. bounce path. A zero-bounce propagation péats (v,v’) is
The input signal vectoX(f) is defined as called a line-of-sight path, or direct path, from transenitt
T to receiverv’. As an example, referring to the graph depicted
X(f) = [X1(f) - Xar ()] () in Fig. 2, it is straightforward to verify that; = (Tx1, Rx1)

where X,(f) is the signal emitted by transmittdixm, and 1S @ direct pathfs = (Tx4,S6, Rx2) is a single-bounce path,

[-]T denotes the transposition operator. The output sigrfdfld¢s = (Tx4,81,52,81, Rx3) is a 3-bounce path.
vector Y (f) is defined as We denote bycL,, the set of propagation paths i

from transmitterv to receiverv’. The signal received at’
Y(f)=M(f),...,Yar ()7, (9) originating from transmittew is the superposition of signal



components each propagating via a propagation path,in.  where

Correspondingly, entryv, v’) of H(f) reads D(f) k0
_ k(f) = - (15)
Hyy(f) = Y H(f), (12) R(f)B*1(f)T(f), k> 0.
LEL,

Vv

Insertion of (15) into (14) yields
where H,(f) is the transfer function of propagation path

The number of terms in (12) equals the cardinalitygf,, _ N b
which may, depending on the structure of the graph, be finite H(f) =D(f) + R(f) kZ:l B ) T (16)

or infinite. As an example, the number of propagation paths = i i ) )
i infinite if v andv’ are connected via a directed cyclegn The infinite sum in (16) is a Neumann series converging to

The graph in Fig. 2 contains two directed cycles which aft—B(f)] 7" if the spectral radius aB(f)) is less than unity.

connected to both transmitters and receivers. Inserting this in (16) completes the proof. u
In the case of an infinite number of propagation paths, The decomposition introduced in (14) makes the effect of

computing H,.(f) directly from (12) is infeasible. This the regursive scatt.eri.ng directly visible. The receivgghal

problem is commonly circumvented by truncating the sum ¥ECtOr is a sum of infinitely many components resulting from
(12) to approximatef,.(f) as a finite sum. This approach@"Y nurr_1ber_ of interactions. The structure of the propagatio
however, calls for a method for determining how many termf@echanism is further exposed by (16) where the emitted vecto

of the sum should be included in order to achieve reasonafléna! is re-scattered successively in the propagatiom@mv
approximation. ment leading to the observed Neumann series. This allows

In the frequently used K -bounce channel models”, propafor modeling of channels with infinite impulse responses by

gation paths with more thaf” interactions are ignored. This€XPression (13). Itis pos§ible to arrive at (13) in an akée,
approach is motivated by the rationale that at each interact PUt l€ss explicit, manner:

the signal is attenuated, and thus terms in (12) resultiog fr Pr'oof:. It is readily observed from the vector signal flow
propagation paths with a large number of bounces are wed@Ph in Fig. 3 thaZ(f) can be expressed as
and can be left out as they do not affect the sum much. Z(f) = T(f)X(f) + B(f)Z(f). (17)

This reasoning, however, holds true only if tkam of the
components with more thai interactions is insignificant, Since the spectral radius #&(f) is less than unity we obtain
which may or may not be the case. From this consideratiday Z(f) the solution

it is clear that the truncation criterion is non-trivial as i

T -1
essentially necessitates computation of the whole sumrdefo Z(f) = L=BI T(NX)- (18)
deciding whether a term can be ignored or not. Furthermore, according to Fig. 3 the received signal is ef th
form
B. Transfer Matrix for Recursive and Non-Recursive Propa-
Y(f)=D(f)X R(H)Z(f). 19
gation Graphs (f) = D(HX(f) + R(HZ(S) (19)
As an alternative to the approximation methods applied tgsertion of (18) in this expression yields (13). u

the sum (12) we now give an exact closed-form expression for'Ve remark that the above two proofs allow for propagation
the transfer functiorH(f). Provided that the spectral radiug®@ths with any number of bounces. This is highly preferaise,
of B(f) is less than unity, the expression holds true for arf)e derived expression (13) is not impaired by approxinmatio
number of terms in the sum (12) and thus holds regardle¥§ors due to the truncation of the series into a finite number
whether the number of propagation paths is finite or infinitef terms as it occurs when usirfg-bounce models.
Theorem 1:If the spectral radius aB() is less than unity, A Significant virtue of the expression (13) is that prop-
then the transfer matrix of a propagation graph reads agation effects related to the transmitters and receivegs a
accounted for in the matricdd(f), T(f) andR(f), but do
H(f) = D(f) + R(f)[I - B(/)]""T(/). (13) not affectB(f). Consequently, the matriff — B(f)]~* only
According to Theorem 1 the transfer matiik(/) consists needs to be computed once even though the configuration of
of the two following termsD(f) representing direct propa-transmitters and receivers changes. This is especiallgrasy
gation between the transmitters and receivers Bidf)[I — geous for simulation studies of e.g. spatial correlationhis

B(f)]"'T(f) describing indirect propagation. The conditioneads to a significant reduction in computational compjexit
that the spectral radius @(f) be less than unity implies that

for any vector norm|| - ||, [|Z(f)|| > IB(f)Z(f)|| for non-
zero ||Z(f)||, cf. [31]. For the Euclidean norm in particular
this condition implies the sensible physical requiremérattt  The closed form expression (13) for the transfer matrix of
the signal power decreases for each interaction. a propagation graph accounts for propagation via an arpitra
Proof: Let Hy(f) denote the transfer matrix for all- number of scatterer interactions. For some applications, it
bounce propagation paths, th&l(f) can be decomposed ashowever, relevant to study only some part of the response
. according to a particular number of interactions. One case i
H(f) = Z H,(f), (14) where a propagation graph is used to generate only a part of
=0 the response and other techniques are used for the remaining

C. Partial Transfer Matrices



parts. Another case is when one must assess the approximalflo Reciprocity and Propagation Graphs
error when the infinite series is truncated. In the following

. : . In most cases, the radio channel is considered reciprosal. A
we derive a few useful expressions for such partial transfer .
matrices we shall see shortly, the graph terminology accommodates an

We define thek : L partial transfer matrix as interestin.g interpretation of the'concept of reciprodityr any
propagation graph we can define the reverse graph in which
L the roles of transmitter and receiver vertices are swapped.

Hg..(f) = Z Hy(f), 0<K<L, (20) The principle of reciprocity states that the transfer nxatri
k=K of the reverse channel is equal to the transposed transfer

i.e., we include only contributions from propagation patih matrix of the forward channel, i.e., a forward channel with
ét .|’eastK, but no more tharl, bounces. It is straightforward transfer matrid(f) has a reverse channel with transfer matrix

to evaluate (20) fof — 0, andL = 0, 1, 2: H(f) = HT(f). In the .sequefl we mark all entities related to
the reverse channel with a tilde.
Ho.o(f) = D(f) (21) We seek the relation between the forward grgph (V,€)
Ho.1 (f) = D(f) + R(f)T(f) (22) and its revgr;é’ =€) underthe ass.umpuon of remprocny.
5 More specifically, we are interested in the relation between
Hoo(f) = D(f) + R(HT() + R(NHBT(S). (23) the weighted adjacency matri&(f) of G and the weighted

This expansion of the truncated series is quite intuitive b%djacency matrixA (f) of G. We shall prove the following
eorem:

the obtained expressions are increasingly complex forelar _ ) ] .
L. Theorem 2 gives a closed form expression of the partial "€orem 3:A propagation graply = (V, €) with weighted

transfer functionH g 1,(f) for arbitrary K and L: adjacency matrixA (f) has a reverse graph = (V, &) with

Theorem 2:The partial responsH ., (f) is given by edge set = {(v,v') : (v/,v) € £} and weighted adjacency
matrix A(f) = AT(f).

D(f) + R(f)[I - BL(H)I - B T(f), In words Theorem 3 identifies the graph of the reverse
K=0,L>0 channel as the graph obtained by reversing the direction of
Hy. (f) = Kt . . all edges ofg while maintaining the edge transfer functions.
R(f)[B*(f) =B (NI -B(f)]'T(f), Proof: We start by noting that the set of transmitters,

0< K<L, receivers, and scatterers is maintained for the reverseneha
thus the vertex set off is V. Interchanging the roles of
provided that the spectral radius Bf(f) is less than unity. transmitters and receivers means that we admit no edges of

Proof: The partial transfer function far < K < L reads the reverse grapﬁ going into vertices in/, and no outgoing
edges from vertices ;. Consequently, assuming the vertex

Hio(f) = . H(f) — . Hy (f) indexing as in (2), the weighted adjacency matrixdofs of
KL Z;{ § kl;ﬂ F the form 0 DU T
For K = 0 we haveH...(f) = H(f) by definition; for 0 R(f) B(f)

K >1 we have . ~ - -
where the transfer matricdd(f), R(f), T(f), andB(f) are

. . k defined according to Fig. 4. The input-output relation of the
Hicoolf) = RS k_%;lB (F)T(S) reverse channel read§(f) = H(f)Y(f) whereY (f) is the
B oo signal emitted by the vertices i, and X(f) is the signal
= R(f)BK‘l(f)ZB’f(f)T(f) received by thel vgrtices iv,. By inspectiqn of Fig. 4 and
=0 by arguments similar to those presented in Section IlI-B we

= R(/)BEL(f)[I - B(f)] " T(f). (25) achieve for the reverse channel

- - - - -1 .

Inserting (25) into (24) completes the proof. [ | H(f) =D(f) +R(f) {I — B(f)} T(f). 27)
Theorem 2 enables closed-form computationtbk. ., (f)

for any K > L. We have already listed a few partial transferThe reciprocity conditioH(f) = H™(f) yields the alterna-
matrices in (21), (22), and (23). By definition the partialive expression:
responseH .k (f) equalsHg (f) for which an expression
is provided in (15). The transfer function of thi€-bounce H(f) = D7(f) + TT(f) [I-BY(f)] T RT(f). (28)
approximation is equal tdH.x(f). Another special case
worth mentioning i i 1.0 (f) = H(f)—Ho.x(f) available Comparing (27) and (28) it is clear thaf)(f) =
from (25), which gives the error due to ttié-bounce approx- DT (f),B(f) = BT(f),T(f) = RT(f), and R(f) =
imation. Thus the validity of the/{-bounce approximation ’{‘T(f). After inserting these four identities into (26) we obtain
can be assessed by evaluating some appropriate normAdff) = AT (f). The relation betwee# and £ now follows
Hri1.00(f)- from the definition of the weighted adjacency matrix. ®



Such an effort may reveal some structural differences batwe
models, which are not apparent merely from the mathematical
formulation. It is, however, a fact that the interpretatioh
a transfer functions as a propagation graph is not unique—
different propagation graphs may yield the same transfes-fu
tion. Therefore different equivalent graphical interpt&ns
may be given for a particular model.

We first consider the structure of the seminal model [32]
by Turin et al. This model can be expressed in the frequency
domain as

o0
H(f) = arexp(—j2nfre), (29)
Fig. 4. Vector signal flow graph representation of a reverspagation graph. =0
Compared to the forward graph depicted in Fig. 3 all edgesewersed.

whereaqy is the complex gain and ang denotes the delay of
the /th component. We assume that= 0. Thus{ (7, ay) :
E. Related Recursive Scattering Models ¢ =1,2,...} is a marked Poisson point process of delays

We provide a few examples of recursive models to assf [0,00) with complex marks{a, : ¢ = 1,2,...}. The
the reader in recognizing models which can be represented'Bder is referred to [32] for further details. We represent
the graphical structure. this model as the graph depicted in 5(a). We construct the
In [18] Shi and Nehorai consider a model for recursive scaif@ph by identifying each term in (29) as corresponding to a
tering between point scatterers in a homogeneous backgroutPecific propagation path from the transmitter to the reely
The propagation between any point in space is described 3ypears that the componenisexp(—;j27 f7¢), £ = 0,1,2,. ..
a scalar Green’s function. The transfer function obtaingd '€ statistically independent. Therefore, we assign tdh eac
applying the Foldy-Lax equation can also be obtained froffMponent a separate path which results in a graph with
a propagation graph by defining the sub-matriceA¢f) as m_ﬂmte_ly many S|_ngle—bounce paths. This definition alloiws
follows. The model does not include a directed term and thg4€ct interpretation of both the forward and reverse gsaph
D(f) = 0. The entry of[T(f)]m,» is the Green’s function Since no sc'atterer-to-scatte'rer edges efist;: () andB(f) =
from transmit vertexm, to scatterem times the scattering 0- By blocking the propagation from tfix to scatterer, the
coefficient of scatterer/. Similarly, the entry[R(f)],m, iS edge(Tx, () is removed from the graph while the remaining
the Green’s function from the position of scattenew receiver Paths are unaffected. The same happens if edgBx) is
my. The entry[B(f)]n, n # n’ is the Green’s function from removed. .
the position of scatteret to the position of scatterer’ times ~ 1he celebrated model by Saleh and Valenzuela [33] is
the scattering coefficient of scattererSince a point scatterer Structured as a second-order Turin model:
does not scatter back on itself, the diagonal entrieB0f) o0 o0
are all zero. As can be observed from the above definitions,H (f) = Y _ aexp(—j2mf7e) Y  apw exp(—j2mfroe).

the assumption of homogeneous background medium leads to £=0 =0 30

the special case withy = 0, & = Vi x Vs, & = Vs XV, and . L ,( )

g = V2. Assuming for simplicity thatry = 0 and rppr = 0,4 =
: ,1,..., the processes{(ay,7¢) : ¢ = 1,2,...} and

Another modeling method that can be conveniently d f— 19 70 ind q
scribed using propagation graphs is (time-dependentyséyi (O‘Zﬁ”g“g ST S b =0, a H’ are |r|1 epen Ent
[24]. The time-dependent radiosity algorithms publishad fnarked FolSson processes @i oo) with complex marks.

[20]-[24] are formulated in the delay domain. It appear?,e“’_IiIS on t_hes_e stochastig processes can be found _in [33].
however, that no closed-form solution feasible for nurméricAga'n’ considering that statistically independent term¢30)

evaluation is available in the literature. Thus [20]-[2&§art to stemhf(;om. dlsjlrlc;t:_prOszga_Fﬁn paths, we fcr?n conitruct the
iterative solutions which can be achieved after discrejzhe graph depicted in Fig. 5(b). The structure of the graph afspea

inter-patch propagation delays. The time-dependent sitglio to be asymmetric in the sense that the transmitter is coadect

problem can be expressed in the Fourier domain in termst8fa_set _Of super-ordinaie or “cluster sca_ltterers wheraas t

a propagation graph where each patch is represented b eiver is connected to the set of sub-ordinate scattekera

scatterer, and the entries Af( f) are defined according to the esEIt, rem%wrg olnetof tg_e outgow.]gbe?%es from t'he tranemfnth

Fourier transform of the delay-dependent form factor. Usir{na €s "’,‘V.V ole cluster disappear, bul by removing one of the

this formulation, a closed form expression of the Channggcelvers ingoing edges only a single component vanishes i
t

transfer function appears immediately by Theorem 1 with 18 double sum (_30)' This Iea_ds to an interesting effect in
need for quantization of propagation delays. e reverse graph: After reversion of all edges the asynymetr
is changed as the transmitting vertex is connected to the

o o ) ) subordinate scatterers while the receiving vertex is cotauke
F. Reuvisiting Existing Stochastic Radio Channel Models 4 the cluster scatterers. This problem can be circumvented
It is interesting to revisit existing radio channel modeys bmaking the graph symmetric as shown in Fig. 5(c), which in
means of the just defined framework of propagation graphsarn necessitates additional scatterers and edges.



a) Turinet al.

.
—

The edge gaingg.(f)} are defined according to

1 .
o RX Anfre)?? €c gd

— e~ e €&
G2(f) = 4f#(5t) S(&)

& (32)
Y sy €€ &

47 f#
odl(e) €€ gs

where odi(e) denotes the number of edges framit(e) to

,4. other scatterers and for agy C £
: \ R
/ z |g,| dore and  SEN=) 7% (3I)

ecf’ ec&’
/' with | -| denoting cardinality. The weight of the direct edge
N is selected according to the Friis equation [34] assuming
. isotropic antennas at both ends. The weights of edges in
' and &, also account for the antenna characteristics. They are
c) Saleh & Valenzuela (symmetric) computed at the average distance to avoid signal amplditati

when scatterers are close to a transmitter or receiver, lgame
when the far-field assumption is invalid.

We now define a stochastic model of the sfts}, £, and

{¢.} as well as a procedure to compute the corresponding

transfer function and impulse response. The vertex positio

are assumed to reside in a regiBnC R? corresponding to the
Fig. 5. Propagation graph representations of: a) a remlizaif the model region of interest. The transmitter and receiver positiares
by Turin et al. [32]; b) a realization of the Saleh-Valenzuela model [33]; cassumed to be fixed, while the positions of tNescatterers
a symmetric version of the model in panel b).

{r, : v € Vs} is a Bernoulli point process ok, i.e., the
numberN of scatterers is assumed constant, and the scatterer
positions are drawn independently from a uniform distiidout
onR.

Edges are drawn independently such that a vertexqoair

The concept of propagation graph introduced until now? is in the edge sef with probability P, = Pr[e € &]
can be used for describing a broad range of channel modelsfined as
In this section we apply these general results to a specific
example scenario where scatterer interactions are caeside

/ \

\ / B. Stochastic Generation of Propagation Graphs
/ \
\ /

IV. EXAMPLE: STOCHASTIC MODEL FORIN-ROOM
CHANNEL

Pdira e = (TX, RX)

to be non-dispersive in delay. We specify a method feasible 0, term(e) = Tx

for generating such a graph in Monte Carlo simulations. The P. =40, init(e) = Rx . (34)
model discussed in this example is a variant of the model 0, init(e) = term(e)

proposed in [1], [2]. P.. otherwise

. ] ] The first case of (34) controls the occurrence of a direct
A. Weighted Adjacency Matrix component. IfPy;, is zero, the direct ternD(f) is zero with
We define the weighted adjacency matrix according to pgobability one. If Py, is unity, the direct termD(f) is non-
geometric model of the environment. We consider a scena#@ro with probability one. The second and third cases of (34)
with a single transmitter, a single receiver, aNdscatterers, exclude ingoing edges to the transmitter and outgoing edges
i.e., the vertex set reads= VUV, UV, with V; = {Tx},V, = from the receiver. Thus the generated graphs will have the
{Rx}, andV, = {S1,...,SN}. To each vertexs» ¢ V we structure defined in Section II-B. The fourth case of (34)
assign a displacement vecter, € R® with respect to a excludes the occurrence of loops in the graphs. This isisiensi
coordinate system with arbitrary origin. To edge= (v,v’) as a specular scatterer cannot scatter a signal back tb itsel
we associate the Euclidean distanke= |r, —r,|, the gain A consequence of this choice is that any realization of the
ge, the phasep., and the propagation delay = d./c where graph is loopless and therefoAg( ) has zeros along its main
c is the speed of light. The edge transfer functions are definéi@gonal. The last case of (34) assigns a constant protyabili
as P,;s of the occurrence of edges from to Vs, from V, to Vs
) ) and fromYV, to V,.
A(f) {ge(f)eXP(J¢e —j2r7ef); e€€& 31)  Finally, the phaseg¢. : ¢ € £} are drawn independently
0; egt. from a uniform distribution on the intervg; 2r).



1) Drawr,, v € Vs uniformly onR

—40 4

2) Generate€ according to (34) )
= 50 4
3) Draw independent phasds). : ¢ € £} uniformly on Z o WW
[0’ 271—) = 2 22 24 26 28 3
4) ComputeA (f) within the frequency bandwidth using (31) f [GHz]
: . . —40 4
5) IF spectral radius oB(f) is larger than unity for some
frequency within the bandwidth GOTO step 1 .
6) EstimateHg.r(f) andhx..(7) as described in Appendix T
= 601
Fig. 6. Algorithm for generating full or partial transferrfctions and impulse E
responses for a preselected bandwidth. I
TABLE | v
PARAMETER SETTINGS FOR NUMERICAL EXAMPLES 1 2 3 4 5 6 780910
0. f [GHz]
Parameters Symbol Values 30
Room size R [0,5] x [0,5] x [0,2.6] m3 i 20 1 (farin: Fma] = [2,3] [GHz]
Transmitter position Ty [1.78, 1.0, 1.5]T m g
Receiver position IRx [4.18, 4.0, 1.5]Tm T "
Number of scatterers N 10 = 104
Tail slope p —0.4dB/ns ~20
Prob. of visibility Pyis 0.8 —30
Prob. of direct propagation Pgir 1 —40 Al . , , , :
Speed of light c 3.108 m/s 0 7rers20 40 60 80 100 120
Transmit signal X[ Unit power Hann pulse 7 [ns]
Number of frequency samples TI' 8192

Fig. 7. Channel response for a specific realization of thepggation
graph. Top: Transfer function in dR01log,q |H(f)|) in the frequency range

. [1,11] GHz. Bottom: Impulse responses in d®&0log;, |h(7)|) computed
Given the parameter®, rrx, Trx, N, Pair, Puis @Nd g, for two frequency ranges.

realizations of the (partial) transfer functiolH ., (f) and

corresponding (partial) impulse resporige.;, () can now be

generated for a preselected frequency rdifge,, fmax], USING  effect as well as a diffuse tail of which the power decays

the algorithm stated in Fig. 6. exponentially withp ~ —0.4dB/ns. As anticipated, the
transition to the diffuse tail is most visible in the respens

C. Numerical Experiments obtained with the larger bandwidth.

The effect of the recursive scattering phenomenon canThe build up of the impulse response can be examined via
now be illustrated by numerical experiments. The paramet8 partial impulse responses given in Fig. 8. Inspecticimef
settings given in Table | are selected to mimic the expertaienPartial responses wheR = L reveals that the early part of
setup of [28] used to acquire the measurements reportB@ tail is due to signal components with a ldw while the
in Fig. 1. The room size and positions of the transmittdfte part is dominated by higher-order signal componets. |
and receiver are chosen as in [28]. We consider the c&&h also be noticed that ds increases, the delay at which
where direct propagation occurs and $&, to unity. The the maximum of theK-bounce partial response occurs and
probability of visibility Py;s and the number of scatterershe spread of this response are increasing.

N are chosen to mimic the observed avalanche effect. TheFig. 9 shows two types of delay-power spectra. The upper
value of g is set to match the tail slopg ~ —0.4dB/ns panel shows the ensemble average of squared amplitudes of
of the delay power spectrum depicted in Fig. 1. The vall&00 independently drawn propagation graphs for the two
of g can be related to the slope of the log delay power signal bandwidths also considered in Fig. 7. Both spectra
spectrum via the approximatign~ 20 log;,(g)/u(Es). This exhibit the same trend: A clearly visible peak due to thedlire
approximation arises by considering the power balance foisignal is followed by a tail with exponential power decay.
scatterer assuming the signal components arriving at teseat As expected, the first peak is wider for the case withTlz

to be statistically independent, neglecting the probgbidf bandwidth than for the case with GHz bandwidth. The
scatterers with outdegree zero, and approximating edggsleltails differ by approximately 7 dB. This shift arises due to
of edges in&; by the average: (&) defined in (33). the f=2 trend of the transfer function resulting in a higher

Fig. 7 shows the amplitude of a single realization of theeceived power for the lower frequencies considered in the
transfer function. Overall, the squared amplitude of thaesfer 1GHz bandwidth case.
function decays asf~2 due to the definition of{g.(f)}. The bottom panel shows spatially averaged delay-power
Furthermore, the transfer function exhibits fast fadingrathe spectra obtained for one particular realization of the pgap
considered frequency band. The lower panel of Fig. 7 repotisn graph. The simulated spatial averaged delay-powetispe
the corresponding impulse response for two different signexhibit the avalanche effect similar to the one observed in
bandwidths. Both impulse responses exhibit an avalandfig. 1. Indeed, for the 1GHz bandwidth case the power level
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Fig. 8. Partial responses obtained for one graph realizétio the bandwidth[2, 3] GHz. The K : L settings are indicated in each miniature. The full
response is indicated in gray for comparison. Top row: rases of K -bounce approximations. Right-most column: error ternssilteng from (K — 1)-bounce
approximations. Main diagondlK = L): K-bounce contributions.

of diffuse tails of the delay power spectra agrees remaykabl

well with measurement in Fig. 1. The modest deviation of
40 4 about 3dB can be attributed to antenna losses in the mea-
surement.

[frnins fnax] = [2,3] [GHz]

V. CONCLUSIONS

20 . ‘ ‘ ‘ ‘ The outset for this work was the observation that in-room

0 7rome20 40 60 80 100 120 channels available in the literature are observed to exhibi

avalanche effect where separate signal components appear a

10 - increasing rate and gradually merge into a diffuse tail with

and exponential decay of power. We hypothesized that this

avalanche effect is due to recursive scattering. We propose

a model which includes recursive scattering by modeling the
propagation environment as a graph where vertices refresen

% o 20 20 60 80 100 120 transmitters, receivers, and scatterers and edges reppeep-
7lns) agation conditions between vertices. This general stractu

allows for the propagation graph’s full and partial tramsfe

Fig. 9. Simulated delay power spectra. Top panel: Ensemideage over matrix t? ,be derived in closed form,' This expreSS'on can,

1000 Monte Carlo runs. Bottom panel: Spatial average of glsigraph by specifying the edge transfer functions, be directly utsed

realization assuming the same grid as the one used in F;ga.1900 receiver perform numerical simulations.

gff)'g;rt'iznorr'; 3532 i?f’?;gretal'. square grid with x 1 cm* mesh centered — yye consider as an example a graph-based stochastic model
where all interactions are non-dispersive in delay in a aden
similar to an experimentally investigated scenario whée t

Power [dB]
)

[frnins fnax) = [2,3] [GHz]

Power [dB]
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avalanche effect has been observed. The responses genergde J. Kunisch and J. Pamp, “Measurement results and magelgpects
from the model also exhibit an avalanche effect. Thus we
conclude: 1) the diffuse tail can be generated even whep

scatterer interactions are non-dispersive in delay ane:ftie
the diffuse tail can be attributed to recursive scatterarg] 2)

the exponential decay of the delay-power spectra is cauged

recursive scattering. As illustrated by the simulationutess

8

the proposed model, in contrast to existing models which
treats dominant and diffuse components separately, msviqml

a unified account for the avalanche effect.

APPENDIX

The transfer functio®(f) and impulse respondeg(r) can
be estimated as follows:

(11]

(12]

1) Computel’ samples of the transfer matrix within the[13]

bandwidth| fiin, fmax]
H[] = H(fmin +74), (35)

where Ay = (fmax — fmin)/(I' —1) and H(-) is ob-
tained using Theorem 1.

v=0,1,... =1,

(14]

(15]

: . ; . . . (16
2) Estimate the received signglr) via the inverse discrete

Fourier transform:

-1
y(iA-) = Ap>  HX[y] exp(j2miy/T),
v=0

i=0,...T -1,

whereX[y] = X( fmin +7Ayf),7=0,1,...I' =1 and
A = 1/(fmax - fmin)-
The impulse response can be estimated by letKrig] be a
window function of unit power

Sfmax r
/ X()Pdf ~ S XPPA; =1 (36)
v=0

min

where X[y] = X(fmin + 7Af). The window function must

(17]

(18]

(19]
(20]

[21]

(22]

be chosen such that its inverse Fourier transform exhibitd28

narrow main-lobe and sufficiently low side-lobgs;r) is then

regarded as a good approximation of the impulse response

of the channel and by abuse of notation denotedhlfy).
Samples of the partial transfer matrix are obtained by pdp

(24]

H(-)byHg..(-) in (35). The corresponding received partial

impulse response is denoted hy., (7).
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Sparse Variational Bayesian SAGE Algorithm
with Application to the Estimation of

Multipath Wireless Channels

Dmitriy Shutin and Bernard H. Fleury

Abstract

In this work we develop a sparse Variational Bayesian (VBleesgion of the SAGE algorithm
for the high resolution estimation of the parameters ofuaié multipath components in the response of
frequency and spatially selective wireless channels. Pipdication context of the algorithm considered in
this contribution is parameter estimation from channehsling measurements for radio channel modeling
purpose. The new sparse VB-SAGE algorithm extends theictdsSAGE algorithm in several respects:
by monotonically minimizing the variational free energy,distributions of the multipath component
parameters can be obtained instead of parameter pointateimand ii) the estimation of the number
of relevant multipath components and the estimation of theponent parameters are implemented
jointly. The sparsity is achieved by defining parametricrsipa priors for the weights of the multipath
components. We revisit the Gaussian sparsity priors withénsparse VB-SAGE framework and extend
the results by considering Laplace priors. The structurghef VB-SAGE algorithm allows for an
analytical stability analysis of the update expression tfar sparsity parameters. This analysis leads
to fast, computationally simple, yet powerful, adaptivéeston criteria applied to the single multipath
component considered at each iteration. The selectiomrieribre adjusted on a per-component-SNR
basis to better account for model mismatches, e.g. diffoatesing, calibration and discretization errors,
allowing for a robust extraction of the relevant multipatbnmponents. The performance of the sparse
VB-SAGE algorithm and its advantages over conventionahnbhestimation methods are demonstrated
in synthetic single-input—multiple-output time-invartachannels. The algorithm is also applied to real

measurement data in a multiple-input—multiple-outputetimvariant context.
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. INTRODUCTION

In modeling real world data, proper model selection playsiwtal role. When applying high
resolution algorithms to the estimation of wireless mauaitip channels from multidimensional channel
measurements, an accurate determination of the numbernoihdot multipath components is required
in order to reproduce the channel behavior in a realisticrmaar an essential driving mechanisms for
the design and development of next generation multipletiapultiple-output (MIMO)-capable wireless
communication and localization systems. Consider for Baity a single-input—multiple-output (SIMO)
wireless channé) e.g., an uplink channel with a base station equipped witltiphes antennas. The
received signal vectog(t) made of the signals at the outputs of these antennas can teseafed as
a superposition of an unknown numhbgrof multipath components;s(t, 8;) contaminated by additive
noise&(t) [1]:

L
z(t) =) wys(t, 0) + £(t). 1)
=1

In (1) w; is the multipath gain factor and(¢, ;) is the received version of the transmitted sigegdl)
modified according to the dispersion parameter ve@taf the ith propagation path Classical parameter
estimation [2]-[5] deals with the estimation of the multipacomponents, i.ew; and 8;, while the
estimation of the numbek of these components is the object of model order selectipfdp Despite its
obvious simplicity, the model (1) provides an over-simptifaiescription of reality: it adequately accounts
for specular-like propagation paths only. Componentsimaiing from diffuse scattering inevitably present
in measured channel responses are not rendered appriyangts). More specifically, a very high number
of specular components is needed to represent such diffuse components. Furthestefieading to
model mismatch are errors in calibration of the responsdefttansceiver or measurement equipment
that cause inaccuracies in the descriptiors@f 6;), as well as the discrete-time approximations to (1),
typically arising when model parameters are estimatedgusimmerical optimization techniques. All these

effects have a significant impact on the performance of bothrpater estimation algorithms and model

1The proposed method can be easily extended to MIMO time-variant elsamith stationary propagation constellation;
with minor modifications the polarization aspects can be included as well. Xtéaston merely leads to a more complicated
signal model, including for instance more dispersion parameters, widdiing any new aspect relevant to the understanding
of the new proposed concepts and methods. The scenario consideBigO channel seems a sensible compromise between
complexity of the model underlying the theoretical analyses and an ititeyespplication in which the proposed method can
be demonstrated. However, in the experimental section we considesttheton of a MIMO channel.

2\We mean as dispersion parameters of the waves propagating fromrteitter side to the receiver site, and by generalization
of the multipath components in the resulting channel response, their eetiglay, direction of departure, direction of arrival,
and Doppler frequency. The paramerincludes all these parameters or a subset of them depending on thaittansnd
receiver configurations.
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order selection schemes derived based on (1). Experimevitiéree shows that if the model order
selection scheme is not carefully designed, the above mmikrhatch will lead to an overestimation
of the number of relevant multipath components. Fictive congmts without any physical meaning
will be introduced and their parameters estimated. Herm#iprchannel estimators combining model
order (component number) selection and component paramstienation that are robust against model
mismatch are needed here.

Bayesian methods are promising candidates for such robeshous. For a fixed model order
L the classical Maximum Likelihood (ML) approach to the estiomatof dispersion parameters
® =1{04,...,01} and gainsw = {w,...,wr} in (1) involves maximization of the multidimensional
parameter likelihoog(z|®, w) given the measurement Although efficient algorithms exist to solve this
optimization problem [2], [3], [10], standard ML algorittsmequire a fixed number of componeitsand
typically do not employ any likelihood penalization to coemsate for overfitting. Bayesian techniques
can compensate for this through the use of a ppi@, w), which effectively imposes constrains on
the parameters of the model. The model fit (i.e., the value ofliketihood) can be traded for the
model complexity (i.e., number of components in (1)) thiouge likelihood penalization. Likelihood
penalization lies in the heart of celebrated informatibeeretic model order selection criteria, such as
Minimum Description Length (MDL), Bayesian Information Gniton (BIC), as well as their variants
[71-9]-

Imposing constraints on the model parameters is a key t@sz@gnal modeling [11]-[16]. In Bayesian
sparsity approach [11], [13], [14], [17] the gaims are constrained using a parametric phidiv|a) =
1, p(wi]oy), wherep(w;|a;) is a circularly symmetric probability density function @pdwith the prior
parametera; — also called sparsity parameter — being inversely propuati to the width of the pdf.
Such form of the prior allows controlling the contribution @fch basis associated with the weight
through the sparsity parameter. large value ofo; will drive the corresponding weight; to zero, thus
realizing a sparse estimator. The sparsity parameters arel fas the maximizers qf(z|a), which is
also known as a type-Il likelihood function or model evideri@ 3], [14], [18] and the corresponding
estimation approach is known as the Evidence Procedure (ER) [14]

In general, evaluating(z|a) is difficult. This, however, can be done analytically [11], [18L4],
[17] in the special case of linear mod&ls(z|®, w) with both model distribution and sparsity prior

being Gaussian (which corresponds to theype of parameter constraints) . Moreover, it can be shown

3In our context this corresponds to assumihgas known or fixed, and thus(8;) = 3.
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[19] that in the Gaussian prior case the maximum of the modigleace p(z|a) coincides with the
Bayesian interpretation of the Normalized Maximum Liketlkdomodel order selection [7] and reduces
to the Bayesian Information Criterion (BIC) as the numbemaasurement samples grows. Therefore,
the EP allows for joint model order selection and parametiémasion. This approach was investigated
in [19] within the context of wireless channels; howeverrkvfl 9] considers the estimation of multipath
gains only, thus bypassing the estimation of the dispens@ameters in (1). Recently, a large number of
investigations has been dedicated to study,efype of parameter penalties [12], [15], [16], [20], [21],
which, in the Bayesian Sparsity framework, is equivalent toasingp(w;|«;) as a Laplace prior for
I=1,...,L. Compared to Gaussian priors, such form of constraintssléadparser models [13], [15],
[22], [23]. The/;-type of penalties significantly limits the analytical studythe algorithm; nonetheless
for models linear in their parameters a number of efficient eiical techniques has been developed [15],
[24], [25]. Extensions of the Bayesian sparsity methods \Wwiblace priors applied to the estimation of
multipath wireless channels have not been explored yetlypndue to the nonlinearity of the channel
model in ®. This can be circumvented using virtual channel models [[A]], which is equivalent to
a sampling or gridding of the dispersion paramet@sat the Nyquist rate [16]. The algorithm then
estimates the coefficients on the grid using sparsity teclsi¢l2], [16], [21]. This approach, however,
does not provide high resolution estimates of the multigstrameters. Although it is very effective in
capturing channel energy, recent investigations [26] destrate that this approach inevitably leads to
a mismatch between the true channel sparsity and the estinsgtarsity; more specifically, even when
fine quantization of® is used, the number of virtual multipath components will a& exceed the
true number of multipath components; in that respect thenrblaestimates derived based on virtual
models are not appropriate when the goal is to extract paysmltipath components. In this paper
we aim to demonstrate that the super-resolution propertyildhnot be sacrificed to the linearity of
the estimation problem. We achieve this by i) casting a stg@slution SAGE algorithm for multipath
parameter estimation [3] in a Bayesian framework, and itrgahe entries in® as random variables
whose pdfs are to be estimated and ii) combining this estimatcheme with the Bayesian sparsity
technigues, as mentioned in the previous paragraph, siag multiple sparsity parametess to control
the model sparsity on a per-component basis. Moreover, agilhghow, our analysis also allows defining
ways to reduce the impact of estimation artifacts due to #ssbmismatches through a detailed analysis
of the estimation expressions for the sparsity parameters.

Our main contribution in this work is twofold. First, in order realize Bayesian sparse estimation and

to overcome the computational difficulties due to the nomliitg of the channel model, we propose a
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new Variational Bayesian [27] extension of the Space-Algny Generalized Expectation-Maximization
(SAGE) algorithm for multipath parameter estimation [3],][28/ariational Bayesian SAGE (VB-SAGE).
In contrast to the SAGE algorithm, the VB-SAGE algorithm esties the posterior pdfs of the model
parameters by approximating the true posterior p@#, w, a|z) with a proxy pdfq(®, w, o) such as

to minimize the variational free energy [27]. Similar to thegnal SAGE algorithm [28], the VB-SAGE
algorithm relies on the concept of the admissible hiddem datin analog of the complete data in the
EM framework — to optimize at each iteration the variatiomakfenergy with respect to the pdfs of the
parameters of one component only. We demonstrate that thetdoicity Property of the VB-SAGE
algorithm guarantees that such optimization strategy ssecdy minimizes the variational free energy.
Such optimization strategy makes the estimation of the paten®in® a tractable optimization problem
due to the reduced dimensionality of the resulting objectisnctions. Second, we demonstrate that the
admissible hidden data also permits a detailed analytiodlysof the sparsity parametesg which leads

to selection criteria applied individually to the multipatomponent updated at each iteration. These
selection criteria, on the one hand, allow for a fast impletagon of the sparse channel estimator; on
the other hand these criteria are easy to interpret and caudjhsted to compensate for model mismatch
due to e.g. calibration and discretization errors. Thussff@se VB-SAGE algorithm jointly implements
the estimation of the number of relevant multipath comptsmi@md the estimation of the posterior pdfs
of the component parameters. We revisit and extend the @augsor case, and present new results for
Laplace sparsity priors within the framework of the VB-SAGHaithm. It should also be mentioned that
the performed analysis of sparsity parameters equally valid for the problem of sparse estimation of
virtual channels models [16] with VB-SAGE algorithm. Howewthe application of the sparse VB-SAGE
algorithm to the estimation of virtual channel models issidg the scope of the paper.

The paper is organized as follows: In Section Il we introdueedignal model; Section Il addresses
the derivation of the VB-SAGE algorithm for the multipath gareter estimation, followed by the analysis
of the sparsity priors for model order selection discusse&ection 1V; in Section V several practical
issues, e.g. algorithm initialization, are discussed; lima Section VI estimation results obtained from
synthetic and measured data are presented.

Through the paper we shall make use of the following notafi@ttors are represented as boldface
lowercase letters, e.ge, and matrices as boldface uppercase letters, E.gEor vectors and matrices)”
and(-)" denote the transpose and Hermitian transpose, respgcteats are represented as calligraphic
uppercase letters, e.&, We useZ to denote an index set, i.€,= {1, ..., L}. The assumed number of

elements irt is L, unless stated otherwise. We will writer = | J{«;} as a shorthand notation for a list of
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variablese; with indicesl € Z. WhenS is a set and: € S, thenS(z) = S\ {z} is the complement ofz}

in S. Similarly, Z(1) = 7\ {I} andS(M) = S\ M. Two types of proportionality are used:x y denotes
r = ay, z x¢ y denotese” = e’e¥ and thusz = 3 + y, for arbitrary constants and 5. An estimate
of a random variable is denoted ast. We useE,,,{f(x)} to denote the expectation of a function
f(x) with respect to a probability density(x); similarly, E,r{f(x)} denotes the expectation with
respect to the joint probability densitf M) of the random variables in the sétl. Finally, N(x; a, B)
andCN (x; a, B) denotes respectively a multivariate real and complex Gawgslf with a meara and

a covariance matriB; Ga(zx;a,b) denotes a Gamma pdf with parameterandb.

Il. SIGNAL MODEL

Channel sounding is an instrumental method for the desigacofirate, and realistic radio channel
models. Channel sounding is usually performed by sendingeaific sounding sequenegt) through
the channel and observing the respongg at the receiving side. The received signél) is then used to
estimate the channel impulse response (CIR) or its parasneteen a parametric model of the response
is considered. Consider now a Single-Input Multiple-OutfBtMO) channel model and time-domain
channel sounding. The sounding signél) consists ofV,, periodically repeated burst waveforig), i.e.,
u(t) = SNt b(t—iTy), whereb(t) has duratiorTy, < Ty and is formed aé(t) = S0 b, p(t—mT,).
The known sounding sequenbg. . . by;—1 consists ofM chips andp(t) is the shaping pulse of duration
T,, with MT, = T,. We assume that the signal vectt) has been received/measured with an antenna
array consisting of\/, sensors located at positiomk,...,dy;, 1 € R? with respect to an arbitrary
reference point. The signal originating from thk propagation path is an altered version of the original
transmitted signal.(t) weighted by a complex gaim;. The alteration process is described by a (non-
linear) mappingu(t) — s(t,0;), where@, is the vector of dispersion parameters, e.g., relativeydela
azimuth and elevation angles of arrival. The nonlinear mappi(t) — s(t,6;) includes the system
effects, e.g., the transmitter and the receiver RF/IF filties response of the transmit and receive arrays,
which in turn depends on the field patterns of their antennmeis and their layout. In the sequel
we try to abstract from the concrete channel structure witeie possible and keep the model in its
most general form. Additive noisg(t) is assumed to be a zero-mean spatially white and temporally
wide-sense stationary Gaussian process, K¢S (t)§;(t + 7)} = Re(7), and E{,(1)&(t + 1)} =0,

0 < k,m < M, —1, k # m. In our framework we assume that(r) is knowrf. In practicez(t) is

“4Although it is possible to reformulate the algorithm to estimate the noise couvaridd], [29], we will leave this aspect
outside the scope of this work.
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low-pass filtered and sampled with the sampling pefibdresulting inM,. N-tuples, with /N being the
number of output samples per sensor. By stacking the sanopiguits of theM,. sensors in one vector

z, (1) can be rewritten as

L
z = Zwls(f)l) +¢&, (2)
=1

where we defines(8;) = [so(0)7,...,sm,—1(0)T]T, € = [€...., &1 1]T, with s,(8,) =
[5p(0,6y), ..., s,(N — 1)Ts,0))]", and &, = [£,(0),...,& (N — 1)TW)]T, p = 0,..., M, — 1. Finally,
we defineQ = {wy,601,...,wr,01}.

The probabilistic graph depicted in Fig. 1(a) encodes the ri#grecies between the parameters and

the observation vector in the model (2). According to thepbratructure, the joint density of the graph

@@ )
(&) ‘kez@'

(@) (b)

Fig. 1. a) Graphical model representing (2) withcomponents; b) extended model with the admissible hiddenxata

variables can be factored a¢z, Q, ) = p(z|Q)p(Q|a)p(a), wherea = [y, ..., ar]? is the vector
containing the model sparsity parameters. Let us now spéuifystatistical model behind the involved
variables.

Under the Gaussian noise assumptipfiz|Q) = CN(z;Zlelwls(Ol),E), where X = E{gg).
The second termp(2|x) is the parameter prior. We assume thé®|a) =[], p(wi|oy)p(8;), where
p(wi|ay) is the sparsity prior for théth component. The purpose of the sparsity prior is, on the one
hand, to constrain the gains,,...,w; of the components, and thus implement sparsification/model
order selection, and, on the other hand, to control this tcaims through the sparsity parameters We
will study two choices fomp(w;|a;): i) a Gaussian prior, and ii) a Laplace prior. In both casespiter
pdfs are complex circularly symmetric, with the non-negatiyperparametes; inversely proportional
to their width. Thus, large values of will render the contribution of the componeints(6;) ‘irrelevant’,
since the corresponding prior over will then be concentrated at the origin. The choice of therprio

p(80;) is arbitrary; however, it must reflect the underlying physiesl restrictions of the measurement
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equipment; a non-informative prior can also be used. Ther pria;), also called the hyperprior of
the [th component, is selected as a Gamma @df «;; a;, b)) = %a?’_l exp(—byey). Practically we
seta; = b = 1077 for all components to render their hyperpriors non-infatiwea [13], [14]. Such
formulation of a hyperprior pdp(a) = [[; p(«y) is related to automatic relevance determination [18],
[30].

IIl. PARAMETER ESTIMATION FRAMEWORK

Direct evaluation op(z, 2, «) or of the posteriop(€2, a|z) for performing inference of the unknown
parameterd 2, o} is a nontrivial task. Two main reasons for this are the neliity of the model (1)
and the statistical dependence of multipath componennpeteas whenz is observed. Approximative
techniques might significantly ease the model fitting stepuimamrk we resort to the variational Bayesian
inference framework. The variational Bayesian inferenagegalizes the classical EM algorithm [27], and
provides a tool for estimating distributions ¢f2, a}. Essentially, variational methods approximate the
posterior pdf of interest with a simpler one (by, e.g. nejigcsome statistical dependencies between
random variables) such that the Kullback-Leibler divergebhetween the former pdf and the later pdf is
minimized.

When estimating parameters using the SAGE algorithm [3]}, [2% concept of complete data in the
EM algorithm is replaced by that of admissible hidden data. fingose of the admissible hidden data
is to make the update procedure for only a sul§3g}, C €2 a tractable optimization problem. For the
variable xg,, to be an admissible hidden data with respecfXq; the following factorization must be
satisfied:p(z, sub, ) = p(2|Tsub, {2 \ Qsub})P(Tsub, ) [28]. The fact thateg,, is an admissible
hidden data guarantees that the likelihood of the new pasnupdate?’ (obtained by replacing the
updated parameter sub€et , in the overall parameter s€t) cannot be smaller than the likelihood prior
to the update [28]. This property is referred to as the MoniotgnProperty. The concept of admissible
hidden data can be exploited within the variational framdvas well. As we will show later this similarly
leads to an iterative algorithm — we call it the VariationayBsian SAGE algorithm — that still exhibits
the Monotonicity Property in terms of the variational freeergy [27].

Consider for a specific componehthe new variable

x; = ws(0;) + &, 3

5Such graph structure is also referred to as a V-structure [31], whécis I the conditional dependence of the parent variables
when the child node is observed.
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which can be conceived as a received signal associated hetltht propagation path. The additive noise
componeng; in (3) is obtained by arbitrarily decomposing the total e@ssuch that:; = E{g,g{f} =

41X, and0 < 3 < 1. We defineA; = (1 — ;)X to be the part of the total additive noise that is not
associated with thé&h component. Thusj;\; + 3; = 3. Consider now the modified graph in Fig. 1(b)
that accounts for;. It is straight-forward to show that; is an admissible hidden data with respect to
the subsef{w;, 6;,«;}. Since we are interested in estimating &llcomponents, we can formulate the
estimation algorithm as a successionlofstimations of{8;, w;, oy} with respect tox;, [ = 1,...,L,

assuming thafwy, Ok, ax}, k € Z(1), are known and fixed. According to the extended graph in Fig.

1(b), the joint densityp(z, z;, 2, a) now factors as

p(zl2, 0755, wrgy) [1 pOr)p(wilar)p(a)

keT(D) (4)
xp(xg|wy, 07)p(wi|ag)p(01)p(ay),

where

p(zl@r, 07y, wrgy) = ON(z; 2 + Z wis(0r), Ay), (5)

keZ(l)

andp(ml\wl, 0[) = CN(:I:;; wls(ol), El).

A. Variational Bayesian inference of signal parameters

Bayesian variational inference [27] is a family of techréguthat exploit analytical approximations of
the posterior pdf of interest, i.en(Q2, a|z), using a simpler proxy pdf(€2, ). The latter pdf is estimated
as a minimizer of the variational free energyq(2, a)||p(Q, a, 2)) [27], which is formally equivalent to
the Kullback-Leibler divergencBkr,(¢(2, a)||p(€2, ¢, z)) between the proxy pdf and the true joint pdf.
The admissible hidden data, used in the SAGE algorithm toiffaglthe maximization of the parameter
likelihood, can also be used within the variational infereriramework to ease the minimization of the
variational free energy. Such algorithm we term a Variatidayesian SAGE (VB-SAGE) algorithm.

Essentially, the VB-SAGE algorithm approximated?, o, x;, z) with a variational proxy pdf

L
9(Q, @) = q(z) [ | a(wr)a(0r)a(a) 6)
k=1

by performing minimization of the free energy with respecthie parameter of th&h component only,

and cycling through all. components in a “round-robin” fashion. The Monotonicity Redp of the
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VB-SAGE algorithm (see Appendix A) ensures that such sedalemptimization necessarily decreases
the free energy*(q(2, ) ||p(€2, a, 2)).
It is straightforward to show that with the factorization) e estimation of any factog(a), a €

{wz,071,az,x,}, requires the Markov blanke¥15(a) [31] of a to be knowrf Define now

pa) o< exp (Eqmp(a{ log p(alMB(a)) }) . ()

The unconstrained solution fgfa) that minimizes the corresponding free energy is then sirfqaind as
q(a) = p(a). Clearly, an unconstrained solution is preferred; howewermight constrair(a) to belong
to some class of density functio®(a) to make the optimization tractable. In this case the apprate
solution is obtained by solving

q(a) = argmin Dxr(q"(a)||p(a)). (8)

q*(a)€Q(a)

In the case ofe; it is straightforward to show that(x;) is quadratic inz;; thereforep(x;) is a Gaussian
pdf, andg(x;) = CN(x;; xy, §f). We stress that the constraif{te;) = p(x;) guarantees the monotonicity
of the VB-SAGE algorithm, as we show in the Appendix A. Simiyanve selectQ(w;) as the set of
Gaussian pdfs, i.eq(w;) = CN(wy; @, ®;); notice thaty(w;) = p(w;) only whenp(w;|o) is a Gaussian
pdf. For the sparsity parameterswe selectQ(«;) as the set of Gamma pdfs, i.e(ry;) = Ga(ay; al,a).
This choice is dictated by the Gamma distribution being thejugate prior for the inverse variance of
the normal distribution; as a result, in the Gaussian praseg(«;) = p(aq). We selectQ(6;) as the
set of Dirac measures on the rangefgf thus,¢(0;) = §(0; — 51). By doing so we restrict ourselves to
point estimates of the dispersion paramefefhe parameterg;, 3‘? 51, aj, Bl, w;, and fISl are called
variational parameters. Obviously, knowing the pdf2, o, x;) translates into knowing the variational

parameters of its factors and vice-versa.

B. Variational estimation expressions

Just like SAGE, the VB-SAGE algorithm is implemented in a setjigemanner. For the model with
signal components we start with= 1 and update factorg(x;), ¢(6;), ¢(w;), andg(ay) related to thdth

component, i.e., we update the corresponding variationedrpeters, assuming that the approximating

SFor a given Bayesian network witA variables, a Markov Blanket of a variahtds the smallest subset of variablégB(a) C
O that 'shields’a from the rest of the variableR = O \ {a, MB(a)} in the sense that(a|MB(a), R) = p(a|MB(a)).

"Considering more complex forms af(#;) would requires(6;) to be specialized for a particular antenna structure and
measurement setting. A detailed study of this case is outside the scope péjleis
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factors for the other components are known and fixed. In theesfashion the componerit= 2 is
updated, and so on, until all components are considered. The procedure of updating aineders of
all L components in this way constitutes a single update cycléefalgorithm. The update cycles are

repeated anew until convergence.

In what follows, we consider the update expressions for #iréational parameterr;, 3’? 51, aj, Bl,
wy, 3)1} of the /th component only. The updated value of a parameter will betenby(-)’; let us point
out that afterg(x;) has been updated, the other factors related to the compbirantbe updated in any

order.

1) Estimation ofg(x;): From the graph in Fig. 1(b) we conclude thatB(x;) = {z,67,wr}.
Evaluating (7) in this case leads jfi¢x;) p(z\xlﬁm, @I(—l))p(wl\@,al). Since the right-hand side is
a product of Gaussian pdfg(x;) is as well a Gaussian pdf, with the mean and covariance mgitrén

by

z=1-8)os@)+5 | z— Z Ds(0r) | |
veTl) 9)

(S)) = (A +x )

andq(x;) = p(x;) = CN(x; @y, 3’?). The result (9) generalizes that obtained in [3] by accogntor
the covariance matrix of; and for the noise covariance mat®. Note, however, that the expression

for the meanz; in (9) is identical to that obtained in the SAGE algorithm.

Let us consider the limiting case @s— 1. It has been show that for models linear in their parameters
the choices; = 1 leads to a fast convergence of the algorithm already in tiky @aration steps [28].
This is equivalent to assuming that = z — Zkem wgs(0y), which was also used as an admissible

hidden data in [3]. In this cas(eg’f)’ — 0 so thatg(x;) collapses to a Dirac distribution, arld, — 3.

2) Estimation ofg(8;): The Markov blanket ofg; is MB(6;) = {w;,x;}. Here the estimation
algorithm profits from the usage of the admissible hidden dgte). Since ¢(0;) = 6(0; — al),
finding ¢(0;) reduces to the computation o that maximizesp(6;) given by (7). By noting that
p(Oi|wy, ;) o p(z1|60;, wi)p(6;) we obtain

5; = argmax { log p(0;)+

o (10)
log p(@1/61, @) — Bi5(6)7%; '5(61)}.
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Notice that due t@(w;) being a Gaussian pdf within the VB-SAGE framework, (10) inles a Tikhonov-
like regularization ternﬁils(el)HZ];ls(Ol), with the posterior varianc@l of w; acting as a regularization
constant. Unfortunately, sinc&(@;) depends nonlinearly ofl;, (10) has to be optimized numerically,
e.g., using successive line searches where each eleméntiotetermined separately, or using a joint
search in which all elements 5& are computed jointly; if derivatives of the objective fuioct (10) with
respect tof; are available, gradient-based optimization schemes canba used.

Typically ¢(0,) is selected to factorize according 46;,) = q(61;) - ... - q(6r1), Where M is the
number of dispersion parameters describing a multipathpooent Estimating#é,,,; can be done by
evaluating (7) usingMB(0,,;) = {MB(0;)|J{0: \ 6,,} and performing a simple line search of the
resulting objective function. Notice that the same assionptinderpins the SAGE-based estimation of
0;. The VB-SAGE estimation expression féy in (10) will coincide with that of the standard SAGE
whenp(0;) is assumed non-informative amdw;) = §(w; — wy).

3) Estimation ofg(w;): The Markov blanket foru; is MB(w;) = {6, x;, y }. Evaluating (7) leads
to p(w;) o p(F|wy, 8;)p(w;|@;). For a given choice of(w;|cy) the moments of(w;) = CN (wy; @y, ;)
can be either found in closed form, or efficiently approxirdai&/e defer the estimation of these moments
to Section IV, where different priors(w;|«;) are discussed.

4) Estimation ofg(cy): Here MB(«y) = {w;}. Observe that in contrast tg(6,) and g(w;), the
admissible hidden data; is not in MB(«;). This is the result of the Markov chaity, — w; — x;;
in fact, w; is the admissible hidden data for estimatimgsince p(x;, w;|aq, 0;) = p(x;|wy, 0;)p(wi|ay)
due to the factorization (4). By noting thata;|w;) o p(w;|ay)p(aq), (7) can be rewritten ag(«;)
p(oy) exp (Egy,) {log p(wi|a;)}). Due to the fact thag(a;) = Ga(oy;dy, by), the variational parameters
@, and b, are found by equating the moments @iy) andp(aq). Observe that it is the estimation of
q(ay) that eventually leads to the sparse VB-SAGE algorithm. Alstice that the sparsity prigr(w;|a;)
is a key to the estimation of the sparsity parameters. In devfing section we will consider several

choices ofp(w;|cy) and analyze their effect on sparsity-based model ordectimbe

IV. SPARSITY PRIORS FOR MODEL ORDER SELECTION

In this section we consider three choices for the sparsiiyr pr(w;|a;): i) a Gaussian prior, which
leads to the/s-type of log-likelihood penalty, ii) a flat prior, obtained adimiting case of the Gaussian

prior whenq; — 0, and iii) a Laplace prior, which results in tife-type of log-likelihood penalty.

8If some of the dispersion parameters are statistically dependent, a stdichean field can be used to account for this
dependency by means of an appropriate factorization of the proxy (4.
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A. Gaussian prior

The Gaussian sparsity prior is obtained by selectifw;|a;) = CN(wl;O,ozl_l). With this choice it
is straightforward to show thag(w;) = p(w;), and that
) = (a1 +5(61)"'5's(81)
S (11)
w0 = ¥;s(0)" 7).
Observe that (11) is merely a regularized least-squareaastofw, givenz;, 51, with the regularization
parametery; = Eyq,){} = 61/3,.
The variational paramete@ and b, of q(ay) are found fromp(«). This requires the expectation of

lw;|? to be computed. Doing so leads to the following update exjas:
agzal—l—l, 3§=b1+(|1ﬁl|2+<f>l). (12)

Let us now analyze (12) in more details for the cage- b; = 0, i.e., whenp(«;) is non-informative. In
this case the mean @f«;) is given as

e 1

Of:ix\- 13
@)+ @ (13)

Note that this result coincides with the EM-based evidentienation proposed in [11], [14]. However,
in our case boths; and ®; are estimated using the admissible hidden dateas opposed to [11], [14]
where the incomplete data is used to obtain these estimates. The updating steps in (L) 18)
can be alternatively repeated, while keepiagand 0, fixed to generate a sequen{:égm] }m>0, Where
al“] = aj, &lp] = &y, etc. Note that this updating process makes sense sindeengit nor 6, are in
MB(y).? Therefore, the corresponding sequence of §gfé!(a;) = Ga(a,;agm]@[m])}wo necessarily
monotonically decreases the variational free energy veitipect taj(ay). Let al[‘”] be the stationary point
of the sequencé&l[m} }m>0 Wwhenm — oo. In order to simplify the notation we defirg = s(@l). By

[o0]

substituting (11) into (13) and solving far, ™ we obtain (see also [19])

[oo] G's15)?

= ——— . (24)
3= 132 - 5815

®Notice that this property allows for a straightforward extension of theespEnt analysis to the estimation of sparse virtual
channel models [16] since it remains valid even when the dispersi@medersd; are constrained to some resolution grid.

February 24, 2011 DRAFT



13

~[o0]

By definitiona; > 0, which is satisfied if, and only, if
3= 122 > 57815 (15)

By interpreting (13) as a nonlinear dynamic mapping, whitltha iterationm mapsal[m} into ag”””,

it can be shown [19] that fofs;” =, '#|? < 3/' =, '3, the fixed point of the mapping is at infinity, i.e.,
&I[‘X’] = o0o. As a result, thdth signal component can be removed from the mdgiél.similar result was
reported in [17] using a non-variational analysis of the giraal log-likelihood function. This allows us
to implement model order selection during a parameter @pidetation (i.e., joint multipath component
detection and parameter estimation), while still minimigithe variational free energy.

Now, let us reinspect (15). This inequality might at first glarseem a bit counter-intuitive — the
quadratic quantity on the right-hand side is compared tddheh-power quantity on the left-hand side.
In order to better understand the meaning of it, let us ditidth sides of (15) byal™ + /7% 13))2.

It follows that (15) is equivalent to

. 1 = [o0]
@ > = ), (16)
al@ 13515
5%,'3
al*ly sl sy,

scaled byvy;. This result leads directly to several important observetio

where~y; = < 1. The left-hand term in (16) is an estimate of the posterioravae ofw;

1) The sparsity paramete?vl[oo] of the signal component with y@}“’H? smaller than its posterior
variancerﬂoo} scaled by, is infinite, and thus such components can be removed from thieimo

2) By multiplying both sides of (16) Witkﬁﬁzl‘lgl, we find that this inequality is equivalent to
SNR, > 72, where SNR, = y@}wwgﬁzl—lg, is the estimated signal-to-noise ratio of the
Ith component. Thus condition (15) (and (16)) correspondseteping this component provided
SNR; > 2.

3) Condition (15) can be tuned to retain the component peabils estimated SNR is above some

predefined leveSNR' > 712 using the modified condition

SNR'
v

37=1%)? > 52,15, % (17)

These results provide us with the required instruments terohme whether a componentwith

the sparsity parameter; should be updated or pruned: if the componérails to satisfy (15), it is

Ostrictly speaking, this is true only in the case of non-informative hyperpria;).
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[o0] ~[o0]

removed since for;, ™ — oo, w; © — 0. In case of (17) we remove the component if its estimated
SNR is below some levet NR' > 712. Notice that the obtained results allow for an interpretatof

the sparsity parameter; in terms of estimated SNR of théh component. Thus, model order selection
(sparsification) can be realized using simple SNR-guidedsi®ts. It should be stressed that the analysis
of (14) is possible only due to the use of the admissible mddatax;. A standard approach with
Gaussian priors [11], [14], [17] requires dnx L posterior covariance matri® of the gain coefficient
vectorw = [wy,...,wr]? to be computed. This significantly complicates the analytcmhputation of
the fixed point&l[“] and its analysis. The sparse VB-SAGE algorithm with Gausgpans#ty priors and
model order selection scheme that utilizes (15) or (17) weoteas the VB-SAGE-G algorithm.

B. Flat priors

In the case where(w;|a;) is chosen to be non-informative, we can still make use of tageBian
sparsity to estimate the model order. This can be done by tlsiyB-SAGE-G algorithm in the limiting
case asy; — 0 (i.e.,@l — o0). Due to the structure of the graph (see Fig. 1(b)), this willyocaffect
the moments of;(w;), which remain identical to (11) witla; = 0. Clearly, in this casey; = 1 and
condition (16) corresponds to the sparsification of Arecomponent provideml > 1, i.e., we keep
the component when its SNR is abovdB. The sparse VB-SAGE algorithm with such model order
selection scheme we denote as the VB-SAGE-F algorithm. Obgbat condition (17) can also be used

in the case of the VB-SAGE-F algorithm.

C. Laplace priors (soft thresholding)

As the last choice we consider a Laplace ppow;|«;). We will use an analogous Laplace prior in
the complex domain defined as

20412
p(w|ay) = — exp(—2aq|wi)). (18)

The mean ofy(w;) can be obtained in closed form:

w; = sign(s(0)) 7 =1 @;) x
max(0, |s(6) "= %| — @) (19)
(013, s(0)) '

Heresign(-) is the sign function defined asgn(z) = x/|z|. Expression (19) is also known assaft

thresholdingrule. To our best knowledge no closed form expression forpibgterior variance exists.
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However, we can approximate it with the result obtained far teal-valuedy; # 0, which is given as

~ ~

o)~ (s(6)7x;1s(6)) " (20)

Now we turn to the estimation of the sparsity parameterBy plugging (18) in the expression for
p(ey), and ignoring terms independent of, we obtainp(a;) o p(ag)of exp (—20qEq () {|wi|}). Since
q(wy) is Gaussian|uw;| follows a Rice distribution characterized by the paransefey| (19) and\/g/Q
(20). The expectatiofi,,,{|w;|} is then given as@m/zlﬁl/z(—mlﬁ/fﬁl), where L, (z) denotes the
Laguerre polynomial with degree. To simplify the estimation ofj(«;), we consider an approximation
Of Eq(u){|wi]} as|w|?/®; — co. This approximation is equivalent to assuming a high prenisistimate

of w;. In this casek,,{|wi|} = |@|. Then, it is straightforward to show that
G =a+2, b=0b+2w (21)
By selecting a non-informative prigr(a;), the update expression for the mea@jn= al/Z; simplifies to
& = 1/\@1. (22)

Similar to the Gaussian prior case we analyze the fixed p@l[l‘ﬁﬂ of (22). We defines; = s(@l) to

simplify the notation. Combining (22) and (19) leads to

~AH—1~
&l — S %, S . 23)
max (0, [/ ;& — o))
Assuming that[s;' ;'@ > a}oo] (otherwiseal[oo] = o0), we solve foral[oo]. Doing so yields two
solutions:
o 1/ Ha 1~
0‘1[,+] = 5(’3{{21 Kl +Ml), (24)
o] 1/ Ha 1a
057_] =3 (|3ﬁ21 2| - ﬂl)v (25)

wherey; = \/\§{{El‘1£l12 — 4§f12l‘1§l. Furthermore, we see that a necessary and sufficient condition

for the fixed points to be real is that
3= 17)? > 45715, (26)

Components that do not satisfy (26) are removed. Note th#t fixed points are feasible. We have

always empirically observed that when the initjdty;) is chosen such tha; = 0, iterations (22) either
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diverge @l[oo] = o0) or converge to the closest (smallest) feasible solutierrgby (25). The properties
of the second stationary point are subject to further ingasbns left outside the scope of this paper. The
sparse VB-SAGE algorithm with Laplace sparsity priors thakesause of (26) for model order selection

we denote as the VB-SAGE-L algorithm. Similarly to (16) it candtmwn that (26) is equivalent to

R 1 ~
|wl[oo]|2 > Ay = 4%2‘#00]7 (27)
Sl l S

where~, = % < 1. In the same way (26) and (27) are equivalent to keeping thgpoaent
provided SN R, > 42, where SN R, = |le[°°]\2§{{Zl‘1§l is the estimated component SNR. Note that
(26) and (27) are the Laplace-prior equivalent condition$§1&) and (16) respectively for the Gaussian
prior. Although the pruning conditions are formally simjlahey differ in their numerical values: the
moments ofg(w;) are estimated differently for the VB-SAGE-L and VB-SAGE-G sclesmas a result,
the estimates of the admissible hidden degdor the VB-SAGE-L and VB-SAGE-G algorithms are also
different; in addition, the scaling factoy; in (27) is computed differently from that in (16). It should
also be mentioned that ag — 0 the VB-SAGE-L algorithm converges to the VB-SAGE-F algorithm.
Similarly to (17), (26) can be tuned to keep the component wterstimated SNR is above some

predefined leveSN R’ > 47 using the modified condition

SNR/
o/

(28)

3752 > 57818 x

V. IMPLEMENTATION AND INITIALIZATION OF THE ALGORITHM

A. Summary of the algorithm

Let us now summarize the main steps of the proposed algorflemthe moment we assume that at
some iteratiory the approximating factorg(x;), ¢(0;), ¢(w;), andg(ay), 1 € {1,.. .,f}, are known for
the L components. A single update iteration for the comporeatsummarized in Algorithm 1.

This update iteration is repeated for all components in adeaobin fashion, which constitutes a single
update cycle of the algorithm. The update cycles are therategeuntil the number of components and
their variational parameters converge. Observe that tineben of components might be reduced during
one update cycle: at each iteration the updated multipatipooent undergoes a test specified by the
conditions (15) or (26). When the corresponding conditinat satisfied the component is removed. The
model order might also be increased by adding new componBaetsils of this procedure are outlined

in Section V-D.
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Algorithm 1 Update iteration for the componeht

Updateg(x;) from (9)

Updateq(8;) from (10) and evaluate(8))

if Condition (17)/(28) are TRUEhen
Updateg(oy) from (14) (VB-SAGE-G), or (25) (VB-SAGE-L)
Updateq(w;) from (11) (VB-SAGE-G, -F), or (19) (VB-SAGE-L)
L' — L

else R
Remove thd’th component,L/ «— L — 1

end if

B. Algorithm initialization

We propose a simple bottom-up initialization strategy, akhallows us to infer the initial variational
parameters from the observation by starting with an empty model, i.e., assuming all variagio
parameters to be. The first component is initialized by lettingf = z and applying the initialization loop

shown in Algorithm 2. Observe that usingj the dispersion paramete@é are initialized using a simple

Algorithm 2 Algorithm initialization
Setl « 1; initialize q(x;): T « =
while Continue initializationdo .
Initialize ¢(6;) by computingd, = argmax,, {|s(0,)7=; @] /s(6,)7% " s(60,)}
if Condition (15) (VB-SAGE-G, -F) or (26) (VB-SAGE-L) are TRUtEen
Initialize ¢(w) from (11) witha; =0
Initialize ¢(cy) from (12) (VB-SAGE-G), or (21) (VB-SAGE-L)
L'=1I 1l—1+1 N
B — z— 2 Ws(0y),
else
Stop initialization:L' = — 1
end if
end while

beamformer and the obtained estimate@;) is plugged in (15) (in the Gaussian prior case) or in (26) (in
the Laplace prior case) to determine whether the initializatponent should be kept in the model. When
the test fails, the initialization stops. It should be stexbthat the use of conditions (15) or (26) during
the initialization is optional and may be omitted if an ov@rnplete channel representation is desired. The
components with large sparsity parameters will then be gatuater during the update iterations. This
initialization strategy is similar to the successive ifgeznce cancellation scheme proposed in [3], [5].

The number of initialization iterations (i.e., the initiaimber of sighal components) can be either fixed
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to L4z, OF inferred automatically by repeating the initializatigdgerations until the pruning condition
(15) (or (26)) fails at some iteratidrt.In our implementation of the algorithm we use a combinatibn o
the two methods, by limiting the maximum number of initialhgoonents tal,,,q..

1) Noise statistics:A crucial part of the initialization procedure is to obtain accurate estimate of
the variance of the additive noige Logically, when the noise level is high, we tend to put lessst’
in the estimates of the signal parameters, and thus spa@iiponents more aggressively.

In many cases estimates of the noise variance can be derwedthie signal itself. Specifically, the
noise variance can be estimated from the tail of the meagoiied Alternatively, the noise variance can
be estimated from the residual signal obtained after catiopl®f the initialization step. In our work we
use the former initialization strategy.

2) SelectingX;: The obtained sparsity expressions for model order seleclbmepend on the
covariance matrix of the additive noigg associated with thé&h multipath component. The covariance
matrix 3; is related to the total covariance matr®® as ¥; = §;X, where §; is the noise splitting
parameter introduced in the definition of the admissible éiddata (3). In the SAGE algorithm applied
to the estimation of superimposed signal parameters [3,phirameter was set {6 = 1; we also adopt

this choice. Obviously, in this cas&}; = X, andml = |w|?s(6,)72"15(8)).

C. Stopping criterion for update cycles

The iterative nature of the algorithm requires a stoppintgiian for the variational parameter updates.
In our implementation we use the following simple criteritime estimation iterations are terminated when
i) the number of signal components stabilizes, and, ii) tk&imum change of the components{if?, o}

between two consecutive update cycles is less thatPs.

D. Adaptive model order estimation

The structure of the estimation algorithm also allows insiegthe model order. Increasing the model
order might be useful wheh,,. is selected too small so that not all physical multipath congmts might
have been discovered. Alternatively, new components natga appear in time-varying scenarios. The
new components can be initialized from the residual sigAtier the model fitting has been performed

at some update cycle, e.g,, the residuaks;  , = z — Zle @15(51) is computed and used to initialize

"we suggest to use the conditions (15) or (26) instead of their modifiesionsr (17) and (28), since this allows for the
inclusion of even the weakest components during the initialization.
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new components as explained in Sec. V-B. Essentially, theluaksignal can be used at any stage of

the algorithm to initialize new components.

E. Estimation uncertainty and selection of sensitiity R’

There are four main sources of uncertainty in model-basedipath estimation: (i) the inaccuracy of
the specular model (1) in representing reality (e.g. in tres@nce of diffuse components); (ii) the error
in calibrating the measurement equipment, which resul@nirerror in the specification of the mapping
u(t) — s(t, 8;); (iii) the discrete-time approximation (2) of the modeldafiv) the discrete optimization
that is typically necessary due to the nonlinearity of thedeloversus some of its parameters. All these
aspects have a significant impact on the model order estimatioy deviation from the “true” model
(effects (i) and (ii)) and inaccuracies in the paramete'rrmﬂlasﬁ (due to (iii) and (iv)) results in a
residual error, manifesting itself as a contribution frontifie additional components. If no penalization
of the parameter log-likelihood is used, this error leadadditional signal components being detected,
especially in high SNR regime. These non-physical componargsnumerical artifacts; they do not
correspond to any real multipath components. Moreovegehietive components (which are typically
much weaker than the real specular components) create @séugters since typically their parameters
are highly correlated. In the case of the VB-SAGE-G, VB-SAGE-#& &B-SAGE-L algorithms, the
artifacts can be efficiently controlled using the pruning ditans (17) and (28) with an appropriately
chosen sensitivity leved N R'. The sensitivity leveS N R’ can be set globally, or can be tuned individually
to each multipath component. We propose the following imm@etation of individual tuning.

First, we consider the impact of all above-mentioned inaacies together. This approach is motivated
by experimental evidence indicating that (i) each type @couracies has a non-negligible effect on
channel estimation, and (ii) that these effects are diffitmlguantify and also to separate. Second, we
assume that — due to these inaccuracies — the residual embibuted by a given estimated multipath
component is proportional to the sample of the delay powefilprat the component delay. Indeed, it
makes sense to presume that the stronger a multipath compign¢he larger the residual error due to
calibration and discretization error is. This rationaledeais to selec6 NR' = SNR'(r) proportional
to an estimate of the delay power profile. We select as suchtanags a low-pass filtered version of the
delay power profileDPP(r). In Sec. VI-B we discuss how this scheme is applied to measoiBg.

Note that there are also alternative approaches to accourhé inaccuracy of the specular model.
In [32] the authors propose a method that jointly estimalbesspecular multipath components and the

diffuse component, called dense multipath component (DMCa time-variant MIMO context. The
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parameters of the components (direction of departure (DdDgction of arrival (DoA), relative delay,
Doppler frequency, polarimetric path gain) are estimatsidgian extended Kalman filter built around a
dynamic model of these parameters. The parameters of the DBlComputed from the residual signal
resulting after subtracting the estimated specular commtsnfrom the observed signal; obviously, an
accurate estimation of the specular part of the channek@ayital role here. We now discuss the main
difference of the sparse VB-SAGE algorithm proposed heré Wit method published in [32]. First,
both algorithms apply a path pruning algorithm that reliascomparing the path weight to a threshold.
The pruning algorithm proposed here is based on a Bayesiasitypaamework, while that used in
[32] implements the Wald test. This leads to different waysahputing the pruning threshold and the
signals compared to this threshold. Second, the sparse VEES#gbrithm does not make any particular
assumption on the structure of the DMC. Experimental evidesuggests that the DoD-DoA-delay power
spectrum characterizing the DMC typically does not fae®rup to a proportionality constant in the
product of the corresponding DoD, DoA, and delay spectranasied by the Kronecker factorization of
the transmit-array—receive-array-frequency covariana&ix assumed in [32]. The inherent directionality
of the radio channel, which holds for both specular comptmand diffuse components, translates in
power spots scattered in the DoD-DoA-delay plane that dabrorepresented by the above factored
spectrum (see also Fig. 5(d)-5(f) and Fig. 6(d)-6(f)). Thisesbation, combined with the other early
mentioned model inaccuracies, has motivated the empintethod based on the selectSdVR'(r)
threshold. Finally, the sparse VB-SAGE is derived and apglwed time-invariant SIMO scenario with
only one polarization considered. As early mentioned it bareasily extended to time-variant MIMO
scenario including full path polarization, provided themagation constellation is stationary. Extension to
the time-variant scenario with changing propagation alaiton as considered in [32] will require further
work. A thorough investigation is needed to assess the pndscantras of the model order selection
methods applied in the channel estimation proposed in [B&8]ia the sparse VB-SAGE algorithm. This

study is, however, out of the scope of this paper.

VI. APPLICATION OF THE SPARSEVB-SAGE ALGORITHM TO THE ESTIMATION OF WIRELESS

CHANNELS
A. Synthetic channel responses

We first demonstrate the performance of the algorithm withthsstic channel responses generated
according to model (2). We use a sounding sequence Witk 63 chips and a square-root-raised-cosine

shaping pulse(t) with a durationT}, = 10nsec and a roll-off factor0.25. A horizontal-only propagation
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scenario is considered with a single received replica otrduesmitted signal representedag(t, 0;) =
wie(op)u(t — ) with wy, ¢, andr; denoting respectively the complex gain, the azimuthalctive and
the relative delay of théth multipath component. Thu#); = {¢;,7;}. The M,-dimensional complex
vector c(¢;) = [e1(y), - .., car.(¢1)]T is the steering vector of the array [3]. We assume a lineayarr
with M, = 16 ideal isotropic sensors, spaced half a wavelength apartpahemeters of the multipath
components are chosen by randomly drawing samples fromdtresponding distributions: delays
and anglesp; are drawn uniformly in the intervgD.03, 0.255]usec and [—7/2, 7/2], respectively. For
generating the multipath gaing we follow two scenarios. First, we generate the gainsjas: v/ Pel™,
where P is some positive constant ang, [ = 1,...,L, are independent random phases uniformly
distributed in the interval0, 27]. This ensures that all multipath components have the samerpBw
and therefore the same per-component SNR. In the secondriectmavalues ofw;, [ = 1,..., L, are
independently drawn from a complex Gaussian distributigth whe pdf CN (w;;0, P'e~"/™), where

P’ is some positive constant and is the delay spread set f§,/4. In this case the distribution of the
component gainsy; is conditioned on the delay such that the received power decays exponentially as
the delay increases. The later choice approximates bettgoiisical distribution of component powers
versus delay. At the same time it demonstrates the perfarenahthe algorithm under conditions with

changing per-component SNR.

By samplingz(¢) with a sampling period’s we obtain the equivalent discrete-time formulation (2)
with N samples per channel. The samples of the received signal emedesl over the time window
T, = 0.63usec (i.e., N, = 1) at a ratel/T; = 200MHz. In the simulations we set the number of
specular components 0 = 20. By fixing L we aim to demonstrate the possible bias of the model order
selection mechanism. Additive noigds assumed to be white with covariance malix= agI . Different
SNR conditions are simulated. The considered SNR is the awti@agrecomponent SNR defined as
_ Ly [ulPlls@l”

L ag ’

With this setting the estimation step (10) is implementec agquence of two numerical optimizations.
For instance, the estimation ef with MB(7;) = {x;, w;, ¢;} is performed first as
r{ = argmax { log p(&|m. b1, @)~
" (29)
Bus(m1,00) B s(m1, ) + log p(m) |
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followed by the estimation of the azimuth with MB(¢;) = {x;, w;, 71} as

;52 = argmax { log p(Z;[7], d1, W) —
i (30)

Bus (7, 00) S (7, 60) + log p(01) |-

Optimizations (29) and (30) are performed using a simple iearch on a grid followed by polynomial
interpolation to improve the precision of the estimates.tRe initialization of the algorithm we follow the
scheme described in Sec. V-B. The maximum number of initidla@mponents is set tb,,,, = N. We
use the modified pruning conditions (17) for the VB-SAGE-G and /8GE-F schemes and (28) for the
VB-SAGE-L algorithm withS N R’ set to the true SNR used in the simulations. This setting detratas
the performance of the algorithms when the true per-compo88IR is known. In particular, it allows
us to investigate how the modified pruning conditions can leelde control the estimation artifacts.

We compare five estimation algorithms: i) VB-SAGE-G, ii) VB-SB, iii) VB-SAGE-L, iv) the
SAGE algorithm [3] with Bayesian Information Criterion foraakel order selection (SAGE-BIC), and v)
the VB-SAGE algorithm with the negative log-evidence (NLE) my@eh for model order selection (VB-
SAGE-NLE) [19]. The NLE is equivalent to the Bayesian interpretatof the Normalized Maximum
Likelihood model order selection [7], [9]. For SAGE-BIC and \@MGE-NLE we set the initial number
of components to the number of samplEs

We first consider the simulation scenario where all companieave the same power. The corresponding

results, averaged oven0 Monte Carlo runs, are summarized in Fig. 2. It can be seen tBaBXGE-G,

VB-SAGE-G VB-SAGE-F VB-SAGE-L VB-SAGE-NLE SAGE-BIC

=
(=
™

model order, L
model order, L
model order, L

10 20 30
SNR, dB

Fig. 2. Performance of the proposed estimation algorithms applied toegimthannels with equal component power. Estimation
of model orderL (a-e), and the achieved RMSE between the synthetic and reconstresfamhses (f-j). The true number of
components if, = 20 (dotted line in upper plots). The solid lines denote the averaged estimatesartiesponding parameters.
Upper and lower dotted lines denote thih and95th percentiles of the estimates, respectively.
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VB-SAGE-F, and VB-SAGE-L clearly outperform the other two methpwith VB-SAGE-L exhibiting
the best performance. Notice that (17) in VB-SAGE-G and VB-SAGHEils for low SNR; also the
initial number of componentsi£6 in this case) remains unchanged during the update itegatithe
VB-SAGE-L algorithm, however, does not exhibit such behavidonetheless, all three methods have
a small positive model order bias in the high SNR regime. VB-EA®.E and SAGE-BIC perform
reasonably only in the limited SNR range- 14dB and fail as the SNR increases beyond. The reason
for this is an inadequate penalization of the parametetitigked, which leads to the introduction of
estimation artifacts. Specifically, the selected samplinigsraf the processed signals limit the precision
in the estimation of the dispersion parametéysof the multipath components. As a result the mean-
squared estimation errors of these estimates exhibit a fidugh SNR. These estimates are obtained by
optimizing parameter-specific objective functions, cf. )(28d (30), which in a real implementation are
computed from discrete signals. As a consequence, thetigjéanctions need to be interpolated between
their computed samples in these optimization procedurésthese interpolations that lead to the flooring
of the estimate errors at high SNR regime. The residual erfoifsecdispersion parameters translate into
residual interference that may manifest itself as fictive ponents if not handled appropriately. This
effect can also be seen as a basis mismatch problem that teaas overestimation of true model
sparsity [26]. The use of adjusted pruning conditions in cals®B-SAGE-G, -F, and -L algorithms
allows for a better control over the estimation artifactsisTiowever, leads to a floor of the RMSE
between the synthetic and reconstructed channel respahdegh SNR, as seen in Figures 2(f), 2(g),
and 2(h). In contrast, VB-SAGE-NLE and VB-SAGE-BIC do not exhihis behavior of RMSE, albeit
at the expense of introducing more and more fictive multipatingonents to compensate for multipath
parameter estimation errors as the SNR incre¥sbgreasing the number of sampldswhile keeping
Ty fixed and increasing the number of antenna elements reduswite RMSE floor since the multipath
dispersion parameters can be estimated with greater jmecis

Obviously, the model order estimate has a significant impadhe convergence speed of the algorithm.
Fig. 3 depicts the averaged number of update cycles versus ®NREhé five investigated channel
estimation schemes. We see here that for SNR ali@aB the VB-SAGE-G, -F, and -L schemes
outperform the other estimation schemes, with the convemseate of the VB-SAGE-L algorithm being
almost independent of the SNR. Notice that the overestimaifache model order with VB-SAGE-NLE
and SAGE-BIC leads to a significant increase of the number ddtiters as the SNR increases.

2Note, however, that that the same effect is observed with VB-SAGE&VB-SAGE-L whenSN R’ is not used to enforce
sparsity and correct for model order estimation errors.
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Fig. 3. a) Averaged number of update cycles versus the averagemp@onent SNR.

Let us now consider the second scenario where the componesetr micreases exponentially versus

delay. These results are reported in Fig. 4. A picture simdathe equal-power case is observed here.

VB-SAGE-G VB-SAGE-F VB-SAGE-L VB-SAGE-NLE SAGE-BIC
4 1017 4 107 > . 10°
° B O N s °
8 B e 3
o o 3
£ £ £
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SNR, dB SNR, dB
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S 0 S
0 10 20 ; 30 0 10 20 - 30
SNR, dB SNR, dB
0] 0)

Fig. 4. Performance of the proposed estimation algorithms applied toegiméiannels with exponentially decaying component
power. Estimation of model orddr (a-e), and the achieved RMSE between the synthetic and reconstraspahses (f-j). The
true number of components 5 = 20 (dotted line in upper plots). The solid lines denote the averaged estimate® of th
corresponding parameters. Upper and lower dotted lines denofihttend95th percentiles of the estimates, respectively.

The performance of VB-SAGE-L is clearly better than that of thieeo tested schemes. In this setting
both VB-SAGE-G and VB-SAGE-F require higher SNR to bring the ested model order within the
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range of the true number of components. Notice that all toogalitional methods are no longer biased

and on average estimate the correct number of components.

B. Estimation of measured wireless channels

We now investigate the performance of the VB-SAGE-L algorithpplied to the estimation of
measured wireless channel responses collected in an isthwgonment. The measurements were done
with the MIMO channel sounder PropSound manufactured by ElbktiOy. The measurement setup
consisted of\/,. = 18 receiving and\/; = 50 transmitting antenna elements. In the conducted expetimen
the sounder operated at the center frequen2gHz with a chip period oflj, = 10nsec. The sounding
sequence consisted @ff = 255 chips, resulting in a burst waveform duration 'Bf = 2.55usec. One
burst waveform was sent to sound each channel correspotalary pair or transmit antenna and receive
antenna.The received signal was sampled with the péfrjod T,,/2 (i.e., 2 samples/chip).

The estimation results obtained using the VB-SAGE-L algoritime compared to those obtained with
Bartlett beamformer outputs [33]. Since the receiver wadppea with a planar array, we report only
the azimuthal information of the estimated multipath comgrus. In order to minimize the effect of
estimation artifacts we make use of (28). The sensitivitelleé’N R’ is computed from the estimated
delay power profile as described in Section V-E: a smoothethastiof the delay power profilB P P(7)
is normalized with the estimated additive noise variaaéethe sensitivity SN R'(1)13 is then defined
asSNR/(r) = %/101-5. This setting allows for a detection (removal) of componeita certain
delay with power above (below) a threshdlsdB below the received power at that delay. The algorithm
is initialized as described in Sec.V-B. To initializes we partition the DPP i® delay segments, covering
the delay interval10, 360]ns. Then, using (29) and (30) we initialize at mdstomponents per segméht
which results inL,,x = 56. For the used sensitivity leve§ N R/(7) the algorithm estimated = 18
components. The parameter estimates of these componergaranearized in Fig. 5 and 6.

Investigations, not reported due to space limitation, stiwat the estimated multipath components can
be associated to propagation paths computed from the ggoofethe environment using ray-tracing.

Due to the delay-dependent sensitivity les&V R’ (7) very weak components at the tails of the delay

response are also detected. Their positions coincide weh thie maxima of the Bartlett spectrum

13A possible extension, not considered here due to space limitations, wangitts in makingS N R’ both delay and direction
dependent.

The initialization of the multipath components located in a delay segment is iptedravhen the pruning condition (26)
fails.
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Fig. 5. (a-c) Bartlett estimates (solid line) and model-based estimatelse@tidiane) of the delay power profile; dotted lines
denote the estimated delay power profile of the residuafriangles denote the delays of the estimated components; (d-f)

normalized Bartlett estimates of the azimuth of arrival and departurthéoselected delay ranges (denoted by crosses in figures
(a-c), respectively.

estimates. We also note that not all of the “footprints” ire tBartlett spectrum have been identified
as multipaths. This is due to the component magnitudes beshgwbthe detection sensitivity of the
algorithm; also, some of the footprints observed in the IBarspectrum are likely due to side lobes

caused by the system response and thus may not correspong taua physical multipath component.

VIlI. CONCLUSION

This contribution proposes a new algorithm that estimatesthmber of relevant multipath components
in the response of radio channels and the parameters oftbaggonents within the Bayesian framework.
High-resolution estimation of the multipath componentgé&formed using the Variational Bayesian
SAGE (VB-SAGE) algorithm — a new extension of the traditional $A@lgorithm — which allows
computing estimates of the posterior probability densityctions (pdfs) of the component parameters,
rather than parameter point estimates. By introducingsifyapriors for the multipath component gains,
the sparse VB-SAGE algorithm allows estimating the postgritis of the component parameters jointly
with the posterior pdfs of the sparsity parameters by miriing the variational free energy. The pdfs of

the parameters of a single component are updated at eaatiateof the algorithm, with the iterations
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Fig. 6. (a-c) Bartlett estimates (solid line) and model-based estimatelse(tidise) of the delay power profile; dotted lines
denote the estimated delay power profile of the residuafriangles denote the delays of the estimated components; (d-f)
normalized Bartlett estimates of the azimuth of arrival and departurthéoselected delay ranges (denoted by crosses in figures
(a-c), respectively.

cycling through the components. Due to the Monotonicity Bropof the VB-SAGE algorithm, the free
energy is non-decreasing versus the iterations.

Several sparsity priors are considered: Gaussian, flat anddealriors. The admissible hidden data
introduced in the VB-SAGE algorithm allow obtaining simpledaeasy to interpret component pruning
rules/conditions for these priors. Theses conditions am@vshto be equivalent to removing signal
components based on comparison of the per-component SNRawgflven threshold. This threshold
can be set for all components or tailored for each compometwidually.

The sparse VB-SAGE algorithm is applied to the estimation @& mhultipath components in the
response of synthetic and measured wireless multipathnettenWe show by means of Monte Carlo
simulations that the sparsity-based model order seleati@thods with sensitivity-adjusted pruning
conditions outperform the Bayesian Information Criterimmd the Negative Log-Evidence model order
selection criterion. These methods fail since, due to variftects (calibration errors, finite precision in
the discretization process, diffuse scattering, etclitepto a model mismatch, numerical artifacts are
introduced, which lead to a decreasing RMSE at the expensa a@icaeased model order. In case of

estimation of wireless channels this is highly undesirabiece the estimated artifacts have no physical
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meaning. The proposed modifications of the pruning conditidiesv correcting for possible model order
estimation bias due to modeling mismatch. Making use of th@dca prior results in the best performance
among the tested methods. Simulations show that for low SNR/BKSAGE algorithm with Laplace
sparsity priors, which we refer to as the VB-SAGE-L algorittkaeps only reliably estimated components,
while successfully removing the artifacts. The VB-SAGE-L altfom also exhibits the fastest convergence

as compared to the other tested algorithms with the samgisgpgriterion.

We apply the VB-SAGE-L algorithm to the estimation of the npatih components in the measured
CIRs. In order to minimize the effects of model mismatch, tletector sensitivitySN R’ is adjusted
based on an estimate of the delay power profile. Since the dstifae typically more pronounced in
areas of the high received power, a smoothed version of they gewer profile can be used as an
indicator of the received power versus propagation detagedtigations, not reported in this paper due to
space limitation, show that the estimated multipath coreptsican be associated to propagation paths

computed from the geometry of the environment using ragifica

The sparse VB-SAGE algorithm provides a new and effective fimoéfficient estimation of wireless
channels. Its flexibility and its iterative structure makedty attractive for many applications in wireless
communications: analysis and estimation of complex MIM@rutel configurations in channel sounding
and MIMO radars, channel estimation in iterative receiveesforming joint channel estimation and

data decoding, as well as extraction of location-depentéaitires of the radio channel for localization

purposes.
APPENDIXA
MONOTONICITY PROPERTY OF THEVB-SAGE ALGORITHM
Define A, = {w;,0;,«q} as the set of parameters associated with ithe multipath compo-
nent andR; = {wg, 0k, ar;k € ZI(I)} as the set of the other multipath parameters. We as-

sume thatg(A;, R;) = q(A;)q(Ry). It is straightforward to show that minimizing the free emer
Fq(A;, Ry)|p(z, A, Ry)) with respect tag(.A;) is equivalent to minimizingF(q(.A;)||p(z,.A;)), where
p(z, Ar) o exp (Eyr,){logp(z, A1, R;)}). The VB-SAGE algorithm facilitates this optimization using
the admissible hidden da#a in (3). Consider the equality(x;, z, A;, R;) = p(x;|z, A, Ri)p(=z, A, Ry)-
By combining this equality with the factorization (4) andngouting the expectation with respect 49
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andR; we obtain

Eq(r,) {logp(2, At R1)} = Eq(a) {log p(a, Ar)}
_Eq(mz)Eq(R,){IOgP(SCHZ, A, Ry)} + const

whereconst is a term independent od;. Define nowp(A;) o exp (E,(z,){log p(;, A;)}). Observe that
p(x;, A;) is a function of the admissible hidden data and of ithemultipath component parameters.
Now, the free energy with respect i, can be rewritten as

F(g(A)P(z, A)) = F(q(A)|IH(A))
(31)

—Ey () Eqa) Eqr){log p(x1] 2, Ar, Ri) } + const.

Minimizing F(q(A;)||5(A;)) is typically simpler as compared to minimizing (q¢(A;)||p(z, A;)).
However, whethetF (q(A,))||5(z,.A;)) decreases aF (q(A;)||p(A;)) decreases ultimately depends on
the termE, ;) Eq4,)Eqr) {log p(i|2, A, Ry)} in (31).

Let ¢(A;) denote an existing (old) estimate od;, and let ¢’(A;) be the new minimizer of
F(q(A)|p(A)). A current estimatey(x;) of the admissible hidden data posterior pdf is given by
(), e, q(x) = plxr) oc exp (Eqa)Eqry {logp(zi|z, A1, R1)}), since MB(z) = {z, A, Ri}.
Note that it is easy to show thadbg p(x;) must be quadratic inc;. Similarly we definep/(x;)

exp {Eq () Eqry) {log p(xi]z, Ai, Ry)} ;. With these settings it follows that
Fa(A)lp(z, A)) — F(d'(A)p(z, A)) =
F(a(ADIp(A)) — F(d' (A 1p(A)) (32)

+Dxr (p(x) |7 (1)) > 0.

Result (32) expresses the Monotonicity Property of the VB-SA@&gorithm. Furthermoreg(xz;) =
p(r) o< exp {Ey ) Eq(r,) {log p(i| 2z, A1, R} } is a sufficient condition that guarantees the monotonicity

of the VB-SAGE algorithm for our estimation problem.
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