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Regression with Sparse Approximations of Data
Pardis Noorzad † and Bob L. Sturm ‡

† Dept. Computer Engineering and Information Technology, Amirkabir University of Technology, Iran;
‡ Dept. Architecture, Design and Media Technology, Aalborg University Copenhagen, Denmark

Introduction

I We propose SPARse appROximation Weighted regression (SPARROW), a new
method for locally polynomial regression function estimation, and an extension of
sparse representation classification to the regression setting.

I To estimate the regression function at a point, SPARROW uses Taylor polynomial
expansion around that point, least-squares optimal parameter estimation, and
sparse approximation in terms of a dictionary of regressors and regressands.

I Our results show that locally constant SPARROW performs competitively, but the
locally linear form, with and without regularization, does not.

What is Local Regression?

Consider we have a dataset of N observations indexed by Ω := {1, . . . ,N}:

D :=
{

(xi , yi) : xi ∈ RM, yi ∈ R, i ∈ Ω
}

We wish to estimate the regression function f (x) : RM → R at a point z ∈ RM.

1. Approximating this function by a Taylor polynomial about z, we have

f (x) ≈ f (z) + (x− z)Tθz +
1

2
(x− z)THz(x− z)

where θz and Hz are the gradient and Hessian of f (x), evaluated at z.

2. We can solve for f (z), θz and Hz by

min
f (z),θz,Hz

∑
i∈Ω

αi(z)
[
yi − f (z)− (xi − z)Tθz −

1

2
(xi − z)THz(xi − z)

]2

where αi(z) is the ith observation weight. We can be posed this as

min
Θz

∥∥∥A1/2
z

[
y − XzΘz

]∥∥∥2

2

where [Az]ii := αi(z) and zero else, Θz :=
[
f (z),θz, vech(Hz)

]T
, and

Xz :=

1 (x1 − z)T vechT[(x1 − z)(x1 − z)T]
... ... ...

1 (xN − z)T vechT[(xN − z)(xN − z)T]

 .

The notation vech(B) is the supervector of half of the symmetric matrix B.

3. The first element of the solution Θ̂z =
(
XT

z AzXz

)−1
XT

z Azy gives the
least-squares optimal locally polynomial estimate of f (z)

f̂ (z) = eT
1

(
XT

z AzXz

)−1
XT

z Azy.

Taking only the first column of Xz gives a locally constant estimate of f (z):

f̂ (z) = (1TAz1)−11TAzy =

∑
i∈Ωαi(z)yi∑
k∈Ωαk(z)

Taking the first two columns gives a locally linear estimate of f (z).

We must now define the N observation weights {αi(z) : i ∈ Ω}.

I Weighted k-nearest neighbor regression (Wk-NNR) defines the weights by the
reciprocal of their Euclidean distance to z.

I Nadaraya-Watson kernel regression (NWR) method defines the weights using a
kernel function, e.g., Gaussian, evaluated with respect to z.

I SPARROW defines the weights using the sparse approximation of z with respect
to the observed points in D.
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Above we see the ability of local regression methods to model data locally.

How SPARROW Defines the Observation Weights

We construct a dictionary matrix by concatenating normalized regressors

D :=

[
x1

‖x1‖2
,

x2

‖x2‖2
, . . . ,

xN
‖xN‖2

]
.

For a given point z, SPARROW finds a solution to z ≈ Ds such that s has many
zero elements by solving the basis pursuit denoising (BPDN) problem

min
s∈RN
‖s‖1 subject to

‖z−Ds‖2
2

‖z‖2
2

≤ ε2

where ε2 > 0. Defining Σ as a diagonal matrix of the unbiased estimates of the
variances observed in the dimensions of the regressors in D, SPARROW then
defines the ith observation weight by

αi(z) :=

[
(z− xi)TΣ−1(z− xi)

minj∈Ω(z− xj)TΣ−1(z− xj)

]−1
si
‖z‖2

where si is the ith element of s, i ∈ Ω.

Experiments and Simulations

Dataset # observations (N) # attributes (M) k

Abalone 4,177 8 9

Bodyfat 252 14 4

Housing 506 13 2

MPG 392 7 4

Our test datasets are described in the table above, with the last column showing
the tuned parameter k in our experiments with k-NNR and Wk-NNR. The figures
below compare locally-constant SPARROW (C-SPAR) and other methods. We use
100 independent trials of 10-fold cross-validation to estimate the mean squared
error (MSE). Red lines mark median. Boxes delimit 25 to 75 percentiles. Extrema
marked by whiskers, and outliers by pluses.

(a) Abalone dataset
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(b) Bodyfat dataset
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(c) Housing dataset
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(d) MPG dataset
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For locally linear SPARROW (L-SPAR), we can employ regularization to solve

min
Θz,λ

∥∥∥A1/2
z

[
y − XzΘz

]∥∥∥2

2
+ λ‖Θz‖2

2.

For the same datasets as above, the table below compares C-SPAR with L-SPAR
with and without regularization. To estimate the MSE, we run 10 independent
trials of 10-fold cross-validation. The last column denotes the ridge parameter to
obtain the L-SPAR w/ R estimate.

Dataset C-SPAR. L-SPAR. w/ R. L-SPAR. λ

Abalone 5 16 988 10−3

Bodyfat 5 ×10−5 35 ×10−5 960× 10−5 10−6

Housing 10 45 4304 10−4

MPG 7 8 6335 10−3
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