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Regression with Sparse Approximations of Data
Pardis Noorzad 7 and Bob L. Sturm i

T Dept. Computer Engineering and Information Technology, Amirkabir University of Technology, Iran;
T Dept. Architecture, Design and Media Technology, Aalborg University Copenhagen, Denmark

» We propose SPARse appROximation Weighted regression (SPARROW), a new We construct a dictionary matrix by concatenating normalized regressors
method for locally polynomial regression function estimation, and an extension of D._ X X2 XN |
sparse representation classification to the regression setting. Ul %2l T Ix]2]
» To estimate the regression function at a point, SPARROW uses Taylor polynomial For a given point z, SPARROW finds a solution to z =~ Ds such that s has many
expansion around that point, least-squares optimal parameter estimation, and zero elements by solving the basis pursuit denoising (BPDN) problem
sparse approximation in terms of a dictionary of regressors and regressands. | | |z — DsH% ,
» Our results show that locally constant SPARROW performs competitively, but the AT Is[|1 subject to HE S €

locally linear form, with and without regularization, does not.

where €2 > 0. Defining X as a diagonal matrix of the unbiased estimates of the
variances observed in the dimensions of the regressors in D, SPARROW then

. . defines the /th observation weight by
What is Local Regression? . m—

Consider we have a d f N observations indexed by Q == {1,... N (2) (z—x) T ‘(z—x) >
taset t = e : 8% = : —

onsider we have a dataset o observa |<;ﬂns In exe. y { } _mlnjEQ(z . xj)Tz I(z — xj)_ |||
D = {(X,',yi) X, €E R,y €R, i € Q} where s; is the ith element of s, / € (2.

We wish to estimate the regression function f(x) : RY — R at a point z € RV,

Experiments and Simulations

1. Approximating this function by a Taylor polynomial about z, we have Dataset #+ observations (/) 4 attributes (M) k
1
f(x) ~ f(2) + (x = 2) 02 + 5(x — 2) 'Hy(x — 2) Abalone 4,177 8 0
where 8, and H, are the gradient and Hessian of f(x), evaluated at z. Bodytat 252 14 4
Housing 506 13 2
2. We can solve for f(z), 6, and H, by MPG 392 I g
. 1 2
. ménH Z ai(z) {Yi — f(z) — (% — Z)T9z — §(X/ — Z)THZ(X,- — Z)} Our test datasets are described in the table above, with the last column showing
(2)0:H: 50 the tuned parameter k in our experiments with k-NNR and Wk-NNR. The figures
where «j(z) is the ith observation weight. We can be posed this as below compare locally-constant SPARROW (C-SPAR) and other methods. We use
[ A1/2 X0 2 100 independent trials of 10-fold cross-validation to estimate the mean squared
B || Y — X;0;] |2 error (MSE). Red lines mark median. Boxes delimit 25 to 75 percentiles. Extrema
where [A]; ‘= a,(z) and zero else, ©, [f(z), 0. vech(Hz)}T, . marked by whiskers, and outliers by pluses.
_ - (a) Abalone dataset (b) Bodyfat dataset
1 (x; —2z)" vech'[(x; — z)(x; — 2)] 9 : I 25
Xz = | : ; . st —'It— . . ol : - )
1 (xy — 2z)" vech'[(xy — z)(xy — 2)] A B 2 b : %' .
- - ' 1 -+ * T 1C_> 151 ' j_
The notation vech(B) is the supervector of half of the symmetric matrix B. gm— T - - im— - S :
) 1 5 1 L8 =N =R
3. The first element of the solution @, = (XIAZXZ)_ XA,y gives the 4o T = T e e s o B S
- I —= ! ¥ —h 1
) . . . : 4 = — = S
least-squares optimal IocaAIIy polynomial estlma_tle of f(z) R T & & 0 I NG /@Q\ \fg& %Q\éa
f(z) = e] (X;AX,) X, Ay. SR R R v Y ¢
Taking only the first column of X, gives a locally constant estimate of f(z): (c) Housing dataset (d)MPG dataset
A ._a;lZ)y; - e L £ | 25
f(Z) _ (ITAZI)—llTAZy _ Z/EQ ( )y 50 : - i : ) N
e Jt T A -
Taking the first two columns gives a locally linear estimate of f(z). | e F— - . - - A P R - . o f fffff -
e s [ S - s s A
2 O e e S e ML I o T o —
We must now define the N observation weights {«a;(z) : i € Q}. ol ~ A R I s N s I | R O . - — L —
. . . . . iy & e Q) &> - NS R N
» Weighted k-nearest neighbor regression (Wk-NNR) defines the weights by the ° & $$Q\ \y\@ \fé @\jé o’ézv e —\j%—sg —0532 -

reciprocal of their Euclidean distance to z.

» Nadaraya-Watson kernel regression (NWR) method defines the weights using a

For locally linear SPARROW (L-SPAR), we can employ regularization to solve
kernel function, e.g., Gaussian, evaluated with respect to z. y ( ) pioy reg

2
» SPARROW defines the weights using the sparse approximation of z with respect gwig Al y — X,0,] T NICHIE
to the ob d points in D. i
0 HE ORSETVEE PoIts 1 For the same datasets as above, the table below compares C-SPAR with L-SPAR

with and without regularization. To estimate the MSE, we run 10 independent

trials of 10-fold cross-validation. The last column denotes the ridge parameter to
> A obtain the L-SPAR w/ R estimate.
0.6 o 2ol -
ol B | Eo Dataset =~ C-SPAR. | L-SPAR. w/ R. L-SPAR. A
°2 AR Abalone 5 16 038 1073
T T o b e ‘ Bodyfat =~ 5 x107> 35 x107> | 960 x 107> | 10°°
% “‘ oo O - Dataset _ _0'2_ S | o é O _ Housing 10 45 4304 10_4
—0.4F° L oes O R Goal function{ -0.4}: 1 & £/ - _
—MLRist | y - Dataset MPG 7 8 6335  107°
-0.67 0o ' —MLR:2nd || -0.6f 0o e R Goal function |
| o —MLR:3rd | o — 4-NNR
05 -0.5 0 0.5 05 -0.5 0 0.5 1
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