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Industrial Applications of the Kalman Filter:
A Review

Francois Auger,Senior member, IEEBViickael Hilairet, Member, IEEE Josep GuerreroSenior member, IEEE,
Eric Monmasson,Senior member, IEEETeresa Orlowska-KowalskaSenior member, IEEE
and Seiichiro KatsuraMember, IEEE

Abstract—The Kalman filter has received a huge interest from
the industrial electronics community and has played a key rte
in many engineering fields since the 70s, ranging, without leg
exhaustive, trajectory estimation, state and parameter gsnation
for control or diagnosis, data merging, signal processing rad
so on. This paper provides a brief overview of the industrial
applications and implementation issues of the Kalman filtein six
topics of the industrial electronics community, highlighing some
relevant reference papers and giving future research trend.

Index Terms—Kalman filter, state estimation, implementation
issues, industrial applications.

|I. INTRODUCTION

M

trajectory estimation, state prediction for control orgtiasis,
data merging, and so on.

Many researches have been dedicated to the implementation
and performance improvement of the KF, namely the numer-
ical stability improvement, the computation time reduetiar
the study of effective implementations. The main objective
of this paper, designed as a concluding paper to the Special
Section of these Transactions on the industrial applinatio
and implementation issues of the Kalman filter [1], is to
highlight the latest theoretical and experimental advarsred
to emphasize practical implementation issues of this state
estimator.

The scope of this paper is dedicated to the KF applica-

ANY industrial applications require to measure a larghons in five topics covered by the industrial electronicsiso
number of physical variables so as to own a sufficieSty: Namely i) sensorless control, diagnosis and faudtrolt

quantity and quality of information on the system state arf@@ntrol of AC drives, ii) distributed generation and staag
to ensure the required level of performance. However, tg¥Stems, iii) robotics, vision and sensor fusion techrsque
measurement of some physical quantities may not be possitfle@pplications in signal processing and instrumentatiod

or desired, mainly because of the cost reduction and/or thk réal-time implementation of a KF for industrial control
increase in system reliability. In this context, the Kalnfider ~Systems. Therefore, this paper is organized in seven sectio
(KF), whose 50th anniversary occured in 2010, has playedf&ction Il gives a brief overview of Kalman filtering theory,

professions since the 70s, including without being exhaeist
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inally, conclusions and future trends are discussed ifatste
section.

Il. A BRIEF OVERVIEW OFKALMAN FILTERING THEORY

In his famous and nowi0-year-old publication [2], Rudolf
Emil Kalman proposed an optimal recursive estimator of the
state of an uncertain dynamic system. Although it is based
on advanced results of probability theory, its final forntialia
is remarkably simple and effective to implement on a digital
target. The first derivation was made for a discrete-timedfini
dimensional linear stochastic process

Xk+1] = AXK+BURK + GVik

C X [k+1] + Wik+1]

)
)
where X € IR" is the state vector/ € IR' is a deter-
ministic process input ang < IR™ is the measurement.

The two random variable¥ and W respectively represent
the process and the measurement noisesiears the model

Y [k+1]



uncertainty, whereall’ bears the sensor uncertainty and dig- In some publicationsX,[x+1] and X.[x+1] are written as

ital quantization effects. These noises are assumed torbe z& [x+1|x] and X [k+1|%+1], but this notation increases the length
mean, white and independent of each other, with respectivethe equations and may frighten some students. As they
covariance matrice§ anr R. All the matricesA, B, G and can be considered as tlzepriori and thea posteriori state

C are deterministic and may also depend on time. Since testimates, since they can respectively be computed before a
measuremenj does not exhaustively inform us on the currerdfter the availability of the measuremehtx+1], they may
situation of the process, the Kalman filter aims at providinglso be written asX ~[k+1] and X T[x+1]. Unfortunately, the

an estimate of the process stdfe This filter is made of two notation of vectors and matrices is a major concern for the
groups of equations: understanding of discrete-time Kalman filtering.

« the time update equations/hich try to predict the state  This first derivation of the Kalman filter has been extended
value at timek+1 based on the transition equation (Eq. 1%0 linear continuous-time finite-dimensional stochastio-p
and on the set of all the measurements until tilje cesses: if the state equations can be written as
YK ={Y0], Y, ... Yr}. This prediction is deduced

from a previously derived estimation of the state at time X(t) = AX(@t)+BU(t)+GV(t) (12)
k, X.[k): Y(t) = CX(@#)+W() (13)
X,ph+1 = E[Xk+1 | VK] (3) thenan optimal state estimakecan be obtained by a Kalman-
= AX.k+ BUM (&) Bucy filter [4] defined as
Pl = B [GmyKme’ | Y] 6)  X(0) = AX@0)+BU®+ K@) (y)-CX(0) 19)
= AP.mA' +Q (6) K(t)=PtC' R (15)
with Xpkt1] = X[k+1] — Xplk+1) (7) P(t) = AP(t) + P(t) A + Q — P(t)C* R™1 C P(t) (16)

In Eq. 5 and 6,F%[x] and P,x+1) are respectively the Finally, the original Kalman filter has also been extended to
estimation error covariance matrix at time and the 3 discrete-time non-linear stochastic process. In suchradr
prediction error covariance matrix at time+ 1. Both work, the optimal Kalman filter [5] can often not be computed,
provide a quantitative evaluation of the quality of thisind approximations, such as the well known extended Kalman
estimation and of this prediction. filter, must be used. The set of all of these filters allow
« the measurement update equationsich try to improve engineers and researchers to solve many problems in a wide
the predictionX,,[x+1] thanks to the measurement availrange of applications.
able at timek + 1: To illustrate this overview with a simple example, we may
Xokt1] = Xplkt1] +K[k+1]}~/p[k+1] 8) consider the case _of a tgrget moving ir_1 a one-dimensional
= space whose position(t) is observed with both an accel-
with Yplk+1] = Y1) — C Xplkt1] ) eration sensor and a position sensor. This motion observer
This correction of the prediction will be optimal if theis called a disturbance observer in robotics [6] and an angle
estimation error is statistically orthogonal [3] to the medracking observer in electrical engineering [7]. From Tayl
surement prediction erro¥,x+1], which is sometimes approximations, one may modelize the target motion as a
called the measurement innovation. This way, all thear stochastic process:
information that the current measuremeritt+1] has

about the current value of the state and that is not X1 = AXWK+ G (17)
conveyed by the set of the previous measuremgits Yikr1] = CXk+1] + Wik+1] (18)
will be used to derive an estimate &f[k+1]: 111 1 10
- - . withAd = [0 1 2|,Gc'=[3],c*=|0 0], (19
IFE | Xck+1] Yp[k+1]} =0= 00 1 3 0 1

—1
K(k+1] = Pyk+11C* (C Pyk+11C* + R) ~ (10)  where the three components of the state are defined:ds ),

The covariance matrix of the estimation error can thefi (K75) T, %(kTg)Tf/Q, T being the sampling period
be computed as and wherev[k] = 42 (kT,)T2/6 is derived from the third-
order derivative of the position, sometimes called the,jarid
Pelitt) = By} = Kit) C Bplet1] - (1) copidered as a scalar zero-mean random variable of varianc
These equations are repeated at each time sample, theymevip. Since this process is observable, a Kalman filter can be
state estimate being first used to compute a state predictd@signed from this model using Egs. 4, 6, 8, 9, 10 and 11.
(Eg. 4 and 6), then a new state estimation (Eg. 8, 10 and 1&dpr constant values ap and R, the Kalman correction gain



K goes to a constant which does not depend on the initehd [25], [26], respectively. In these works, only simudati
value of the covariance matrices and can be computed offlinesults were presented.
reducing the computational cost of this Kalman filter to a In the first research works concerned with rotor flux and
few elementary arithmetic operations. Since the measuremspeed estimation [23], [24], [27]-[29], the motion equatio
noises can reasonably be regarded as uncorrelatedRthef the drive system was omitted in the model used to build
matrix is diagonal and can be written &= diag (ag,ag). the KF, and the motor speed was considered as a randomly
Finally, since the Kalman correction gain is left unchangegarying parameter. This led to a significant speed estimatio
when @, R and P.(0) are all multiplied by the same scalarerror during transients, particularly during instantametoad
[8], this means that the final value &f only depends ong/Q variations, although the performance was improved in stead
ando2/Q. state. A similar approach was used in [30], [31], where a
Other academical examples, more detailed explanations asduced-order EKF was applied for the rotor flux and speed
implementation issues may be found in [9]-[11]. Historisal estimation.
sues may also be found in [12], [13], whereas actual indalstri All these methods provide an estimation of the rotor flux
applications of the KF in six fields of the industrial electits and speed based on the assumption that there is no change in
community are reviewed in the next sections. the resistances of the motor windings. Similarly, none ebth
studies estimated the load torque, thus the proposed caduti
[1l. SENSORLESS CONTROLDIAGNOSIS, PROGNOSTIC showed some sensitivity to the variation of those pararaeter
HEALTH MONITORING AND FAULT-TOLERANT CONTROL OF The state vector of the IM was extended to the rotor time
AC DRIVES constant for the first time in [25], proposing a simultaneous
A. Motivation and background state and parameter estimation.
The rotor resistance was also estimated in [32]. However,

As in many application fields, KF- have been used for OV&he rotor resistance estimation was performed by the iioject

twe_nty years in intelligent electrical dnyes for state |_ﬂbre of low-amplitude high-frequency signals into the flux refece
estimation. Nowadays, standard requirements for indlstr]

. . : in the direct vector control of the IM, causing fluctuations i
drives of induction motors (IM) or permanent magnet SYMhe motor flux torque, and speed

chronous motors (PMSM) include sensorless speed control, .
. . Another approach was developed in [33], where the authors
which means that the system can be used without a po-. . : A
. ...estimate the motor speed by taking the motion equation into
sition sensor [14], [15]. The advantages of speed/positign . : .
. consideration for the design of the EKF. The authors also
sensorless control are reduced hardware complexity, lower . : .
. . . T fopose to estimate the rotor resistance and mechanial loa
cost, reduced size of the machine drive, elimination of the

L . . orque, thus demonstrating improved results over a widedspe
sensor cable, better noise immunity, increased religtslitd 9 gimp exp

. : itholange. However, these results are sensitive to statotarsis

lower maintenance requirements. Moreover, a motor without > O . :
. : . . variations, indicating the necessity of an approach toredt

a position sensor is more suitable in case of harsh operatgl(% S :
eNVIrONMents h winding resistances of the motor as well as the load

. . . torque.
For this, the rotor speed or position has to be estimated, an . . . . .
P P tudies achieving the simultaneous estimation of stator

many methods are now available. Numerous estimation meth- . .
. .“and rotor resistances in the sensorless control of IMs are
ods have been developed so far, based on various techniques

. . c . : very few and show well-known difficulties in steady state,
like signal injection, based on rotor saliency, or algarith

methods, based on a motor mathematical model or on a bl dL’(e to a lack of identifiability of the IM model parameters.

box model [14]-[22]. Model-based methods are sometim%%e,:\ﬁg?ll(:pﬁimﬁ ?rheeSuZ(;r:blsniInr]gaellﬁ:lggg?:nsiéethoozsse:)VrHI(/TJRr;\eS
called Fundamental Wave Models [17]. Among the algorithmic » Mg d y sl I

. . . . eé:hniques with switching models depending on the actual
methods, some are using state estimators, including MR ; . .
; operation state of the drive, were proposed, e.g. [34]. Taimm
(Model Reference Adaptive System) [18], or state observe(r]§) . : . o
LY : rawback of these techniques is that the algorithm ideintify
based on a deterministic approach [14]-[16], [19]-[21]ilevh :
. : the resistances can only be used when the sensorless speed
others are using a stochastic approach based on extended[ L
o : . . . . control system is in steady state and not when the load torque
Kalman filtering (EKF), which will be discussed in details . .
: : Is largely varying or when the speed reference is changed.
in the next subsections. . :
So the proposed solutions can compete with a speed-sensor-
. equipped drive only if accuracy in steady state is not egdent
B. Overview of sensorless control for IM and operation under high loads and low speeds is not a
Some of the first applications of EKF for the rotor flux andequirement.
speed estimation as well as for the rotor flux and rotor time Studies achieving the simultaneous estimation of statdr an
constant estimation for IM drives can be found in [23], [24{otor resistances for the sensorless control of IMs wasrtego



in [35], where two EKF algorithms were consecutively usednd stator parameters are avoided this way. In [46], the ease
at every time step, without the need for signal injectionasr f of implementation and the robustness to parameter unaogrtai
algorithm changes, as in most previous studies. This tgcleni of an EKF and of an adaptive sliding-mode observer are
was called a “braided” technique. The two EKF algorithmsompared. The authors claim that for IPMSM drives, thielatt
have exactly the same configuration and are derived fraulution is much simpler.
the same extended model, except for one state, namely th&KF has also been proposed for the joint estimation of
stator resistance in one replaced by the rotor resistantteein mechanical variables and parameters of systems with cample
other. The braided EKF technique exploits the persistericy mechanical parts, including elastic couplings [47]-[5R].
excitation required for parameter convergence in steaatg st these works, the estimation of the load side speed, torsiona
fulfilled by the system noise (or modeling error), as wellles t and load torque as well as the load side inertia have been
fast convergence of EKFs. An improvement of this techniquestimated effectively, using linear and nonlinear EKFs. In
was reported in [36], where a so called bi-input EKF was pr¢49], an original method was proposed for the simultaneous
posed. This algorithm consists of a single EKF algorithnmgsi estimation of mechanical state variables and of the load sid
consecutively two inputs based on two extended IM modelsertia. The elements of the covariance matfjxare adapted
developed for simultaneous stator and rotor resistanaesh Saccording to the estimated value. In [50], [51], an evolio
a solution, requiring less memory and computation time, igry algorithm associated with @analysis for the stability
more suitable for real-time implementation analysis of the closed-loop system was used to tune the
observer and controller. The-analysis theory helps to cancel
known unstable set of parameters before running iterafions
the optimization algorithm.

Thanks to their ability to perform state estimation of non-
linear systems, EKFs have also found wide application fer t. Diagnosis, prognostic health monitoring and fault-talet
estimation of rotor position and speed in synchronous mote@ntrol overview
drives. Initial attempts to combine flux linkage and positio In order to guarantee a safe and efficient operation of cbntro
estimation for brushless PMSM machines were frustrated bystems against various failures, computer-based fadere
the real-time processing power available at that time [37}ection algorithms have been developed. Various appreache
[39]. Subsequent advances in DSP technology have allowesle been applied, i.e. observer-based techniques, iattific
these estimation principles to be effectively implemernited intelligence techniques, etc. In this context, the KF hayed
[40], [41], including stator-resistance estimation jaln® an a major role. See for example [25], [25], [53]-[55].
algorithm to counter the effects of flux-linkage estimation The KF relies on a system model with uncertainties that are
errors caused by an incorrect value of resistance as thermetssumed to be Gaussian white centered random variables with
temperature rises during continuous operation. known covariance properties. Nevertheless, this assompti

Although last generation floating-point DSPs can easilg not generally satisfied and the tuning of the covariance
overcome the EKF real-time calculations, they are not bléta matrices is not obvious. This point is especially sensible
for low-cost PMSM applications. Moreover, long computatiofor diagnostic. In fact, the covariance matrices can previd
requirements disturb other program service routines sschiaformation about the quality of the estimates. However, if
fault diagnosis or custom programs implemented in indaistrithe covariance matrices of the noise and state are not well
products. Therefore, some efforts have been made to reddedined, the estimation error covariance matrix is theeefor
the computation time of EKF algorithms for PMSM by using @neaningless. In practice, two methods exist for the tuning
reduced-order EKF [42]-[44]. A third-order EKF using backef the KF: the first one relies on the evaluation of the state
EMF detection algorithm is also proposed in [42] and [43}, band measurement noises, allowing to assess the qualitgof th
the output state equation used is complex. In [43], a secorgbtimates with the covariance matrices. Yet, this apprasch
order EKF is proposed to estimate stator resistance and fhften difficult, if not impossible [53]. The second one relie
linkage, but not for a sensorless control purpose. on the tuning of the dynamic convergence with or without

Some recent achievements on the use of EKF for onlia@totuning methods [35], [44], [56]-[58]. In practice thaster
estimation of state variables in sensorless IPMSM contnalethod is often used. In [49], [59] some guidelines for a
applications are reported in [45], [46]. In [45], the EKFmore systematic way of covariance matrix selection have
is used for the permanent magnet flux identification of dseen proposed, including genetic algorithms. Therefdre, t
IPMSM, combined with a rotor speed and stator resistanegaluation of the covariance matrices Q and R which take into
estimation performed with an MRAS technique. The authoegcount the physical approach, i.e. the model approximatio
showed that the convergence and stability problems gdnergtiscretization, parameters’uncertainties) and the oreasent
encountered when simultaneously estimating the flux, spesaises (quantification error) is still an open issue.

C. Overview of sensorless control for PMSM
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The conventional KF and its extended version have becol
a standard tool in the last 40 years. Generally, diagnoasle faulted rotor position 6,,, faulted rotor speed «,
The linearization of the non-linear system allows to apply t E,
conventional linear KF. However, the performance of the EK ©—
decreases when the system includes strong non-lineatities estimation 8yrse estimation Wy e
such cases, designers prefer to use unscented Kalman fil_ | ;ZZ~/—\
Diagnosis has recently been extended to fault-toleran - B
control. Monitoring and controlling systems under a wid "o
ures may occur in electrical systems and so far, redund: ﬂ
or conservative designs have been used in applications - Cor ot e
case for aircraft control, home and civil appliances (sush _ ZZZI\
[62], engine cooling fans, and electric vehicles [65]), vehe s A e e e B!
reliability is a key issue. The objective of fault-toleramintrol position estimation error speed estimation error
most frequent faults and thereby reduce the cost of handli®
them. In submerged pumps or hostile environments whe I T
accessibility to the drive and to the sensors is tedious a , current iy . currentl,,
continuity of operations is nevertheless mandatory, even o L
case of fault occurrence, a sensorless algorithm is easémti = e
. ° ‘ ‘ bime (53 * * * ° ‘ ‘ bime (SH) * * “
In [65], the authors presented and experimentally testec [ t
PMSM drive which is robust to mechanical sensor failure. In
B of a power failure at no load from paper [65] (A. Akrad, M. Hiikt and D.
stage Extended Kalman Filter (OTSEKF) and a back-emfalio).
algorithm are combined with the actual sensor to provide a
fault tolerant controller. Fig. 1 shows the results of thalifa is the severity degree. However, this method doesn't talce in
are used in the Field Oriented Controller. For these opegatiis the reason why observers are best suited for such purpose.
points, the OTSEKF is engaged in the sensorless controller[66], a KF has been designed to estimate the evolution of
the sensor outputs and the estimations are smooth. Thesergdran induction machine. The proposed method consists of
between the estimated and the actual position and speedta® steps: i) an update of the state space model at fime
represent the stator currentg andis,, where neither oscil- method consists in determining the best parameters of the
lations nor spikes are observed during the switching modestate space model before beginning the prediction, and the
(PHM) to accelerate the estimation of faulty conditionsMPH measurements are received.
has been applied to AC machines in order to detect as sooIFig. 2 shows one result for the prediction of the unbalance
supply, etc. Generally, an off-line polynomial approachsed, prediction of a 40% unbalanced stator supply is close to the
based on a database of healthy and faulty modes. The ewolutigal value, compared to a conventional polynomial approach

to parameter estimation and the problem is often non-line ' H “ 4 o ] \
(UKF) for their superiority [10], [60]-[63].
estimation er estimation w,

variety of faults is more and more mandatory. Several fai%4
Wthh Contlnurty Of Operatlons |S a key feature. ThIS |S th rotor position 8. (=) and voting algorithm~position (-.-) rotor speed 6, (~-) and voting algorithm-speed (-.-
for example gas turbines [64], air conditioning/heat pumg= i ‘
is to propose solutions that provide fault accommodatidhéo _ W + ”‘ . b *
maintain the availability and therefore increase the bditg.
order to increase the reliability, two virtual sensors (a) tV\):ig. 1. Experimental results of a PMSM fault-tolerant cotiér in the event
adaptive observer (AO)) and a Maximum Likelihood voting
tolerant controller where the outputs of the voting aldorit account new measurements and the parameters variatidas. Th
when a position sensor fault appears. The transitions legtwehe number of broken bars or the unbalanced stator supply
small and confirm the validity of the FTC. The lower curve#f) a prediction of the state at timé + n. Therefore, this

Today, diagnosis is extended to prognostic health monigoriuse of an observer recursively increases the knowledgevas ne
as possible damages such as broken bars, unbalanced stateor supply presented in [66]. It clearly shows that the KF
function is defined as

t=A+Bu+Cp*+ ... (20) E. New trends

wherez is a vector composed of n features of the machine (i.e.One key issue to sensorless control of AC drives, fault detec
current mean power, direction of the current vector, etc)an tion, diagnosis and isolation (FDDI) mechanism is related t
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Fig. 3. Position and speed estimation of a PMSM with a EKF anddaptive
observer.

Mean — \ % %4 % AN 1 M

value

of in steady state at zero speed, the input variables of thermoto

lter.....i.-- (stator currents) do not satisfy the PE (Persistent Exaitat

prediction

active

power A 1 ; b d i condition. In practice, the KF seems to operate well in such
2+ 05 © 05 1 15 2 25 conditions without any divergence compared to extended Lu-
standart deviations of Isep enberger observers, sliding mode or adaptive observersewhe

the gains go to the infinity. These observations need further

Fig. 2. Extrapolation and estimation with a KF from paper][@B. Ondel, E. |nve_s_t|gat|0n, In p_art|CU|ar for f_aUIt'tmeran_t Comrogm_nSt
Boutleux, E. Blanco, G. Clerc2; healthy mode§2, unbalance stator supply pOsition sensor failure [65]. To illustrate this obsergatian
5%, €23 unbalance stator supply 10%,, unbalance stator supply 20%;s EKF and an adaptive observer were compared in [65] for the

unbalance stator supply 40%. position and speed estimation of a buried-mounted magnets
synchronous machine according the benchmark defined in
Figs. 3.a and 3.b. Figs. 3.c and 3.e show the speed estirmation

observability. Deterministic or stochastic model-baseetim When the motor speed is considered as a constant value for
ods are all more or less sensitive to parameter variatiods A€ design of both observers. These figures show that both
cause pr0b|ems with Observabi"ty and Stabi"ty at low spee observers have the same tracking Capabilities, but the EKF
in regenerative operation mode. The operating conditiomstmdoesn't fail at zero speed and rated torque compared to the
excite the system in the frequency range of the parametersf@ptive observer, as shown in Fig. 3.f.

be identified. However, operating conditions may lead to the To overcome the unobservability of model-based methods,
unobservability of some variables or parameters. For arstahigh-frequency signal injection has been introduced fora$/
frequency close to zero, the induced rotor voltage takeg vewell as PMSM drives [14], [15], [17]. However, some consider
small values and thus the estimation of the speed of an lkat the requirement to superimpose additional AC compisnen
[67] or the estimation of the rotor position of a PMSM [68}0 the input signals of the estimator can be overcome by the
becomes impossible. In addition, the simultaneous estimat use of a non-deterministic approach based on Kalman figgerin
of the rotor speed and the rotor resistance of an IM faidodel uncertainties and nonlinearities inherent in AC msto
under constant flux operation or at no-load condition indfeaas well as signal noises are well suited to the stochastic@at
state with a very low and zero speed [25], [54]. Thereforef the EKF, which is basically a recursive observer prowdin
monitoring the thermal behavior of the induction machine ian online state and parameter estimation of a nonlineamdyna
real time is difficult [55], because secondary phenomeneh(stical system from noisy measurement signals in a wide speed
as parameter uncertainties, signal acquisition errorsnaige range [35], [41], [53], [56], [69]. The EKF is also known
at the very low speed range) are not taken into accountfor its high convergence rate, which significantly improves
the machine model used for the estimator design. Moreovperformance during transients. These properties are the ma
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particular, the Carlson-Schmidt-Givens algorithm wasfibto

Bierman-Thorton 1 be relevant for the considered drive.

J Full matrices

| sensor \
(measured speed)

50F
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IV. DISTRIBUTED GENERATION AND STORAGE SYSTEMS

As shown in the previous sections, Kalman filters have been
used for a long time in electrical engineering applicatismsh
as parameter estimation of electric machines [25], [73F Th
application of KF and EKF in new electrical concepts such as
s ‘ ‘ ‘ ‘ distributed generation and storage systems is presentbdsin
"0 0.5 1 1.5 2 2.5 3 35 4 4.5 5 Sectlon

-25

-50 -

Electrical rotor speed, f,, [Hz]

Fig. 4. Simulation results from paper [69] (V. Smidl and Z.r&Reka).
Electrical rotor speed estimation error for all investeghEKF algorithms.

A. Distributed Generation and Microgrids

Kalman filters have also been used previously in power
advantages of the EKF over other estimation methods (egfectronics control applications like fundamental voitagave-
high-frequency signal injection methods) and are the mssdorm tracking at the point of common coupling (PCC) of
why this method finds a wide application in sensorless stai&tributed generators (DGs) forming a microgrid systedi.[7
variable estimation, in spite of its computational comfilex One application consists in using Kalman filters in the aurre
(and relatively long computation time), which is a disappea control loop of grid-connected inverters as a way to cartel t
problem with the recent developments in high-performancerrent harmonics injected to the grid [75]. Some examples
processing technology (see section VI). Therefore, dat®ifiu of PLLs based on Kalman filters are presented in order to
of estimates from model-based methods and high-frequenpyickly estimate the amplitude and the frequency of the grid
signal injection methods such as in [70] could be a promisirjg4]. The Kalman-filter can be used to transform the current
trend. signals into ideal sinusoidal waveforms, in spite of thedgri

Moreover, the robustness of the "obwoltage distortion. These signals are the inputs of PLLseto b
server+controller+process" system is still an open issueansformed to the synchronous reference frame, thusiegsur
In fact, the estimates could be used in the controller in orda fast low distorted operation of the PLL [74].
to optimize the whole system performance. Generally, this
leads to the interconnexion of non-linear systems, thus the
stability of the whole system is not trivial. B. Energy storage systems

Finally, numerical stability issues of the KF are well known Another important application is the estimation of theestat
Better numerical stability can be achieved by using squasécharge (SoC) of batteries used in energy storage systems
root decompositions [11]. Two widely used factored form di76]. Hybrid Electric Vehicles (HEV) for example require
the KF are used in order to reduce these phenomenons, Bettery Management Systems (BMS) that should be able to
the UD and RC decompositions [11]. These forms improwestimate the battery SoC, the capacity fade and the awailabl
the estimations accuracy and decrease the risk of diveegennstantaneous power. Such an estimator must adapt to change
The computational time consumption, estimation accurady acaused by aging in the characteristics of battery cells naunst
instability of the KF are also still open issues. New highelev provide an accurate estimation of their lifetime, whichHhiyg
theoretical and applied researches are regularly puldljsheh depends on the user’s driving style. It should be noticed tha
as [69], [71], [72], and see [11] for survey. the terminal voltage adopted in this kind of applicationads

Fig. 4 shows the results of a fixed-point implementatiothe open-circuit voltage, which is commonly used in offelin
of the EKF used for the sensorless control of a PMSMoC estimation. The relationship between the terminabgelt
drives presented in [69]. Three square-root algorithmsielga  and the SoC is supposed to be
the Bierman-Thorton, Carlson-Schmidt-Givens, and Carlso 1
Schmidt-Householder algorithms, have been implementdd an V., = kg — —~ — ksSoC + k3 In(SoC) — Riout  (21)
compared on both simulation and experimental results. The SoC
performances of the 3 algorithms were evaluated and comherei.,; is the output currentR the output impedance, and
pared to a regular implementation based on full covarianks,..., k4 are some coefficients.
matrices. It was confirmed that the square-root algorithmsThe SoC can be estimated by using the Coulomb counting
improve the behavior of the sensorless control in criticahethod, which is based on the fact that the energy contained
operating conditions such as low speeds and speed reMarsain an electric charge is equal to the integral over time of the
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Fig. 5. SoC estimation for an urban/suburban driving cyobenfpaper [80] practice. To improve the performance of the KF for SoC

ﬁéyﬁ(‘)&omemco' Y. Creff, E. Prada, P. Duchéne, J. BernardSatvant- estimation, an adaptive EKF can be designed, so as to estimat
the covariance matrice [82].

Finally, the computation time and divergence of the KF

current delivered to the charge. Thus, the battery matrieatat @re still issues for such embedded applications. Genethy

model of Coulomb counting can be expressed as temporal equation of the estimated paramefgtbis unknown
and therefore leads to a dynamical model as follows [83]:

d .
7 5°C= —Cinzout (22) z[k] f(x[k —1],0k — 1], ulk — 1]) + W*[k]
0fk] = g0k —1],ulk — 1]) + WO[k] (23)

wheren is the efficiency of discharge ar@, is the nominal
electric capacitance of the battery. Eq. 21 and 22 constdut  y[k] h(z[k], 0[k], u[k]) + n[k]
dynamic model of the battery, Eqg. 21 being the measurem(-‘é'la'{sed on

equation and Eq. 22 being the state equation. The inputlsigna the fact that[k] is not used in the prediction
of this system is the current,,;, and the output signal is equation off[k], [78] proposes the application of a dual

’ . . extented Kalman filter for joint state and parameter estonat
the terminal voltageV,,;, while the SoC is the only state J P

variable. However, there are some problems with the abol\:/grthermore, alternative approaches can be used to enhance

mathematical battery model. The first one is that data-itti aKrEII%IBeer;:Sutmn suli:.h ag interleaved EKF [84] or multigst
algorithms cannot give results in real time. A second onkas t [83], [85] (see Fig. 6).
the coefficients in eq. 21 depend on the ambient temperature.
. . : ) V. APPLICATIONS IN SIGNAL PROCESSING
Experimental data obtained in a laboratory are obtained for
one temperature condition only. In a practical application INSTRUMENTATION, ROBOTICS AND VISION
temperature may change continuously. As a result, we nedApplications in Signal Processing and Instrumentation
to find a strategy to estimate the instantaneous SoC. Thawithin the Signal Processing community, Kalman Filtering
conventional Kalman filter [77]-[80] can be a good solutioremains a very active topic. Contrary to what some people say
for the online SoC estimation, because it tries to get ateurmew high level theoretical researches are regularly plbdis
information from non-accurate data. In a series of threemapsuch as [86]-[90]. Some of them focus on the approximation
[78], a method based on Extended Kalman Filtering (EKF) was the first- and second-order statistical moment of a nealin
proposed. This method is applied to a Lithium-lon polymeransformation of a random variable, a key problem for the
battery pack, taking its nonlinearities into account. estimation of the state of nonlinear dynamic systems. Recen

Fig. 5 shows a result presented in [80] of the SoC estimatiapplications of Kalman Filtering have also been published i
provided by an EKF, compared to a correctly initialized Ala very large diversity of subjects: identification of timeiss
counting. This figure shows that the EKF converges quickiyiodels (AR, ARMA, sum of sinusoids ...), moving target
to the real value, although the initial value of the SoC imcalization and tracking, denoising and signal enhancgéme
underestimated by 35%, and that the steady state error & loweconvolution, wireless sensor networks and distributtd e
than +2%. mation, biomedical applications, to name but a few.

In the same spirit as the new trends presented in section Il nstrumentation is of course one of the main purposes of
Unscented Kalman Filter (UKF) has also been applied to sekalman Filtering. In this area, several recent publicagibave
adjust the model parameters of the battery and to provideslaown the benefit to use Kalman filters for sensor fusion,
better SoC estimation [81]. As stated in section I11.D, thedmm sensor calibration, frequency measurement, ultrasonie ti
drawback of the KF is the importance of a good determinatiarf flight estimation, network-based clock synchronizatioml
of the Q and R matrices, that are not accurately known @lobal Positioning Systems, among many others.



Human Robot a disturbance observer more robust [102].

On the opposite, from the motion planning point of view,
it is important to recognize the outer environment. A mea-
surement of the relative distance is necessary for coirtgod

Motion Planning

Human

Interface
Motion Controller mobile robot. Especially, simultaneous localization angpm

N ping (SLAM) has been widely researched [91]-[95]. Vision

Py it Somor :] systems are useful for the perception of remote environment
Sensor Signal [96]
gna .y . . . .

P In addition, recognition of human motion is also an impor-

Fosiiey O\ tan_t issue for_ future human support. For suph purposespsens
Contact Remote fusion techniques based on Kalman filtering are researched

Environment Environment

. widely [97] [98]. Once human motion is acquired by sensor
Environment

fusion and stored in a motion database, skilled expertsean r
produce it at anytime and anywhere. Recognition, preservat
and reproduction of human motion will have a wide area of
applications, such as skill tele-training, skill transfend so
on.
As stated above, sensor fusion techniques will be widely ap-
Kalman filtering technology is also applied to robotics anglied in future robotic applications. In particular, constting
vision. Future human-robot interaction will need sensdr nea sensor network is more and more important for future human
works. To obtain effective information from various serssor support technology. Sensor networks and robotic systerths wi
Kalman-filter-based sensor integration has been very musipport and extend human physical activities.
researched [91]-[99]. An in-depth survey on the use of Kalma
filters for vision based mobile robots is presented in [100]VI. REAL-TIME IMPLEMENTATION OF A KALMAN FILTER
Such intelligent machines and robots are required to have FOR INDUSTRIAL CONTROL SYSTEMS
abilities of recognition and adaptation to open environtmer, oyerview

Human-robot interactions in open environment are consitier L : . -
- : Due to its high computational complexity, the digital real-
as shown in Fig. 7. In an open environment, robots a[e

- time implementation of the Kalman filter has always been a
expected to cooperate and support human where the eV e Rallenging issue. The three main difficulties that haveeo b
mental situation is changed momentarily. ging )

. . o L addressed are:
Since the environment may have infinite modes, it is nec- L )
The minimization of the effect of the computational

essary to classify modes for which a robot must be adapted?® doff h bility of th : il h
It is natural that environmental modes should be classified oundoff errors on the stability of the Kalman filter, when
computing the covariance matrices.

according to the distance between a robot and its envirohmen h duct t th ional load of th |
To adapt to close environment, a robot should have haptic® 1€ reduction of the computational load of the Kalman

Fig. 7. Human-robot interactions in open environment.

B. Applications in Robotics and Vision

ability. This means that the motion control should be based f|I:]er. . £ th ) )  th |
on force control. On the opposite, a robot has enough time to® l:l'-lteGr minimization of the execution time of the Kalman
ilter.

adapt to remote environment. It becomes possible to delseyn t
motion control relying on position control, and its refeces 10 address these issues, two types of solutions are passible
are generated by a motion planning |ayer_ « The modification of the algorithm to be implemented.
From the motion control point of view, it is very important « The use of an efficient digital architecture to implement
to construct robust control. Feedback control of fine infarm ~ the estimator, being either a processor or a dedicated
tion from sensors decides the performance of robust control hardware architecture.
Since robust motion controller is based on acceleratiotrobn  In this section, a brief description of the above mentioned
[101], an acceleration sensor is useful to obtain widebaigbues will be presented along with the possible solutions t
internal information of a robot. Generally, the bandwidth atackle them. Practical references will be given to help the
an acceleration sensor does not cover the dc range. Thus,réeer to go further. To illustrate our presentation, a ishec
position sensor information and the acceleration sendor-in attention will be given to a popular estimation case in the
mation are integrated to cover from dc to a larger frequenéigld of industrial electronics. It consists in the estiratiof
band range. It is possible to obtain wideband acceleratiorechanical quantities of an AC drive. The above mentioned
information with a Kalman filter. As a result, purity of theissues are of course not the only ones that can impact
acceleration information makes a motion control systemgusithe performances of a Kalman filter. Determination of the
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noise covariance matrices, as well as the initialization af cost reduction of 2.7 compared to the standard solution
the covariance matrices, are also key-elements of a Kalmfan a 5th-order Extended Kalman filter used to estimate the
filter tuning. However, the errors made in the choice of thepeed and flux vector components of an induction motor. A
parameters of these matrices are much more related to the p@milar approach was recently proposed in [105] for a 4th-
knowledge that the designer has on the actual system ratbeter Kalman filter used to estimate mechanical quantities
than rounding errors. That is the reason why these points wif a synchronous motor. In this case the implementation was
not be discussed further in this section. achieved in a Field Programmable Gate Array (FPGA). How-
ever, a direct consequence of these searches or spedfiaitie
B. Effects of computational roundoff errors on Kalman filtef® matrices involved in the filtering process is an increzfse
the development time.

performances )
To reduce the computational cost, the KF can also be

Since the ea_rly ages Of the Kalman filter,_ engir_leers ha¥ﬁbdivided into parallel KFs, so called “multi-stage Kalma
observed the high sensitivity of the Kalman filter with raxj;arﬁlter,, or “inter-connected Kalman filter”. In 1969, Friedidl

to th_e roundp ff ermors in the_ computatlon Of_ the _co_vanan(ﬁ%] introduced for the first time a two-stage Kalman esti-
matrices, which are the solution of a matrix Riccati difface mator. The main idea is to decouple the Kalman filter into

equation [11]. Indeed, due to roundoff errors, this matax c two parallel filters: a full-order filter and another one for

lose its symmetry and can aIso_have_ a negative eigenval augmented state. The computational cost is reduced by
A”_ thesg phenomena have a o:lrectdlmpact;t on the Kalm%BTputing two small inter-connected Kalman filters rather
gain and, as a consequence, slow down the convergencgal, o 1| kaiman filter although the algorithms are perfedm

the estimator. One way to make the numerical solution of tl%%quentially Therefore, the two-stage Kalman estimatm h
Riccati equation more robust against roundoff errors iss® Usdded a néw dimensibn to the design of algorithms and
factorization methods (Cholesky or modified Cholesky faa%rchitectures

decomposition). These methods are also known as SQuarg iagland’s filter is devoted to the estimation of the stdte o

roqt fllte_rlng._ Several decomposm_ons_ haYe be<_en PropoSgfinear process in the presence of a constant but unknown bia
which dlffgr in the way the factorization IS achieved [11]vfect0r; S0 many researchers have contributed to this area in
The additional cost in terms of computational Iogd. has Qf yer to extend this approach [107]-[110]. In 1999, Hsieth an
course to be taken mtq acc_oun.t [1,93]’ but the gain in erMisien [108] proposed an optimal two-stage Kalman estimator
of robustness of the filter is S|gn|f|cant_. In a recer_lt PaP§at recovered the performance of the regular Kalman filter.
[69], the authors have compared the implementation Ofﬂ'lis modified Kalman filter is “optimal” in the sense that

sensorless PMSM o_lrive ona I(_)W cost 32b fixed-pointTI_ DSfhe equations are mathematically equivalent to the regular
(TMS320F2812) using three different square root algor#hmy g, ations of the Kalman filter. Later, this optimal two-gtag
It has been demonstrated that the Carlson-Schmidt-GivgAg,.an estimator has been extended to general non-linear

algorithm offers the best compromise between performancb%ﬁstems [110]

and execuyon tw_ne. ) ) L Effective implementation of interconnected KF in the AC
As mentioned in the introduction, numerical issues can al§g; o community are related to sensorless speed controk-of i

be addressed by using powerful hardware architectures, Thi,otion machines [83] and fault-tolerant control of pereran
an accurate implementation of a Kalman filter on a floating;;ﬁagnet machines [65]
t

point DSP is also another natural way to reduce the impac
of computational roundoff errors [40], but the counterpaErt  \inimization of the execution time

using such a processor is a significant increase of the égacut T .
time and an increase of the hardware cost. _ Nowada)_/s, mos_t of the digital |mple_mentat|ons of Kalman
filters for industrial systems are using DSP components.
) ) Indeed, these components are well-adapted to intensive ma-
C. Reduction of the computational load trix/vector computation by integrating a multiply and aecu
The computational load of a Kalman filter is an importantulate ALU. Thus, in [73] was presented one of the first
issue for at least two main reasons: the number of aritDbSP-based implementations of a Kalman filter for sensorless
metic operations to be executed at each sampling peripgrmanent magnet synchronous drive. A 4th-order EKF was
which is in O(n?®) [104], and the nature of the operationsmplemented in a fixed-point TI TMS 320C25, with a total
(additions and multiplications of matrices and most of albkxecution time equal t@83.5 us. Around eight years later,
one matrix inversion). Therefore, researchers have rigturaBolognani et al. [40] implemented a similar algorithm on a
tried to reduce the computing load by taking benefits @fhuch more powerful floating-point TI DSP in oniy3 us.
the specificities of the matrices involved in the algorithm However, in order to drastically decrease the executioe tim
(symmetries, sparsity). Thus, in [56], the authors havelred of such complex estimators, designers have no other options
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than parallelizing the tasks that can be executed condlyrenARM9 processor along with a dense FPGA fabric (tens of
Along this line, since the early nineties, some authorspsed thousands of logic cells, hundreds of DSP units and memory
systolic array implementations of the Kalman filter [111]blocks). The design challenge in this case is to find an
[112]. A systolic architecture consists in a highly regulaoptimized partitioning between the tasks to implement in
parallel, pipelined and expandable array of simple opesatsoftware and those to implement in hardware. Along this
with only local data transfers. Based on advanced concefitee, a Hw/Sw partitioning of a EKF for drive applications
of applied mathematics, the proposed systolic arrays wegptimized by a genetic algorithm has been recently predente
potentially powerful (with high computing density), hovegv in [116]. One of the main interest of this study was to
only a few implementations were actually achieved. Thistegrate heterogeneous constraints at the early stagée of
was due to the necessity of implementing systolic arrays aptimized partitioning process. These constraints ineldth
dedicated silicon components (Application Specific Inidgd control constraints (phase margin and bandwidth of therobnt
Circuit, ASIC) which are known to be very expensive soloops) and hardware constraints (resources of the FPGAcfabr
lutions. Besides, they were also found to be poorly flexiblmemory space).

and as a consequence difficult to re-use in other applicatic L)
than the one it was designed for. However, a renewal of tf| | ; io -
approach is possible due to the ever increasing capaaities| ° ‘ |
terms of resources of FPGAs and their flexible developme
tools.

Indeed, with FPGAs, designers have the possibility to gas | ,
implement a dedicated hardware architecture that mattiees A | \
salient features of an algorithm. Thus, significant reaucof |« DSP N
execution time can be achieved [113]. The first implemeonati \ \\
of a Kalman filter in an FPGA was published in [114]. I1]* N
was designed as a co-processor, also termed as hardv \
accelerator. It was applied to a 4th-order multi-trackindar |* AN
system. The obtained execution time was equal to 6nrfys. B
Even if the model of the studied plant was quite simplet
the result in terms of execution time is by far lower than
any programmed solution. This was due to the design gff'c'r
a fully hardware parallel architecture. Implementing a -ded
icated hardware parallel architecture is the main advantag
of using FPGAs compared to processor solutions in order
to accelerate computation. Besides, this kind of hardware
architecture can now be easily programmed using HardwareThis paper has summarized the research efforts made over
Description Languages (HDL) or directly from Simulink viathe past two decades about the application and the digital
the use of specific toolboxes (DSP Builder from Altera omplementation of Kalman filters in a significant number
SysGenerator from Xilinx). In [115], authors presented ansf industrial fields. In summary, one of the main issues
tested experimentally an FPGA-based extended Kalman filtsfr this recursive state estimator was the computational loa
for a sensorless synchronous motor drive. The EKF executi@yuirement. Therefore, two research directions have Ignain
time is equal t02.8us only on a low-cost Spartan 6 FPGAbeen investigated. The first one, started in the 70s, focused
In addition, it was also demonstrated that the reductiorhef ton factorization methods and fast algorithms. This researc
speed estimation time increases the bandwidth of the speeask primarily motivated by aerospace applications. Therséc
loop, as can be seen on Fig. 8. This gain is all the moa@proach, which appeared later, focused on the design and
important that the base speed of the motor is high, as inadircrimplementation of highly sophisticated numerical arcttitees
applications. embedded on FPGAs.

Finally, full hardware or software implementations of the Nowadays, the integration of Kalman filters or variants
Kalman filter are not the only solutions available todayded, of the Kalman filter (i.e. unscented Kalman filters, etc) into
designers have also the possibility to take benefits of tidustrial systems is not so widespread for two main reasons
recent, very powerful and low cost FPGA-based Systerfie complexity of the algorithm compared to the classical
on-Chip platforms to implement sophisticated Kalman filtdruenberger observers and the computational load requireme
algorithms. Since recently, it is now possible to find on thi® be embedded on a low computational power processor.
market a component which includes a dual hardware cdr®wever, thanks to the availability of new low-cost and tygh

\
)

[

8. Magnitude of the frequency response of the speeddba200 kVA
aft Brushless Synchronous Starter/Generator.

VII. CONCLUSION



elaborate processors (such as floating point DSPs targeted[z]
real-time process control applications, System-on-Cheps),
the Kalman filter is likely to spread more and more and still
has a bright future ahead of it.

ACKNOWLEDGMENT

(21]

The authors would like to express their gratitude to thgpy)
authors from papers [66], [69], [80] for sending figures. We

would like to thank O. Ondel, E. Boutleux, E. Blanco, G.
Clerc, V. Smidl, Z. Peroutka, D. Di Domenico, Y. Creff, E.

Prada, P. Duchéne, J. Bernard, V. Sauvant-Moynot.

(1]

(2]

(3]
(4]
(5]
(6]

[15]

(16]

(17]

(18]

(19]

REFERENCES

F. Auger, J. Guerrero, M. Hilairet, S. Katsura, E. Mons@s, and
T. Orlowska-Kowalska, “Introduction to the special seation indus-
trial applications and implementation issues of the Kalrigr,” IEEE
Trans. Ind. Electron.vol. 59, no. 11, pp. 4165-4168, Nov. 2012.
R. Kalman, “A new approach to linear filtering and preiat prob-
lems,” Transactions of the ASME - Journal of basic Engineering.
82 (series D), pp. 35-45, 1960.

B. Anderson and J. Mooréptimal Filtering New Jersey: Prentice-
Hall, 1979.

R. Bucy and P. Joseplfiltering for Stochastic Processes with Appli-
cations to Guidance New Jersey: John Wiley & Sons, Inc., 1968.

R. Lewis, Optimal Estimation with an Introduction to Stochastic

Control Theory John Wiley & Sons, Inc., 1986.

S. Katsura, K. Irie, and K. Ohishi, “Wideband force caitrby

position-acceleration integrated disturbance obsérEE Trans. Ind.
Electron, vol. 55, no. 4, pp. 1699-1706, Apr. 2008.

F. Auger, O. Mansouri-Toudert, and A. Chibah, “Designaafvanced
resolver-to-digital converters,” iRroc. Electrimacs Jun. 2011.

S. Bittanti and M. Savaresi, “On the parametrization aedign of an
extended Kalman filter frequency trackelZEE Trans. on Automatic
Control, vol. 45, no. 9, pp. 1718-1724, Sep. 2000.

A. Gelb, J. Kasper, R. Nash, C. Price, and A. Sutherlafdgplied

optimal estimation MIT Press, 1974.

D. Simon,Optimal State Estimation: Kalman, H Infinity, and Nonlinear

Approaches New Jersey: John Wiley & Sons, Inc., 2006.

M. Grewal and A. AndrewsKalman theory, theory and practice using
MATLAB 3rd ed. John Wiley & Sons, Inc., 2008.

E. Sontag, “Rudolf E. Kalman and his student§EE Control Syst.
Mag. vol. 30, no. 2, pp. 87-103, Apr. 2010.

M. Grewal and A. Andrews, “Applications of Kalman filieg in
aerospace 1960 to the presefiEEE Control Syst. Magvol. 30, no. 3,
pp. 69-78, Jun. 2010.

J. Holtz, “Sensorless control of induction machinesithvor without
signal injection ?"IEEE Trans. Ind. Electronvol. 53, no. 1, pp. 7-30,
feb. 2006.

P. Acarnley and J. Watson, “Review of position-seress| operation
of brushless permanent-magnet machin#sEE Trans. Ind. Electron.
vol. 53, no. 2, pp. 352-362, apr. 2006.

J. Finch and D. Giaouris, “Controlled ac electricaives,” IEEE Trans.
Ind. Electron, vol. 55, no. 2, pp. 481-491, feb. 2008.

M. Vogelsbergera, S. Grubic, T. Habetler, and T. WolhatUsing
pwm-induced transient excitation and advanced signalgssing for
zero-speed sensorless control of AC machinéEEE Trans. Ind.
Electron, vol. 57, no. 1, pp. 365-374, Jan. 2010.

T. Orlowska-Kowalska and M. Dybkowski, “Stator curtdrased
MRAS estimator for wide range speed-sensorless inducti@iom
drive,” IEEE Trans. Ind. Electron.vol. 57, no. 4, pp. 1296-1308, apr.
2010.

F. Poulain, L. Praly, and R. Ortega, “An observer forrpanent magnet
synchronous motors with currents and voltages as only measnts,”
in 47th IEEE Conference on Decision and ContrBlec. 2008, pp.
5390-5395.

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

12

R. Ortega, L. Praly, A. Astolfi, L. Junggi, and N. Kwanghe'Esti-
mation of rotor position and speed of permanent magnet sgnols
motors with guaranteed stabilitylEEE Transactions on Control Sys-
tems Technologyvol. 19, no. 3, pp. 601-614, May 2008.

J. Lee, J. Hong, K. Nam, R. Ortega, L. Praly, and A. Astolfi
“Sensorless control of surface-mount permanent magnethsygnous
motors based on a nonlinear observéEEE Transactions on Power
Electronics vol. 25, no. 2, pp. 290-297, Feb. 2010.

D. Shah, G. Espinosa-Pérez, R. Ortega, and M. Hilaffet, asymp-
totically stable sensorless speed controller for norestlpermanent
magnet synchronous motordyit. J. Robust. Nonlinear Controlol.
doi: 10.1002/rnc.2910, Oct. 2012.

L. Salvatore, S. Stasi, and L. Tarchioni, “A new EKF-edsalgorithm
for flux estimation in induction machinedEEE Trans. Ind. Electron.
vol. 40, no. 5, pp. 496-504, oct. 1993.

Y.-R. Kim, S.-K. Sul, and M.-H. Park, “Speed sensorlesstor control
of induction motor using extended Kalman filtetEEE Trans. Ind.
Appl, vol. 30, no. 5, pp. 1225-1233, sep./oct. 1994.

L. Zai, C. DeMarco, and T. Lipo, “An extended Kalman filegpproach
to rotor time constant measurement in PWM induction motaredt”
IEEE Trans. Appl. Ind.vol. 28, no. 1, pp. 96-104, Jan/Feb 1992.
L. Loron and G. Laliberté, “Application of the extendélman filter
to parameters estimation of induction motors,”Aroc. 5th European
Conf. on Power Electronics and Applicationol. 5, Brighton , UK,
Sep. 1993, pp. 85-90.

K. Shi, T. Chan, Y. Wong, and S. Ho, “Speed estimationrofrluction
motor drive using an optimized extended Kalman filtéEEE Trans.
Ind. Electron, vol. 49, no. 1, pp. 124-133, feb. 2002.

M. Barut, O. S. Bogosyan, and M. Gokasan, “EKF basedreston
for direct vector control of induction motorsih Proc. IEEE-IECON
Annu. Meetingvol. 2, pp. 1710-1715, 2002.

B. Akin, U. Orguner, A. Ersak, and M. Ehsani, “A comparatstudy
on non-linear state estimators applied to sensorless aesdiMRAS
and Kalman filter,”in Proc. IEEE-IECON Annu. Meetingrol. 3, pp.
2148-2153, 2004.

Y. Wengiang, J. Zhengchun, and X. Qiang, “A new algamitfor flux
and speed estimation in induction machin&” Proc. IEEE-ICEMS
Annu. Meetingvol. 2, pp. 698-701, 2001.

G. Qiongxuan and F. Zhiyue, “Speed estimated for vectmtrol of
induction motor using reduced-order extended Kalman filtarProc.
IEEE-PIEMC Annu. Meeting, Beijing, Chipavol. 1, pp. 138-142,
2000.

C. EL-Moucary, G. Garcia-Soto, and E. Mendes, “Robuton flux,
rotor resistance and speed estimation of an induction mactsing
the extended Kalman filterProc. IEEE-ISIE Annual Meeting, Bled,
Slovenia vol. 2, pp. 742-746, 1999.

M. Barut, S. Bogosyan, and M. Gokasan, “An EKF-basedregbr for
the speed sensorless vector control of induction mot&igttr. Power
Compon. Systvol. 33, no. 7, pp. 727-744, jul. 2005.

I. Ha and S. Lee, “An online identification method for battator and
rotor resistances of induction motors without rotatiomansducers,”
IEEE Trans. Ind. Electron.vol. 47, no. 4, pp. 842-853, aug. 2000.
M. Barut, S. Bogosyan, and M. Gokasan, “Speed-sersoestimation
of induction motors using extended Kalman filterlEEEE Trans. Ind.
Electron, vol. 54, no. 1, pp. 272-281, feb. 2007.

M. Barut, R. Demir, E. Zerdali, and R. Inan, “Real-timmaplementation
of bi input-extended Kalman filter-based estimator for sbgensorless
control of induction motors,"IEEE Trans. Ind. Electron.vol. 59,
no. 11, pp. 4197-4206, Nov. 2012.

L. Jones and J. Lang, “A state observer for the permanesgnet
synchronous motor,IEEE Trans. Ind. Electron.vol. 36, no. 3, pp.
374-382, aug. 1989.

R. Sepe and J. Lang, “Real-time observer-based (aggptontrol of
a permanent-magnet synchronous motor without mechargceoss,”
IEEE Trans. Ind. App).vol. 28, no. 6, pp. 1345-1352, nov./dec. 1992.
J. Kim and S. Sul, “New approach for the low-speed openabf
PMSM drives without rotational position sensortfEE Trans. Power
Electron, vol. 11, no. 2, pp. 512-519, may 1996.



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

(60]

S. Bolognani, R. Oboe, and M. Zigliotto, “Sensorlesdl-fligital

PMSM drive with EKF estimation of speed and rotor positiolisEE

Trans. Ind. Electron.vol. 46, no. 1, pp. 1-8, feb. 1999. [61]
M. Boussak, “Implementation and experimental ingsgion of sen-
sorless speed control with initial rotor position estiroatifor interior
permanent magnet synchronous motor driviEEE Trans. Power [62]
Electron, vol. 20, no. 6, pp. 1413-1422, nov. 2005.

Y. Kim, “High performance IPMSM drives without rotatial position
sensors using reduced-order EKREEE Trans. Energy Convers. [63]
vol. 14, no. 4, pp. 868-873, dec. 1999.

M. Huang, A. Moses, F. Anayi, and X. Yao, “Reduced-ordieear
Kalman filter (RLKF) theory in application of sensorless toh for [64]
permanent magnet synchronous motor (PMSM)¢nf. Rec., IEEE-
ICIEA, pp. 1-6, 2006.

X. Xi, Z. Meng, L. Yongdong, and L. Min, “On-line estimah of [65]
permanent magnet flux linkage ripple for PMSM based on a Kalma
filter,” in Conf. Rec., IEEE-IECON Annual Megbp. 1171-1175, 2006.

Y. Shi, K. Sun, L. Huang, and Y. Li, “Online identificaticof permanent  [66]
magnet flux based on extended Kalman filter for IPMSM drivehwit
position sensorless controlZEE Trans. Ind. Electronvol. 59, no. 11,

pp. 4169-4178, Nov. 2012.

Z. Xu and M. Rahman, “Comparison of a sliding observed an [67]
a Kalman filter for direct-torque-controlled ipm synchroasomotor
drives,” IEEE Trans. Ind. Electron.vol. 59, no. 11, pp. 4179-4188,

Nov. 2012. [68]
J. Ji and S. Sul, “Kalman filter and LQ based speed cdetrdbr
torsional vibration suppression in a 2-mass motor driveesys IEEE

Trans. Ind. Electron.vol. 42, no. 6, pp. 564-571, dec. 1995.

K. Szabat, T. Orlowska-Kowalska, and K. Dyrcz, “ExteddKalman  [69]
filters in the control structure of two-mass drive systeBuill. Polish
Academy of Science, Tech. Sebl. 54, no. 6, pp. 315-325, 2006.

K. Szabat and T. Orlowska-Kowalska, “Performance iovement of  [70]
industrial drives with mechanical elasticity using noekn adaptive
Kalman filter,” IEEE Trans. Ind. Electron.vol. 55, no. 3, pp. 1075—
1084, mar. 2008. [71]
S. Carriere, S. Caux, and M. Fadel, “Cross-synthesishsferver and
controller for a two-mass uncertain system,"Rroc. 18th IFAC World
Congress Sep. 2011.

S. Carriere, S. Caux, M. Fadel, and F. Alonge, “Senssrleontrol  [72]
of uncertain load using RFK tuned with an evolutionary altpon an
p-analysis,” inProc. IFAC System Structure and Contr@011.

K. Szabat and T. Orlowska-Kowalska, “Application ofettKalman  [73]
filters to the high-performance drive system with elastiupimg,”

IEEE Trans. Ind. Electronvol. 59, no. 11, pp. 4226-4235, Nov. 2012.

E. Laroche, E. Sedda, and C. Durieu, “Methodologicaights for

online estimation of induction motor parametet&EE Trans. Control  [74]
Syst. Technal.vol. 16, no. 5, pp. 1416-1427, Sep. 2008.

D. Atkinson, P. Acarley, and J. Finch, “Observers foduetion motor

state and parameter estimatioffEE Trans. Appl. Ind.vol. 27, no. 6,

pp. 1119-1127, nov/dec 1991.

E. Foulon, C. Forgez, and L. Loron, “Resistances edtonawith an  [75]
extended Kalman filter in the objective of real-time thermmalnitoring

of the induction machine,/IET Electric Power Applicationsvol. 1,

no. 4, pp. 549-556, Jul. 2007.

M. Hilairet, F. Auger, and C. Darengosse, “Two efficiétdlman filters  [76]
for flux and velocity estimation of induction motorsiEEE Power
Electronics Specialists Conferenosl. 2, pp. 891-896, Jun. 2000.

S. Bolognani, L. Tubiana, and M. Zigliotto, “Extendedalan filter  [77]
tuning in sensorless PMSM drivedEEE Trans. Appl. Ind.vol. 39,

no. 6, pp. 1741-1747, nov/dec 2003.

R. Prakash, S. V. Rao, and J. Frank, “Robust control ofSi-fed
induction motor drive systemJEEE Trans. Appl. Ind.vol. 23, no. 4,  [78]
pp. 610-616, Jul. 1987.

N. Salvatore, A. Caponio, F. Neri, S. Stasi, and G. Clesc&Opti-
mization of delayed-state Kalman-filter-based algorithiendifferential ~ [79]
evolution for sensorless control of induction motod&EE Trans. Ind.
Electron, vol. 57, pp. 385-394, jan. 2010.

S. Julier, J. Uhlman, and H. Durrant-Whyte, “A new apgrbo for

13

filtering nonlinear systems/EEE American Control Conference ACC
vol. 3, pp. 1628-1632, Jun. 1995.

B. Akin, U. Orguner, and A. Ersak, “State estimation ofiiiction
motor using unscented Kalman filtedEEE Conference on Control
Applications CCAvol. 2, pp. 915-919, Jun. 2003.

N. Tudoroiu, M. Zaheeruddin, V. Cretu, and E. TudordidM-UKF
versus frequency analysisJEEE Industrial Electronics Magazine
vol. 4, no. 3, pp. 7-18, Sep. 2010.

S. Jafarzadeh, C. Lascu, and M. Fadali, “State estimatf induction
motor drives using the unscented Kalman filtef?EE Trans. Ind.
Electron, vol. 59, no. 11, pp. 4207-4216, Nov. 2012.

S. Simani, “Identification and fault diagnosis of a slatad model of
an industrial gas turbinefEEE Transactions on Industrial Informatics
vol. 1, no. 3, pp. 202-216, Aug. 2005.

A. Akrad, M. Hilairet, and D. Diallo, “Design of a faulblerant
controller based on observers for a PMSM driviEEE Trans. Ind.
Electron, vol. 58, no. 4, pp. 1416-1427, Apr. 2011.

0. Ondel, E. Boutleux, E. Blanco, and G. Clerc, “Couglipattern
recognition with state estimation using Kalman filter foulfadiagno-
sis,” IEEE Trans. Ind. Electron.vol. 59, no. 11, pp. 4293—-4300, Nov.
2012.

M. Ghanes and Z. Gang, “On sensorless induction motdarestr
Sliding-mode observer and output feedback controllEEEE Trans.
Ind. Electron, vol. 26, no. 9, pp. 3404-3413, Sep. 2009.

D. Zaltni, M. Ghanes, J. Barbot, and M. Abdelkrim, “Symenous
motor observability study and an improved zero-speed iposéstima-
tion design,” inProc. 49th IEEE Conference on Decision and Control
(CDC), 2010, pp. 5074-5079.

V. Smidl and Z. Peroutka, “Advantages of square-rod¢esed Kalman
filter for sensorless control of AC drivesEEE Trans. Ind. Electron.
vol. 59, no. 11, pp. 4189-4196, Nov. 2012.

M. Hilairet and F. Auger, “Speed sensorless control afcamotor via
adaptive filters,"IET Proc. Electric Power Applicationsvol. 1, no. 4,
pp. 601-610, Jul. 2007.

R. V. der Merwe and E. A. Wan, “The square-root unsceriatinan
filter for state and parameter-estimatiohEZEE International Confer-
ence on Acoustics, Speech, and Signal Processiolg 6, pp. 3461—
3464, May 2001.

M. Grewal and J. Kain, “Kalman filter implementation tvitmproved
numerical properties,JEEE Trans. Autom. Contrplol. 55, no. 9, pp.
2058-2068, Sep. 2010.

R. Dhaouadi, N. Mohan, and L. Norum, “Design and impletagon
of an extended Kalman filter for the state estimation of a peent
magnet synchronous mototZEE Trans. Power Electronvol. 6, no. 3,
pp. 491-497, Jul. 1991.

K. D. Brabandere, T. Loix, K. Engelen, B. Bolsen, J. V.yKas,
J. Driesen, and R. Belmansa, “Design and operation of a gheked
loop with Kalman estimator-based filter for single-phaspliaptions,”
in Proc. IEEE Int. Conf. of the IEEE Ind. Electron. Society (EEE
IECON’06), Paris, France, Nov. 2006, pp. 525-530.

H. Beltran, J. Zabalza, C. A. no, E. Belenguer, E. Peaer, N. Apari-
cio, “Improved Kalman filter based inverter control for retdan of
low order current harmonics due to isolation transformenenewable
energy sources,” ifProc. ICREPQ 2009, pp. 1-6.

S. Santhanagopalana and R. E. White, “Online estimatiothe state
of charge of a lithium ion cell,"Journal of Power Sourcesho. 161,
pp. 1346-1355, 2006.

B. Bhangua, P. Bentley, D. A. Stone, and C. M. Binghamotikhear
observers for predicting state-of-charge and state-afteof lead-
acid batteries for hybrid-electric vehiclesEEE Trans. Veh. Technol.
vol. 54, no. 3, pp. 783-794, May 2005.

G. Plett, “Extended Kalman filtering for battery managmt systems
of LiPb-based HEV battery packs, parts 1, 2 andJ®{irnal of Power
Sources 2004.

J. Kim and B. Cho, “State-of-charge estimation andest#thealth
prediction of a Li-lon degraded battery based on an EKF costbi
with a per-unit system,JEEE Transactions on Vehicular Technolegy
vol. 60, no. 9, pp. 4249-4260, Nov. 2011.



(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

D. Di-Domenico, Y. Creff, E. Prada, P. Duchéne, J. Beinaand
V. Sauvant-Moynot, “A review of approaches for the desigr_ision
BMS estimation functions,RHEVE International scientific conference
on hybrid and electric vehiclepp. 1-8, Dec. 2011.

W. He, N. Williard, C. Chaochao, and M. Pecht, “State tlage
estimation for electric vehicle batteries under an adepfitering

[101]

[102]

framework,” IEEE Conference on Prognostics and System Healtfi03]

Management (PHM)pp. 1-5, May 2012.

R. Xiong, H. He, F. Sun, and K. Zhao, “Evaluation on state
charge estimation of batteries with adaptive extended Halrfilter
by experiment approachlEEE Transactions on Vehicular Technology
vol. PP, no. 99, 2013.

M. Hilairet, F. Auger, and E. Berthelot, “Speed and rdtax estimation
of induction machines using a two-stage extended Kalmaaerfilt
Automatica vol. 48, no. 8, pp. 1819-1827, Aug. 2009.

L. Glielmo, R. Setola, and F. Vasca, “An interlaced exted Kalman
filter,” IEEE Transactions on automatic controlol. 44, no. 8, pp.
1546-1549, Aug. 1999.

F. Chen and C. Hsieh, “Optimal multistage Kalman estorg’ IEEE
Trans. Autom. Controlvol. 45, no. 11, pp. 2182-2188, Aug. 2000.
J. Manton, V. Krishnamurthy, and H. Poor, “James-S#tate filtering
algorithms,” IEEE Trans. Signal Processvol. 46, no. 9, pp. 2431-
2447, Sep. 1998.

M. Ngrgaard, N. Poulsen, and O. Ravn, “New developméantstate
estimation for nonlinear system&iutomatica vol. 36, pp. 1627-1638,
2000.

F. Faubel, J. McDonough, and D. Klakow, “The split and rgee
unscented gaussian mixture filtelZEE Signal Process. Lettvol. 16,
no. 9, pp. 786-789, Sep. 2009.

I. Arasaratnam, S., and T. Hurd, “Cubature Kalman filtgr for
continuous-discrete systems: Theory and simulatiofSEE Trans.
Signal Process.vol. 58, no. 10, pp. 4977-4993, Oct. 2010.

Y. Shmaliy, “An iterative Kalman-like algorithm ignimrg noise and
initial conditions,” IEEE Trans. Signal Processvol. 59, no. 6, pp.
2465-2473, Jun. 2011.

M. Dissanayake, P. Newman, S. Clark, H. Durrent-Why&nd
M. Csorba, “A solution to the simultaneous localization amdp
building,” IEEE Trans. Robot. Automvol. 17, no. 3, pp. 229-241,
Jun. 2001.

J. Lee, M. L. K. Son, J. Choi, S. Han, and M. Lee, “Locdii@a of
a mobile robot using the image of a moving obje¢EEE Trans. Ind.
Electron, vol. 50, no. 3, pp. 612—619, Jun. 2003.

M. Chueh, Y. A. Yeung, K. Lei, and S. Joshi, “Following rdeoller
for autonomous mobile robots using behavioral cUBSEZE Trans. Ind.
Electron, vol. 55, no. 8, pp. 3124-3132, Aug. 2008.

L. Menegaldo, G. Ferreira, M. Santos, and R. Guerat@vdopment
and navigation of a mobile robot for floating production age and
offloading ship hull inspection,IEEE Trans. Ind. Electron.vol. 56,
no. 9, pp. 3717-3722, Sep. 2010.

H. Cho and S. Kim, “Mobile robot localization using béibs chirp-
spread-spectrum ranginglEEE Trans. Ind. Electron.vol. 57, no. 8,
pp. 2826-2835, Aug. 2010.

Y. Motai and A. Kosaka, “Hand-eye calibration applieal tiewpoint
selection for robotic vision JEEE Trans. Ind. Electronvol. 55, no. 10,
pp. 3731-3741, Oct. 2008.

S. Won, F. Golnaraghi, and W. Melek, “A fastening toaldking system
using an IMU and a position sensor with Kalman filters and ajuz
expert system,IEEE Trans. Ind. Electron.vol. 56, no. 5, pp. 3897—
3905, Oct. 2009.

C. Mitsantisuk, S. Katsura, and K. Ohishi, “Kalmanéitbased sensor
integration of variable power assist control based on hustidfmess
estimation,”|EEE Trans. Ind. Electronvol. 56, no. 10, pp. 3897-3905,
Oct. 2009.

C. Mitsantisuk, K. Ohishi, and S. Katsura, “Estimatiosf ac-
tion/reaction forces for the bilateral control using Kahféter,” IEEE
Trans. Ind. Electron.vol. 59, no. 11, pp. 4383-4393, Nov. 2012.
S. Chen, “Kalman filter for robot vision: a surveyEEE Trans. Ind.
Electron, vol. 59, no. 11, pp. 4409-4420, Nov. 2012.

[104]

105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

14

A. Sabanovic, M. Elitas, and K. Ohnishi, “Sliding made constrained
systems control,IEEE Trans. Ind. Electron.vol. 55, no. 9, pp. 3332—
3339, sep 2008.

S. Katsura, K. Irie, and K. Ohishi, “Wideband force tmh by
position-acceleration integrated disturbance obsérEE Trans. Ind.
Electron, vol. 55, no. 4, pp. 1699-1706, apr 2008.

M. Verhaegen and P. V. Dooren, “Numerical aspects dferint
Kalman filter implementations,JEEE Trans. Autom. Contrphol. 31,
no. 10, pp. 907-917, Oct. 1986.

J. Mendel, “Computational requirements for a diserigalman filter,”
IEEE Trans. Autom. Contrphol. 16, no. 6, pp. 748-758, Dec. 1971.
L. Idkhajine and E. Monmasson, “Design methodology domplex
FPGA-based controllers - application to an EKF sensorlesgriae,”
The XIX International Conference on Electrical Machines GEM
201Q pp. 1-6, Sep. 2010.

B. Friedland, “Treatment of bias in recursive filteyjh IEEE Trans.
Autom. Contral vol. 14, no. 4, pp. 359-367, Aug. 1969.

J. Keller and M. Darouach, “Two-stage Kalman estimatgth un-
known exogenous inputs Automatica vol. 35, no. 2, pp. 339-342,
Feb. 1999.

C. Hsieh and F. Chen, “Optimal solution of the two-stagalman
estimator,”|IEEE Trans. Autom. Contrplvol. 44, no. 1, pp. 194-199,
Jan. 1999.

M. Ignagni, “Optimal and suboptimal separate-biadnian estimators
for stochastic bias,IEEE Trans. Autom. Contrplvol. 45, no. 3, pp.
547-551, Mar. 2000.

C. Hsieh, “General two-stage extended Kalman filtelSEE Trans.
Autom. Contral vol. 48, no. 2, pp. 289-293, Feb. 2003.

H.-G. Yeh, “Systolic implementation on Kalman filt¢réEEE Trans-
actions on Acoustics, Speech, and Signal Processialy 36, no. 9,
pp. 1514-1517, Sep. 1988

S.-Y. Kung and J.-N. Hwang, “Systolic array designs f¢alman
filtering,” IEEE Transactions on Signal Processingl. 39, no. 1, pp.
171-182, Jan. 1991.

E. Monmasson, L. Idkhajine, M. Cirstea, |. Bahri, A.san, and
M. Naouar, “FPGAs in industrial control applicationdEEE Trans-
actions on Industrial Informaticsvol. 7, no. 2, pp. 224-243, May
2011.

C. Lee and Z. Salcic, “High-performance FPGA-basedlé@mentation
of Kalman filter,” Microprocessors and Microsystemeol. 21, no. 4,
pp. 257-265, Dec. 1997.

L. Idkhajine, E. Monmasson, and A. Maalouf, “Fully FR®ased
sensorless control for synchronous AC drive using an e ithiman
filter,” IEEE Trans. Ind. Electron.vol. 59, no. 10, pp. 3908-3918, Oct.
2012.

I. Bahri, L. Idkhajine, E. Monmasson, and M. Benkhelif‘Optimal
hardware/software partitioning of a system on chip FPG#éeblasen-
sorless ac drive current controllefathematics and Computers in
Simulation Jun. 2012.

Francois Auger was born in Saint-Germain-en-

Laye, France, in 1966. He received the Engineer
degree and the D.E.A. in signal processing and au-
tomatic control from the Ecole Nationale Supérieure
de Mécanique de Nantes in 1988, and the PhD from
the Ecole Centrale de Nantes in 1991. From 1993
to 2012, he was “Maitre de Conférences” (assistant
professor) at the IUT de Saint-Nazaire (Université
de Nantes). He is now full professor at the same
place. His current research interests include auto-
matic control of power systems, spectral analysis and

time-frequency representation. Dr. Auger is a member ofGH&720 CNRS
“Information, Signal, Images et ViSion”.



#ii

Mickaél Hilairet (M’'09) was born in Les Sables

d’Olonne, France, in 1973. He received electrical
engineering degree from the Hautes Etudes Indus-
trielles school, Lille, France, in 1997, the M.Sc. in

electrical engineering from the National Polytechnic
Institute of Toulouse, France, in 1998 and the Ph.D.
degree in electrical engineering from the University
of Nantes, St-Nazaire, France, in 2001. From 2001 to
2003, he was an engineer in Thalés-Communication
and Geral, France. From 2004 to 2012, he joined
the university of Paris-South XI and the Laboratoire

15

Eric Monmasson (M’'96-SM’'06) received the
Ing. and Ph.D. degrees from the Ecole Na-
tionale Supérieure d’'Ingénieurs d’Electrotechnique
d’Electronique d’Informatique et d’Hydraulique de
Toulouse (ENSEEIHT), Toulouse, France, in 1989
and 1993, respectively. Eric Monmasson is currently
a full professor and the head of the Institut Uni-
versitaire Professionnalisé de Génie Electrique et
d’'Informatique Indutrielle (IUP GElIl), University of
Cergy-Pontoise, Cergy-Pontoise, France. He is also
with the Systémes et Applications des Technologies

de Génie Electrique de Paris, as as an Assistant Professsledfical and
computer engineering. Mickael Hilairet is currently a fpitofessor at the
university of Franche-Comté. He is with the “Franche-Cor&téctronique
Mécanique Thermique et Optique - Sciences et Technologesdratory
(FEMTO-ST, UMR CNRS 6174), Belfort, France. His main reshanterests
are drives control, estimation, diagnosis and control ef fell system. He

de I'lnformation et de I'Energie laboratory (SATIE, UMR CMR029). His
current research interests include the advanced contreleatrical motors
and generators and the use of FPGAs for energy control sgstele was
the chair of the technical committee on Electronic Systemship of the
|IEEE Industrial Electronics Society (2008-2011). He isoadssmember of the
steering committee of the European Power Electronics Aaoc and the

has been Guest Editor of the IEEE TRANSACTIONS ON INDUSTRIALchair of the number one technical committee of the Inteomafi Association

ELECTRONICS Special Section: Industrial Applications dngplementation
Issues of the Kalman Filter.

Josep M. Guerrero (S'01-M'04-SM'08) received

for Mathematics and Computers in Simulation (IMACS). He e general
chair of ELECTRIMACS 2011 Conference. He is an associatedf IEEE
Transactions on Industrial Electronics and IEEE Traneastion Industrial
Informatics. He is the author or coauthor of 3 books and mbex t100
scientific papers.

- |

the B.S. degree in telecommunications engineering,
the M.S. degree in electronics engineering, and the
Ph.D. degree in power electronics from the Tech-
nical University of Catalonia, Barcelona, in 1997,

2000 and 2003, respectively. He was an Associate
Professor with the Department of Automatic Con-

trol Systems and Computer Engineering, Technical
University of Catalonia, teaching courses on digital

signal processing, field-programmable gate arrays,
microprocessors, and control of renewable energy.

In 2004, he was responsible for the Renewable Energy LadrgraEscola
Industrial de Barcelona. Since 2011, he has been a Full $¥ofewith

Teresa Orlowska-Kowalska , (M'93-SM'05) re-
ceived the Ph.D. and D.Sc. degrees from Wroclaw
University of Technology, Wroclaw, Poland, in 1976
and 1990, respectively. Since 1993, she has been a
Professor of electrical engineering and the Head of
the Division of Electrical Drives Control (presently:
the Division of Electrical Drives, Mechatronics and
Industrial Automation), the Institute of Electrical
Machines, Drives, and Measurements, Wroclaw Uni-
versity of Technology. She is the author and coauthor
of more than 300 journal and conference papers, two

the Department of Energy Technology, Aalborg Universityalbdrg East,
Denmark, where he is responsible for the microgrid reseprogram. From
2012 he is also a guest Professor at the Chinese Academyegfcgcand the
Nanjing University of Aeronautics and Astronautics. Hisearch interests
is oriented to different microgrid aspects, including poveéectronics, dis-
tributed energy-storage systems, hierarchical and catpercontrol, energy
management systems, and optimization of microgrids aaddgld minigrids.
Prof. Guerrero is an Associate Editor for the IEEE TRANSAONS ON

textbooks, one monograph and fourteen chapters in monlagréter research
interests include the mathematical modeling and micraggssaer control of
electrical drives and power electronic systems, the agiidic of modern
control methods to electrical drives, the state estimatibmduction motors
using state observers, Kalman filters, and neural netwarld, in the last few
years, neural networks and fuzzy-logic techniques appbeelectrical drives
control. Prof. Orlowska-Kowalska is a member of the EleetriEngineering

POWER ELECTRONICS, the IEEE TRANSACTIONS ON INDUSTRIAL Committee of the Polish Academy of Science, the EuropearePBlectronics

ELECTRONICS, and the IEEE Industrial Electronics Magazife has been

Guest Editor of the IEEE TRANSACTIONS ON POWER ELECTRONIC

Special Issues: Power Electronics for Wind Energy Conegarsind Power
Electronics for Microgrids, and the IEEE TRANSACTIONS ON DNS-

TRIAL ELECTRONICS Special Sections: Uninterruptible Pow®upplies
systems, Renewable Energy Systems, Distributed Generatid Microgrids,
and Industrial Applications and Implementation Issueshef Kalman Filter.
He currently chairs the Renewable Energy Systems Tech@icaimittee of
the IEEE Industrial Electronics Society.

Association, and international steering committees of & feell-known

gEuropean conferences. She is also the Board Member of tighPalsociation

of Theoretical and Applied Electrical Engineering, a mentdifethe Scientific
Editorial Board of the journal Electrical Review (Polandjpd a member
of the Scientific Editorial Board of the journal Developnernbh Electrical
Drives and Power Electronics (under supervision of the Citeenof the
Polish Academy of Sciences). Since 1997, she has been awRevid the
IEEE Transactions on Industrial Electronics and the IEEBn$actions on
Industry Applications. Since 2004, she has been an AssoEiditor for the
IEEE Transactions on Industrial Electronics.



Seiichiro Katsura (S’03-M’'04) received his B.E.
degree in system design engineering and his M.E.
and Ph.D. degrees in integrated design engineering
from Keio University, Yokohama, Japan, in 2001,
2002 and 2004, respectively. From 2003 to 2005,
he was a Research Fellow of the Japan Society
for the Promotion of Science. From 2005 to 2008,
he worked at Nagaoka University of Technology,
Nagaoka, Niigata, Japan. Since 2008, he has been
at Keio University, Yokohama, Japan. His research
interests include real-world haptics, human support

space, systems energy conversion, and electromechaniegtation systems.
Prof. Katsura received the Best Paper Award from the Instiaf Electrical

Engineers of Japan (IEEJ) in 2003, the Dr. Yasujiro Niwa @uiging

Paper Award in 2004, The European Power Electronics andeBiRower
Electronics and Motion Control Conference, (EPE-PEMC'0Bgst Paper
Award in 2008, and the 4th IEEE International Conference ammbin

System Interaction, HSI'L1 Best Paper Award in 2011. He is eni@®

Member of IEEJ, as well as a Member of the |IEEE, EPE, The Spaét
Instrument and Control Engineers (SICE), The Japan SooieMechanical

Engineers (JSME), The Japan Society for Precision EngimgeildSPE),
Robotics Society of Japan (RSJ), The Institute of Elect®ninformation

and Communication Engineers (IEICE), and the Japan SoofeGomputer

Aided Surgery (JSCAS). He has been active in the |IEEE IES. ditees as
Associate Editor of the IEEE Transactions on IndustrialcEtmics and is
a Member of Technical Committees on Sensors and Actuatacds,Motion

Control. He is an author or a co-author of more than 80 joupaglers, 170
international conference papers with review and 20 patents

16



