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Communication Schemes with Constrained

Reordering of Resources
Petar Popovski, Senior Member, IEEE, Zoran Utkovski, Member, IEEE, and Kasper F. Trillingsgaard

Abstract—This paper introduces a communication model in-
spired by two practical scenarios. The first scenario is related to
the concept of protocol coding, where information is encoded
in the actions taken by an existing communication protocol.
We investigate strategies for protocol coding via combinatorial
reordering of the labelled user resources (packets, channels) in
an existing, primary system. However, the degrees of freedom
of the reordering are constrained by the operation of the
primary system. The second scenario is related to communication
systems with energy harvesting, where the transmitted signals
are constrained by the energy that is available through the
harvesting process. We have introduced a communication model
that covers both scenarios and elicits their key feature, namely
the constraints of the primary system or the harvesting process.
We have shown how to compute the capacity of the channels
pertaining to the communication model when the resources that
can be reordered have binary values. The capacity result is valid
under arbitrary error model in which errors in each resource
(packet) occur independently. Inspired by the information–
theoretic analysis, we have shown how to design practical error–
correcting codes suited for the communication model. It turns
out that the information–theoretic insights are instrumental for
devising superior design of error–control codes.

Index Terms—Protocol coding, capacity, secondary channel,
energy harvesting.

I. INTRODUCTION

A. Motivating Scenarios

THe communication models and schemes treated in this

paper are motivated by two scenarios.

1) Secondary channel: Consider Fig. 1, where a cellular

base station (BS) serves a group of primary terminals in its

range. It is assumed that the cellular system is frame–based

(WiMax [1], LTE [2], etc.). The metadata contained in the

frame header informs the terminals how to receive/interpret

the actual data that follows. The frame header is commonly

encoded more robustly compared to the data, such that it

can be reliably received in an area that is larger than the

nominal coverage area, as depicted on Fig. 1. In such a context,

while still using the same infrastructure, we can introduce new

secondary devices, which are able to operate in the extended

coverage area. These can be e. g. machine-type devices [3],

such as sensors or actuators, that are controlled by the cellular

BS. The secondary devices are simple and have a limited
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Primary device 
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Fig. 1. Illustration of a secondary communication through protocol coding
in cellular systems. A primary device can decode any information sent by
the base station, while the secondary device has a limited functionality can
only decode the information sent by protocol coding. The range of the
primary communication system (white circle) is smaller than the range of
the secondary information (shaded circle).

functionality, capable to decode only the frame header, but

not the complex high–rate modulation used for data.

In such a setting, the BS can send reliable data to the

secondary devices in the following way. Assume that there

are F frequency channels and each of the channels can be

allocated either to primary user 0 or user 1. The actual

allocation is announced in the frame header and is received by

all devices, primary and secondary. Then the BS can encode

additional, secondary data, into the actual arrangement of the

users on the channels. For example, if F = 4 and there are

two channels allocated to each user, then the number of bits

that can be sent by reordering the users across the channels

is log2
(

4
2

)

= 2.58 [bits/frame]. However, the challenge is that

the resources available for reordering are not controlled by the

transmitter of the secondary data. The primary system sched-

ules the resources to the primary users based on criteria that

are independent of the secondary communication. Therefore,

the number of channels s ≤ F allocated to user 1 in a given

frame is a constraint imposed by the primary system. The

key question treated in this paper is how to encode secondary

information by reordering the resources (users to channels),

provided that the primary system provides a constraint through

the random choice of s.

2) Energy harvesting: This is a class of systems in which

the energy that is available for communication is supplied

through a process of harvesting, such that the energy supply is

dependent on external factors. Consider the setting on Fig. 2,

where communication is organized in frames of length F . The
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Fig. 2. Communication system with energy harvesting and ON/OFF
signaling. The frame size if F = 5.

system uses ON/OFF modulation, such that the symbol ’ON’

or ’1’ consumes a single quantum of energy, while the symbol

’OFF’ or ’0’ does not consume energy. The value of F is

chosen to correspond to the size of the energy buffer, such

that in a given frame the transmitter can harvest between 0
and F energy quanta. In this paper we assume that all the

energy quanta harvested in a given frame must be used in the

next frame; see the discussion in Section V. The transmitter

sends data by ordering the s ON symbols in the frame in one

of the
(

F
s

)

possible ways. Since s is externally constrained and

can even be random, the challenge is similar to the secondary

communication: to encode information through reordering, but

under a constraint.

B. Related Work and Contributions

Models of communication with reordering of resources and

ideas related to secondary communication have appeared be-

fore in various contexts and under different names. to describe

the essence of those ides, we use the term protocol coding:

encode information in the actions taken by a certain (existing)

communication protocol. An early work that mentions the

possibility to send data by modulating the random access

protocol is [4], but in a rather “negative” context, since the

model used explicitly prohibits to decide the protocol actions

based on user data. The seminal work [5] uses a form of

protocol coding, as information is modulated in the arrival

times of data packets. More recent works on possible encoding

of information in relaying scenarios through protocol–level

choice of whether to transmit or receive is presented in [6], [7]

and, [8]. At a conceptual level, protocol coding bridges infor-

mation theory and networking [9]. The idea to send data by

reordering packets is certainly not new and has been presented

in several works [10], [11], [12]. However, a distinction for our

work is the constraint put on the reordering, which gives rise

to completely novel communication strategies. The practical

coding strategies are related to the frequency permutation

arrays for power line communications [13], [14].

Communication systems with energy harvesting is an

emerging research area. In [15], [16], [17], [18] the authors

describe continuous-time systems with energy harvesting and

compute offline transmission schemes that are optimal in terms

of throughput or minimization of the time for completing a

transmission. Slot-based energy harvesting systems with an

infinite-capacity battery are treated in [19], where the authors

use an information-theoretic model and introduce the save-

and-transmit scheme, which is proved to achieve the capacity

of the AWGN channel.

Preliminary results of this work have appeared in [20]

and [21]. In [20] we have introduced the secondary channel,

assuming that the primary packets pass through an erasure

channel, while in [21] we have used the Z–channel. In

this paper we present a general communication model that

corresponds to the two motivating scenarios. We relate the

model to the channels with causal side information at the

transmitter (CSIT) [22]. However, using the specific features

of the communication model, we provide an explicit character-

ization of the capacity-achieving strategies for general binary-

input memoryless channels. We then show how the insights

from the information-theoretic analysis can be used to devise

practical coding strategies, based on trellis codes. Besides

the two described scenarios, the communication model gives

rise to communication channels whose analysis goes beyond

the purpose of current applications, as it is of more general

information-theoretic interest.

The paper is organized as follows. Section II introduces the

communication model that covers both scenarios. Section III

contains information–theoretic results about the considered

model and shows how to calculate the capacity. Those results

are used in Section IV to show practical coding strategies,

along with numerical illustration. Section V discusses practical

features and applications of the secondary channels based on

protocol coding. The last section concludes the paper and

outlines directions for future work.

II. SYSTEM MODEL

The communication model defined here encompasses the

features of both the secondary data and the energy harvesting.

A transmitter sends data to the receiver in frames, each frame

consisting of F slots. Each slot can have the value 0 or 1.

In the context of secondary communication, 0 and 1 can be

interpreted as addresses of the primary terminals to which the

packets are scheduled. In the context of energy harvesting,

0(1) means absence (presence) of transmission. A given frame

has s slots with value 1 and F − s slots with value 0. The

number of 1−slots in a frame, s, is termed state of the frame.

We assume that the frame state is selected in a random and

memoryless fashion, thus modeling the behavior of an external

factor (primary scheduler in secondary communication or

nature in energy harvesting). Specifically, the probability that

a frame is in state s is binomial

PS(s) =

(

F

s

)

as(1− a)F−s (1)

For the energy harvesting scenario, a can be understood as the

probability that an energy quantum arrives in a given slot of

the previous frame, which is now at disposal for the current

frame.
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The transmitter knows the frame state causally, at the start

of the frame, such that it only send information by reordering

the 1s and 0s in the frame. For example, if F = 4 and S = 3,

then the possible transmit symbols are 1110, 1101, 1011, 0111.

But, if S = F = 4, the transmitter cannot send any data in

the corresponding frame. We use the term symbol to denote

a frame that consists of F slots. A symbol represents a

single channel use in our system. An input symbol is an

F−dimensional binary vector x = (x1, x2, . . . xF ) ∈ X =
{0, 1}F . An output symbol is also F−dimensional vector

y = (y1, y2, . . . yF ) ∈ Y = J F , where the cardinality is

|J | ≥ 2.

Each slot is sent over a binary-input memoryless channel,

defined by the distribution pY |X(y|x), where x ∈ {0, 1},

y ∈ J and |J | = J . For example, for the error model

with erasures, J = {0, 1, ǫ}, corresponds to the secondary

communication in which the packet header is either received

correctly or it is erased (wrong checksum). Another example

is the Z-channel, where J = {0, 1} and pY |X(1|0) = 0, i.e.

errors can occur only when 1 is sent. The Z-channel can be

used in the energy harvesting scenario, where the ON signal

(X = 1) corresponds to transmission of, for example, a par-

ticular spread-spectrum sequence of length n. The motivation

for this model can be explained as follows. In absence of

energy transmission, the probability that the noise produces

the spread-spectrum sequence decreases exponentially with

n, such that we can approximate that situation by setting

pY |X(1|0) = 0.

In general, the communication channel applicable to a single

slot can be described by J transition probabilities, represented

by a vector:

qi = (qi1, qi2, . . . qiJ) i = 0, 1 (2)

where qij = P (y = j|x = i) and some qij can be equal to

0. Using the elementary channels applied to each slot, we can

define the transition probabilities for the channel of interest

X−Y:

PY|X(y|x) =
F
∏

f=1

qxfyf
(3)

The key constraint on the communication comes from the

random channel state s ∈ S = {0, 1, . . . F}. The set of input

symbols X is partitioned into F + 1 subsets Xs defined as

follows:

x ∈ Xs ⇔
F
∑

i=1

xi = s (4)

When the frame state is S = s, then the transmitter can only

sent an input symbol x ∈ Xs.

III. COMPUTING THE CAPACITY FOR THE

COMMUNICATION CHANNEL WITH CONSTRAINED

REORDERING

A simple upper bound on the capacity of the considered

channels is 1 bit per slot i. e. F bits per frame. The commu-

nication model considered here is related, but not identical, to

the channels with causal state information at the transmitter

(CSIT) [22]. In a channel with causal CSIT, the state S = s

is memoryless, while the channel is defined by specifying

PY|X,S(y|x, s) for all s ∈ S,x ∈ X,y ∈ Y . Shannon showed

that instead of considering the original channel with CSIT,

one can consider an ordinary, discrete memoryless channel

with equal capacity, but with a larger input alphabet. The

input variable of the equivalent channel is T and each possible

input letter t, termed strategy [23], represents a mapping from

the state alphabet S to the input alphabet X of the original

channel. A particular strategy t ∈ T is defined by the vector of

size |S|: (t(1), . . . t(|S|)), where t(s) ∈ X . Therefore, if each

s ∈ S can be mapped to any x ∈ X , then the total number of

possible strategies is |X ||S| and therefore |T | ≤ |X ||S|. The

key result is that, to achieve the capacity, it is sufficient that

the channel input of the n−th channel use xn depends only

on the message and the current state S = sn, but not the past

states.

In our communication model, the state s defines which

inputs are possible to use, i. e., S = s implies x ∈ Xs. While

causal CSIT channels with input-cost constraints have been

studied in the literature, to our knowledge no prior work where

the cost constraints also involve the state variables exists. Thus,

the results for channels with causal CSIT cannot be directly

applied, as PY|X,S(y|x, s) is not defined if x /∈ Xs. On the

other hand, it is intuitively clear that the result for the channels

with causal CSIT can be used if we restrict the strategies only

to the ones that have valid mappings, i. e. t(s) ∈ Xs. This is

proven in the following proposition.

Proposition 1: Let a channel and its state be memory-

less. For given channel input x, the channel is defined by

pY|X(y|x), where x ∈ X and y ∈ Y . The channel is restricted

by a state, such that if S = s, then the input symbol must be

x ∈ Xs, where ∪s∈SXs = X and Xs1 ∩ Xs2 = ∅ if s1 6= s2.

Then the capacity of the channel is:

C = max
PU (·),f :U×s→Xs,∀s∈S

I(U ;Y) (5)

the joint distribution of the random variables S,U,X,Y is

given by

PS,U,X,Y(s, u,x,y) = PS(s)PU (u)δ(x, f(u, s))PY|X(y|x)
(6)

where U is auxiliary random variable with support set U and

|U| ≤ min
{
∏

s∈S |Xs|, |Y|
}

. The indicator function is defined

as δ(x, f(u, s)) = 1, for x = f(u, s) and δ(x, f(u, s)) = 0
otherwise.

Proof: The proof is along the line of the proof [23] (pages

456-457). The key argument is that, to achieve the capacity,

then at a certain channel use n it is sufficient that U depends

only on the message M , but not the sequence of the previous

states. The fact that for given U = u and S = s the function

f must be constrained to be f(u, s) ∈ Xs does not alter this

argument. Note that each fixed U = u defines one bijective

mapping tu : S → X , restricted such that tu(s) ∈ Xs. Then

the number of possible mappings is
∏

s∈S |Xs|, which is an

upper bound on the required cardinality |U|. Following the

properties of mutual information ([24], Section 8.3), it should

also be |U| ≤ |Y|. This proves the proposition.
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Fig. 3. Example choice of the probability distribution PX|T with F = 3
and T = {1, 2, 3}. The transition probabilities on the channel X − Y are
not marked, but it is assumed that each packet 0 or 1 can become erased ǫ

independently with probability p.

Proposition 1 covers channels that are more general than

our communication model, where the set of possible states S
defines partitioning of X into |S| subsets.

Instead of using U as a random variable that indexes a set

of functions, we can equivalently use an auxiliary variable T .

Each T = t corresponds to one function, as defined above,

such that for given T = t and each s ∈ S , there is a single

representative of t in s, which is x = t(s) ∈ Xs. We use

the terms “strategies” and “input symbols” interchangeably.

Hence, T consists of the input symbols {1, 2, . . . |T |}. The

set of F +1 representatives {xs(t)} for given t will be called

a multisymbol of t.

Example: We illustrate the communication strategies through

a case with F = 3 and erasure channel. Fig. 3 illus-

trates the capacity-achieving strategies. It is sufficient to

have |T | = 3 strategies. The four edges going out of each

strategy T = 1, 2, 3 define the four respective representatives

of that strategy; e. g., the representatives of T = 2 are

x ∈ {000, 010, 110, 111}. Intuitively, the representatives of the

same strategy should be as similar to each other as possible,

while being as different as possible from the representatives

of the other strategies. The similarity is measured in terms

of Hamming distance among the representatives. Thus, the

representatives of T = 2 in X1 and X2 are 010 and 110,

respectively, and not 010 and 101. The reason is that in the

former case the Hamming distance between the representatives

is 1, which is minimal possible, while it is 3 in the latter case.

Before stating the main theorem, we will need several

definitions.

Definition 1: A multisymbol associated with a given strat-

egy t ∈ T is a set of F + 1 vectors

Mt = {x0,x1, . . .xF−1,xF } (7)

such that xs ∈ Xs for each s ∈ S .

We use the following notation. wH(x) is the Hamming

weight of the vector x, while dH(x1,x2) is the Hamming

distance between the vectors x1 and x2.

Definition 2: A multisymbol Mt is termed minimal mul-

tisymbol if for each pair xs1 ,xs2 ∈ Mt where s2 > s1 the

following holds:

dH(xs1 ,xs2) = wH(xs2)− wH(xs1) (8)

Definition 3: The basic multisymbol Mb has its represen-

tative 00 · · · 011 · · · 1 in Xs that starts with F − s consecutive

zeros and ends with s consecutive ones.

For providing certain properties of multisymbols, it is useful

to define a permutation of a multisymbol.

Definition 4: The permutation of a multisymbol M is

M′ = γπ(M) (9)

where each x′
s ∈ M′ is obtained from the corresponding xs ∈

M by permuting the packets according to a given permutation

π of length F .

For example, when F = 3, M = Mb and π = 321, the

permuted multisymbol is M′ = {000, 100, 110, 111}. Note

that the permutation preserves the Hamming distance between

any two representatives dH(xs1 ,xs2) = dH(x′
s1
,x′

s2
) = s2 −

s1. Since any minimal multisymbol can be obtained from the

basic one via permutation, it follows that there are in total F !
different minimal multisymbols.

The secondary channel can be represented by a cascade

of two channels T − X − Y. In order to express I(T ;Y),
we write I(T,X;Y) = I(T ;Y) + I(X;Y|T ) = I(X;Y) +
I(T ;Y|X). and using the Markov property for the cascade

we get I(T ;Y|X) = 0, which implies:

I(T ;Y) = I(X;Y)− I(X;Y|T ) (10)

such that we can write

C = max
PT (·),PX|T (·)

I(T ;Y)

≤ max
PT (·),PX|T (·)

I(X;Y)− min
PT (·),PX|T (·)

I(X;Y|T ) (11)

where the equality is achieved if and only if there is a pair of

distributions
(

PT (·), PX|T (·)
)

that simultaneously attains the

max/min in the first/second term, respectively.

Let us consider the term I(X;Y) and see which distribution

PX(·) can maximize it. Due to the constraints, PX(·) cannot

be an arbitrary distribution on X , but it has to belong to the

following set of distributions:

PX,S =

{

PX(·)|
∑

x∈Xs

PX(x) = PS(s), ∀s = 0, 1, · · ·F

}

(12)

We then define:

CXY = max
PX(·)∈PX,S

I(X;Y) (13)



5

The distribution in PX(·) ∈ PX,S that maximizes I(X;Y) is

given by the following lemma, proved in in Appendix A.

Lemma 1: The distribution PX(·) ∈ PX ,S that achieves

CXY is, for all s and each x ∈ Xs:

PX(x) =
PS(s)
(

F
s

) (14)

Proof: The proof is given in Appendix A.

For particular t ∈ T , the mutual information I(X;Y|T =
t) is determined by PX|T (·|T = t), which is defined by the

particular choice of the multisymbol Mt. Therefore we will

write:

I(X;Y|T = t) = I(X;Y|Mt) (15)

Of special interest I(X;Y|T = t), when the multisymbol Mt

is a minimal one, Mt = Mm:

I(X;Y|T = t) = I(X;Y|Mm) = Im (16)

We can now state the main theorem:

Theorem 1: The capacity of the channel with constrained

resource reordering is computed as

C = CXY − Im (17)

where CXY and Im are given by (13) and (16), respectively.

The capacity is achieved when for each strategy t ∈ T :

• PX|T (x|T = t) = PS(s) if x ∈ Mt ∩ Xs and

PX|T (x|T = t) = 0 otherwise;

• Mt is a minimal multisymbol.

while T is a uniform random variable with cardinality |T | =

lcm
(

(

F
0

)

,
(

F
1

)

, . . . ,
(

F
F

)

)

, where lcm stands for “least common

multiplier”.

Proof: We first show that we can choose the distributions
(

PT (·), PX|T (·)
)

such that I(X;Y) = CXY . The distributions

that can be induced by
(

PT (·), PX|T (·)
)

are a subset of PX,S ,

such that

max
PT (·),PX|T (·)

I(X;Y) ≤ max
PX(·)∈PX,S

I(X;Y) (18)

We now show that it is possible to select the pair
(

PT (·), PX|T (·)
)

that can result in the distribution PX(·) given

by (14) in Lemma 1, thus achieving equality in (18). Let

|T | = lcm

((

F

0

)

,

(

F

1

)

, . . . ,

(

F

F

))

= L (19)

and let T be uniformly distributed over T . Each T = t has a

single representative in each Xs, such that PX|T (x|T = t) =
PS(s) if x ∈ Mt ∩ Xs and PX|T (x|T = t) = 0 otherwise.

Since by the definition of L, the value

ms =
L

|Xs|
=

L
(

F
s

) (20)

is integer, we can choose the multisymbols in a way that each

x ∈ Xs is a representative of exactly ms strategies t ∈ T .

Then for any s and any x ∈ Xs it follows

PX(x) = ms

1

L
PS(s) =

PS(s)
(

F
s

) (21)

which is identical to the distribution given by Lemma 1. We

have thus shown how to choose
(

PT (·), PX|T (·)
)

to maximize

I(X;Y) under the transmit constraints.

Regarding the minimization of I(X;Y|T ), we write:

I(X;Y|T ) =
∑

t∈T

PT (t)I(X;Y|T = t)

=
1

|T |

∑

t∈T

I(X;Y|Mt) (22)

For a fixed multisymbol Mt, we decompose:

I(X;Y|Mt) = H(Y|Mt)−H(Y|X,Mt) (23)

We consider first:

H(Y|X,Mt) =
F
∑

s=0

PS(s)H(Y|xs(t)) (24)

Since each component of xs uses identical memoryless chan-

nels, H(Y|xs(t)) depends only on the Hamming weight s, but

not on how the 0s and 1s are arranged in xs. This is proven

in Lemma 2 in Appendix B, such that (24) can be rewritten

as

H(Y|X,Mt) =
F
∑

s=0

PS(s)Hs (25)

where Hs is given by (35). Considering the remaining member

in (23), Lemma 3 in Appendix C shows that all minimal mul-

tisymbol result in an equal and minimal value of H(Y|Mt).
Therefore, if Mm is a minimal multisymbol, then

I(X;Y|Mt) = Im (26)

where Im does not depend on the actual multisymbol as long

as it is minimal.

It remains to show that it is possible to find |T | =

lcm
(

(

F
0

)

,
(

F
1

)

, . . . ,
(

F
F

)

)

= L different minimal multisym-

bols that simultaneously maximize I(X;Y) and minimize

I(X;Y|T ) = Im in (11). We represent multisymbols by a

directed graph. Fig. 4(a) shows a choice of a set of minimal

multisymbols with F = 4 and the corresponding directed

graph is depicted on Fig. 4(b). Each node in the graph

represents a particular x ∈ X . An edge exists between

xs ∈ Xs and xs+1 ∈ Xs+1 if and only if the Hamming

distance is dH(xs,xs+1) = 1. The directed edge from xs

to xs+1 exists if they can both belong to a same minimal

multisymbol Mt. A multisymbol is represented by a path of

length F that starts at 00 · · · 0 and ends at 11 · · · 1. To each

edge we can assign a nonnegative integer, which denotes the

number of multisymbols (paths) that contain that edge. On

Fig. 4(b), each edge that starts from 0000 has a weight 3,

each edge between an element of X1 and X2 has a weight 1,

etc. The weight of each edge between xs and xs+1 can be

treated as an outgoing weight for xs and incoming weight for

xs+1.

Using the graph representation, we need to prove that, for

each s = 0 . . . F − 1, it is possible to match all outgoing

weights from Xs to all incoming weights from Xs+1. Since

L divides each
(

F
s

)

, the number of multisymbols that contain

xs ∈ Xs is an integer ms = L

(Fs)
. The number of outgoing
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edges from xs is (F − s), while the number of incoming

edges to xs is s. The sum of incoming weights and the sum

of outgoing weights for xs is equal to ms. Note that the

average outgoing weight for xs is ms

F−s
, while the average

incoming weight for any xs+1 ∈ Xs+1 is
ms+1

s+1 . However, the

following holds ms

F−s
= L

(Fs)(F−s)
= L

( F

s+1)(s+1)
= ms+1

s+1 i. e.

the average outgoing weight from Xs is equal to the average

incoming weight at Xs+1, which is a necessary condition for

the multisymbols that achieve the secondary capacity. We now

prove that for each outgoing weight from Xs there is a matched

incoming weight at Xs+1.We choose the weight of each edge

to be either w1 = ⌊ ms

F−s
⌋ or w2 = ⌈ ms

F−s
⌉. Then b weights

have to be chosen to be equal to w2 = ⌈ ms

F−s
⌉, where b is

given by

ms = a(F − s) + b, a ∈ {N ∪ 0}, 0 ≤ b ≤ F − s− 1. (27)

There are s+ 1 incoming edges at xs+1. The weight of each

incoming edge is also either w1 or w2, since ms

F−s
= ms+1

s+1 . In

order to satisfy the condition that the total incoming weight

of xs+1 is ms+1, d weights should be chosen to be equal to

w2, where d is given by

ms+1 = c(s+ 1) + d, c ∈ {N ∪ 0}, 0 ≤ d ≤ s. (28)

If (27) and (28) are satisfied, then b
(

F
s

)

= d
(

F
s+1

)

needs

to be fulfilled, which follows from
(

F
s+1

)

=
(

F
s

)

F−s
s+1 and

the equality of average incoming/outgoing weights. For each

outgoing weight from Xs there is a matched incoming weight

at Xs+1. Since L ≤ F !, it will be always possible to select L
different paths.

Therefore, it is always possible to select a set of L minimal

multisymbols that achieve the upper bound in (11), which

proves the theorem.

As it can be seen from Fig. 4, if F = 4 it turns out that
ms

F−s
is always an integer, such that all the outgoing/incoming

weights to the same node are identical. This is not the case

if, e. g., F = 7, then L = 105, m1 = 15 and m1

7−1 = 15
6 , such

that each node from X1 has 3 outgoing edges of weight 3 and

3 of weight 2.

IV. PRACTICAL CODING STRATEGIES

In this part of the paper we consider practical coding strate-

gies for the communication model introduced in Section II.

The first thing to be noted is that, for finite packet (codeword)

length, there will always be a nonzero probability of error, even

if the channel itself does not introduce error. To see this, note

that an unfortunate sequence of states can occur: for example,

in all frames that constitute the packet, the state is S = 0. We

will call these error encoder errors.

In order to emphasize the utility of the information-theoretic

analysis presented so far, we take the following approach.

As a reference, we first present a “naı̈ve” coding strategy,

which represents a design that can be undertaken without using

the framework of multisymbols. We then present code design

inspired by the information-theoretic analysis.

t {xs(t)}
1 (0000, 0001, 0011, 0111, 1111)
2 (0000, 0001, 0101, 1101, 1111)
3 (0000, 0001, 1001, 1011, 1111)
4 (0000, 0010, 0011, 1011, 1111)
5 (0000, 0010, 0110, 0111, 1111)
6 (0000, 0010, 1010, 1110, 1111)
7 (0000, 0100, 0101, 0111, 1111)
8 (0000, 0100, 0110, 1110, 1111)
9 (0000, 0100, 1100, 1101, 1111)
10 (0000, 1000, 1001, 1101, 1111)
11 (0000, 1000, 1010, 1011, 1111)
12 (0000, 1000, 1100, 1110, 1111)

(a)

(b)

Fig. 4. Selection of the representative sets for F = 4 that achieve the
capacity. (a) Multisymbols for the 12 inputs (b) Graph representation of the
process for selecting the multisymbols xs(t).

A. Naı̈ve Coding Strategy

The naı̈ve strategy works as follows. We take any usual

error-correction code of rate R and interleave the output of

this code, e. g. by using a pseudo-random interleaver. The

motivation for using an interleaver is to break the burst bit

errors that can occur within one secondary symbol (frame),

both due to encoder or channel error. For example, for a frame

length F = 4 we take four of the coded and interleaved bits

and look at the current state of the channel, i. e., how many

1s we can transmit in the next frame. Then, we pick any

(e. g. randomly) of the possible frames, obtained by permuting

the packets, that has minimal possible Hamming distance. For

example, let the coded bits be 0101 and let the state be S = 3.

Then the Hamming distance of the “true information” 0101

from 0111, 1101 is 1 (minimal possible), while it is 3 from

1011 or 1110. Hence, when the system needs to transmit 0101

and the state is S = 3, it chooses randomly between 0111 and

1101.

B. Coding Strategy inspired from the Information–Theoretic

Analysis

Here we propose a coding strategy which is inspired by

the capacity results for the secondary communication channel.

Recall that the result stated by Theorem 1 is quite general

and holds for all classes of memoryless channels X − Y

with binary inputs. Among other channels, it holds for the
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erasure channel, the binary symmetric channel and the Z
channel. As already argued, for a uniform distribution over

T , this capacity can be achieved by a set T of cardinality

L = lcm
(

(

F
0

)

,
(

F
1

)

, . . . ,
(

F
F

)

)

. The L multisymbols should be

minimal, meaning that the Hamming distance between two

adjacent symbols is 1, dH(xs, xs+1) = 1. From the viewpoint

of capacity, the choice of the multisymbols is irrelevant, as

long they are minimal and the distribution of X fulfills the

required condition. However, the choice of the multisymbols

does affect the performance of the error-correcting code con-

structed based on the multisymbol framework.

Our aim is to use the multisymbol framework in the

construction of practical coding schemes which are better

suited for the secondary communication channel than the naı̈ve

approach. The question to ask is which criterion, e.g. distance

metric we are going to use in the selection of the multisymbols.

We adopt a heuristic approach and take the expected Hamming

distance as the metric of interest. For two multisymbols t1 and

t2, this distance is defined as follows

EdH
(t1, t2) =

F
∑

s=0

PS(s)dH(xs(t1), xs(t2)), (29)

where dH is the Hamming distance between the two vectors.

Clearly, considering the triviality of the states S = 0 and

S = F , we can simplify to:

EdH
(t1, t2) =

F−1
∑

s=1

PS(s)dH(xs(t1), xs(t2)) (30)

The motivation behind this is that this metric incorporates

the state of the channel which can not be controlled by the

secondary system.

With this in mind, we can construct a convolutional code

by using the multisymbols framework and the expected Ham-

ming distance as design criterion. We define a trellis for the

convolutional code with a certain number of states. Each trellis

state contains two outgoing paths, each of them corresponding

to one possible input binary symbol. Also, each state has two

incoming paths. Each branch in the trellis is associated with an

input symbol and an output symbol, where the input symbol

is binary and the output symbol is one of the L multisymbols.

The trellis has L branches, such that each multisymbol is

associated with only one single-step transition in the trellis

diagram.

For designing the trellis transitions, we use the known rules

from trellis coding: the output symbols on the branches exiting

from the same state should be maximally separated in terms

of the expected Hamming distance. The same is valid for the

output symbols associated with the two branches that enter the

same state. In order to illustrate the code construction, we take

the example with F = 4, where the minimal cardinality of the

uniform auxiliary variable T is L = lcm{
(

4
0

)

,
(

4
1

)

, . . . ,
(

4
4

)

} =
12.

There are multiple ways in which the multisymbols can be

chosen, and different sets have different features. We can get

useful insights about the expected Hamming distance spectrum

if we use the representation of the multisymbols as paths in the

directed graph, as shown in Fig. 5 c). In order to maximize

the expected Hamming distance between multisymbols, we

have to choose the multisymbols such to avoid, if possible,

to have multisymbols with common edges. Indeed, for two

different multisymbols t1 and t2 which share a common edge

(xj(t), xj+1(t)), the terms in the expected Hamming distance

EdH
(t1, t2) =

F
∑

s=0

PS(s)dH(xs(t1), xs(t2)), (31)

associated with that edge will be 0. The necessary condition

to avoid a common edge between the nodes from Xs and

Xs+1, where s ≤ ⌊F/2⌋ − 1, is that L/
(

F
s

)

≤ F − s. In other

words, the edge weight should be at most 1. In general, the

error performance of a code depends on the whole distance

spectrum, which may be very difficult to control. We therefore

turn to the minimal expected Hamming distance as a heuristic,

not optimal, indicator related to the the code performance.

A representative example of choice of 12 multisymbols

for F = 4 is given on Fig. 4(a). We observe that no two

multisymbols are identical and the choice of the multisymbols

is capacity achieving. The multisymbols are constructed by

using each edge of the graph exactly once, except for the edges

between X0 = {0000} and X1 = {0001, 0010, 0100, 1000},

where common edges can not be avoided. Additionally, com-

mon edges are avoided later in the graph, by an adequate

choice of the paths associated with the multisymbols. For

example, we choose t2 = {0000, 0001, 0101, 1101, 1111} in-

stead of t2 = {0000, 0001, 0101, 0111, 1111} in order to avoid

a common edge with t1 = {0000, 0001, 0011, 0111, 1111} in

the last section of the graph. The minimal expected Hamming

distance for this choice of multisymbols is 1.

C. An Example of Trellis Code Design and Performance

Results

The coding scheme we propose is designed as a concate-

nation of an outer error correcting code, an interleaver and an

encoder, as given in Fig. 5 (a). The outer error correcting code

is a convolutional code with rate 1/2, thus 2n binary symbols

are generated from n symbols. The inner code is trellis based,

as discussed. We associate multisymbols with the transitions

in the trellis such that the output symbols on the branches

exiting from the same state are maximally separated in terms

of expected Hamming distance. The same is valid for the

output symbols associated with the two branches that enter the

same state. The trellis encoder codes incoming binary symbols

into multisymbols which are then impaired by the channel.

For this illustrative code design and performance evaluation,

we assume a binary erasure channel.

The symbol errors from a trellis code come in bursts since

ending up in a wrong state implies more than one symbol

error. To avoid bursts of errors, an interleaver is used. The

interleaver is implemented as matrix with dimensions λ× 2n
λ

with 2n divisible by λ. We consider trellis-based coding

scheme for F = 4, which defines a trellis with 12 branches.

One option is to consider a code with 4 states and 3 branches

from each state or a code, which implies that the source

information is originally encoded in ternary symbols. Another,

more practical option, is to have a trellis with 6 states and 2
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Source
Encoder for
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Channel
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(b)

Fig. 5. Code Design. a) Block diagram of the code (b) Trellis construction
for the set of multisymbols.

branches from each state. The code construction uses the trellis

code with 6 states to avoid mapping from binary symbols

to ternary symbols. This means that one binary symbol is

transmitted for each multisymbol. The trellis design for the set

of multisymbols introduced in Section IV is shown in Fig. 5

(b). The multisymbols which are associated with the transitions

in the trellis are chosen such that the output symbols on the

branches exiting from the same state are maximally separated

in terms of the expected Hamming distance, which yields a

distance of 2.5 between the output multisymbols for all states.

This is the maximal distance in the distance spectrum. The

same is valid for the output symbols associated with the two

branches that enter the same state.

The simulations are performed with λ = 8 and for packet

lengths N = 6, 14, 30, 62. These packet lengths are chosen

such that N + 2 (two tail bits are added by the outer

convolutional code) is divisible by λ = 8. The results are

averaged over 10000 iterations. We compare the performance

of the coding scheme inspired by the multisymbol framework

and the naı̈ve coding scheme, which does not account for the

specifics of the secondary channel. The simulation results for

the packet error rate (PER) for different erasure probability are

shown in Fig. 6. The results present a clear evidence that the

information-theoretic analysis carries a practical significance

for the secondary communications channels.

V. DISCUSSION

In the model used for energy harvesting, we have forced the

transmitter to send all the harvested energy quanta during the

next frame. This creates a situation in which the transmitter
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0
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N=6, Naive

N=14, IT−inspired

N=14, Naive

N=30, IT−inspired

N=30, Naive

N=62, IT−inspired

N=62, Naive

Fig. 6. Performance comparison between the naı̈ve coding scheme and the
scheme motivated from the multiuser framework

sends e. g. zero-rate symbols (all ones). A way to amend this

situation is to assume that the harvesting buffer has a size of

B = F
2 . In that case the states with s > F

2 are reached with

probability 0 and the same approach presented in the paper

can be used to devise communication strategies.

We have already described a generic application of sec-

ondary channels: communication with newly introduced de-

vices, with limited functionality, in an area that is larger than

the original coverage area. The secondary rate is low, even

when protocol coding operates close to capacity, so it is hard

to use it for rate advantage. Furthermore, the secondary rate

depends on the current load (traffic, number of users) in the

primary system. For example, if protocol coding is done by

allocating the users to the channels in a cellular system, the

best secondary rate is obtained when each channel can be

allocated to a different user, since this maximizes the possible

number of reorderings. Finally, the new secondary devices can

have low-complexity, limited implementation of the primary

protocol stack. In the extreme case, secondary data is encoded

with presence/absence of packet, such that a secondary device

needs to use only power detection.

Header compression [25] may appear as a competitor as

it works in a somewhat opposite way: tries to compress

the overhead whenever the actual communication scenario

allows it. However, this is not necessarily canceling the

secondary channel: e. g, the MAC–layer identifiers may be

compressed, but still all the users have to be differentiated and

the secondary channel arises from reordering their identifiers.

Interestingly, the secondary capacity can be used to assess

the performance margin of a certain primary protocol/system.

Intuitively, if in a given scenario the secondary capacity is

non–zero, then the operation of the primary system is not

optimal.

Secondary channels can be used to send low-rate control

data. For example, secondary data can be regarded as expanded

“future use” bits: in many standards there are unspecified, free

bits for future use and protocol coding practically unleashes
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“hidden” future use bits in the protocol, which may be

indispensable as the system evolves. Another usage can be

signaling in cognitive radio, where the cognitive (secondary)

users may cause interference to the incumbent (primary) user.

Protocol coding inherently introduces a possibility to provide

in–band information about spectrum availability, e. g. through

a Cognitive Pilot Channel (CPC) [26]. For example, if the

primary system is a digital TV broadcaster, then secondary

channel can be defined by reordering of the TV packets, which

empowers the TV broadcast tower to dynamically inform

about spectrum availability. Finally, in the emerging machine–

to–machine (M2M) communication [3], cellular networks em-

brace a large number of low–cost, low–power devices, that

have different traffic/behavior from the usual cellular users.

Such a device device is mostly in a low–power “sleep” mode

an it may be tuned receive on the secondary channel. Upon

receiving a downlink trigger from the BS, it can wake up

another radio interface to send information. Thus, protocol

coding offers an opportunity to introduce universal wake–up

beacons.

A. Protocol Coding in WiMAX: A Brief Case Study

Although we have considered only reordering of binary

resources, it is of interest to see how much secondary capacity

can be offered in a practical system. In WiMAX [1], the

downlink and uplink control information is transmitted at the

beginning of each frame, which includes preamble, frame

control header (FCH) and MAP message. The MAP message

indicates the resource allocation for downlink and uplink

data and control signal transmission. The Base Station (BS)

translates the QoS requirements of the Subscriber Stations

(SSs) into the appropriate number of allocated slots. The

BS informs about the scheduling to all SSs by using the

DL MAP (Downlink Medium Access Protocol) and UL MAP

(Uplink Medium Access Protocol) messages in the beginning

of each frame [27]. Protocol coding can be implemented by

reordering the slots allocated in a frame. The secondary users

for which this information is intended have only to read the

broadcast DL MAP and UL MAP messages. For example,

when the number of slots reserved for each of the SSs is

6,9,2,10,7,6,10,15,15,20 respectively, 289 secondary bits can

be sent by reordering of the resources. Assuming a frame

duration of 5ms, this translates to we can have ≈ 58 [kbps] of

additional information, which is in the frame headers that are

robustly protected [28]. In order to get an idea about the the

distance where the MAP message is “detectable”, compared

to the information data, we resort to the propagation model in

[28], with the total path loss is given by L = 126.2+36 log d
[dB], where d is in kilometers. The MAP is protected with

6−times repetition coding, while and BPSK is used for both

MAP message and data, which results in distance d′ ≈ 1.65 d
where the header is detectable compared to the distance d for

the user data.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a class of communication channels with

reordering of resources that are applicable in two different

scenarios: (1) creation of a secondary channel over an existing

primary system and (2) energy harvesting systems. The first

scenario corresponds to the concept of protocol coding, where

information is modulated in the actions taken by the commu-

nication protocol of an existing, primary system. Communi-

cation schemes with reordering of resources have been intro-

duced before, but the key feature of the communication model

is that it works under constraints that are put by the primary

system or the energy harvesting process. We have shown how

to compute the capacity of those channels when the resources

that can be reordered have binary values. The capacity result

is valid under arbitrary error model in which errors in each

resource (packet) occur independently. The insights obtained

from the capacity–achieving communication strategies have

been used to demonstrate a design of practical error–correcting

codes suited for the considered communication model.

It may be argued that the model with only two primary

is limiting, but extension to K primary addresses entails

complexity that is outside the scope of this initial paper on

the topic. Yet, the results with binary secondary inputs provide

novel insights for the communication strategies and set the

basis for generalizations to K > 2. Another question for

future work is how to compute the capacity and which coding

strategies to use when the scheduling process in the primary

system is generalized (buffering, retransmission, etc.).
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APPENDIX A

PROOF OF LEMMA 1

Proof: We generalize the Theorem 4.5.1 from [29] to

reflect the fact that the maximization is over PX,S rather

than PX. Let us denote PX(xs,k) = αs,k where xs,k is

the k−th element (e. g. in a lexicographic order) within

the set Xs. Let α = (α0,1, α1,1, α1,2, . . . , αF,F ) be the 2F -

dimensional probability vector. Then I(X;Y) = f(α) and the

maximization problem is:

max f(α) such that

Ks
∑

k=1

αs,k = ps, ∀s ∈ S (32)

where ps = PS(s) and Ks = |Xs| =
(

F
s

)

. The con-

straint
∑

s,k αs,k = 1 is redundant, since
∑

s ps = 1. We

need to use (F + 1) Lagrangian multipliers and maximize

f(α) −
∑

s λs(
∑

k αs,k − ps). The necessary and sufficient

KKT conditions for each s, k are given as ∂f
∂αs,k

= λs when

αs,k > 0 and ∂f
∂αs,k

≤ λs when αs,k = 0. We have:

∂f

∂αs,k

= I(Xs,k = xs,k;Y)− log e (33)



10

where we have defined:

I(X = xs,k;Y) =
∑

y∈Y

p(y|xs,k) log
p(y|xs,k)

∑

s,k αs,kp(y|xs,k)

(34)

The necessary and sufficient conditions for an input probability

vector α ∈ PX ,S to maximize this mutual information are then

stated as follows. For a set of numbers {Cs}, where Cs =
λs + log e and s ∈ S: If αs,k > 0 then I(X = xs,k;Y) =
Cs; otherwise, if αs,k = 0 then I(X = xs,k;Y) ≤ Cs. Let

YA be the set of all y whose elements are permutations of a

certain yA. The Ks×|YA| sub–matrix that contains p(y|xs,k)
which correspond to the inputs from the state S = s and the

outputs from the subset YA exhibits a symmetry: each row

of this sub–matrix is a permutation of each other row and

each column is a permutation of each other column. Using

the definition of a symmetric channel from [29] and setting

all the inputs x ∈ Xs equiprobable with αs,k = ps

Ks
. Then

the output probabilities p(y) =
∑

s
ps

Ks

∑

k p(y|xs,k) are the

same for all y ∈ YA. Further it follows that the Ks×|YA| sub-

matrix containing the elements p(y|xs,k) log
p(y|xs,k)∑

s,k αs,kp(y|xs,k)

has the same permutation properties as p(y|xs,k), and hence

the sum of these terms in (34) is the same for all x ∈ Xs.

APPENDIX B

Lemma 2: The conditional entropy for xs ∈ Xs, having a

Hamming weight of s, is given by:

H(Y|X = xs) = sH(q1) + (F − s)H(q0) = Hs (35)

where H(qi) = −
∑J

j=1 qij log2 qij for i = 0, 1 and qi is

given by (2).

Proof: In order to determine H(Y|X = x) =
−
∑

y∈J F P (y|x) log2 P (y|x), we use the fact that P (y|x) =
∏F

f=1 qxfyf
is a product distribution, such that we can write

H(Y|X = x) as:

−
∑

y∈J F

F
∏

i=1

qxiyi

F
∑

j=1

log2 qxjyj

= −
F
∑

j=1

∑

y1∈J

· · ·
∑

yF∈J

log2 qxjyj

F
∏

i=1

qxiyi

where (a) follows from changing the order of summation. If

we consider the component j = 1:

−
∑

y1∈J

· · ·
∑

yF∈J

log2 qx1y1

F
∏

i=2

qxiyi

= −
∑

y1∈J

qx1y1
log2 qx1y1

∑

y2∈J

· · ·
∑

yF∈J

F
∏

i=2

qxiyi

(b)
= −

∑

y1∈J

log2 qx1y1
· qx1y1

= H(qx1
) (36)

where (b) follows from
∑

y2∈J · · ·
∑

yF∈J

∏F
i=2 qxiyi

= 1.

Doing the same for j = 2 . . . F shows that each xj = i,
i = 0, 1, contributes H(qi) to H(Y|X = x), which proves

the lemma.

APPENDIX C

Lemma 3: The entropy H(Y|Mt) is minimized when Mt

is an arbitrary minimal multisymbol.

Proof: We first consider a special type of PS(·), in which

only two states s1, s2 ∈ S occur with non-zero probability

PS(s1) = λ and PS(s2) = 1−λ, such that Mt = {xs1 ,xs2}.

Due to the symmetry implied by Lemma 2, without losing

generality, we first pick an arbitrary xs1 ∈ Xs1 . The question is

how to pick xs2 ∈ Xs2 in order to minimize H(Y|Mt). Recall

that wH(x) = s for x ∈ Xs and, without losing generality,

assume s2 > s1. Let guv(xs1 ,xs2), where u, v ∈ {0, 1} denote

the number of positions f at which xs1f = u and xs2f = v.

Using similar arithmetics as in Lemma 2:

H(Y|Mt)= g00H(q0) + g11H(q1) + g01H(λq0 + (1-λ)q1)

+ g10H((1-λ)q0 + λq1) (37)

The Hamming distance is dH(xs1 ,xs2) = g01 + g10. Since

wH(xs1) < wH(xs2), it follows that g10(xs1 ,xs2) <
g01(xs1 ,xs2). Assume that g10(xs1 ,xs2) > 0 and let there

be f1, f2 such that:

(xs1,f1 , xs2,f1) = (1, 0) (xs1,f2 , xs2,f2) = (0, 1) (38)

Let zs2 be another representative from Xs2 , obtained by

swapping the positions f1, f2 in xs2 , but keeping the other

values of xs2 , such that zs2,f1 = 1 and zs2,f2 = 0. Then:

g00(xs1 ,xs2) + 1 = g00(zs1 , zs2)

g11(xs1 ,xs2) + 1 = g11(zs1 , zs2)

g01(xs1 ,xs2)− 1 = g01(zs1 , zs2)

g10(xs1 ,xs2)− 1 = g10(zs1 , zs2) (39)

Using the concavity of the entropy function, we can write:

H(λq0 + (1-λ)q1) +H((1-λ)q0 + λq1)

≥ λH(q0) + (1-λ)H(q1) + (1-λ)H(q0) + λH(q1)

= H(q0) +H(q1) (40)

Using (39) and (40) it follows:

Hxs1
,xs2

= g00H(q0) + g11H(q1) + g01H(λq0 + (1− λ)q1)

+ g10H((1− λ)q0 + λq1)

≥ g00H(q0) + g11H(q1)

+ (g01 − 1)H(λq0 + (1− λ)q1)

+ (g10 − 1)H((1− λ)q0 + λq1) = Hxs1
,zs2

where guv = guv(xs1 ,xs2) and Hxs1
,xs2

= H(Y|Mt =
{xs1 ,xs2}). We can analogously continue the swap the posi-

tions in xs2 until getting g10 = 0. Each swap does not increase

H(Y|Mt), which means that when g10 = 0, H(Y|Mt) is

minimal.

We now consider a general PS(·). As indicated above,

H(Y|Mt) can be written as:

H(Y|Mt) =
F
∑

f=1

H(uf ) (41)

where uf is the probability distribution that corresponds to

the f−th position, defined as:

uf =

F
∑

s=0

Ps [(1− xs,f )q0 + xs,fq1] (42)
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where xs,f ∈ {0, 1}. Without losing generality, let us take

the first value xs1 of each of the representatives xs can create

(F+1)−dimensional vector z1. In a similar way z2 is created,

such that:

z1 = (x01, x11, · · ·xF1) z2 = (x02, x12, · · ·xF2) (43)

The probability distribution vectors u1 and u2 can be written

as:

u1 = (Q00 +Q01)q0 + (Q10 +Q11)q1

u2 = (Q00 +Q10)q0 + (Q01 +Q11)q1 (44)

where Quv =
∑

s∈Guv(z1,z2)
Ps and the sets Guv(z1, z2) =

{s|xs,1 = u, xs,2 = v} for u, v ∈ {0, 1}.

We now show that the contribution of the positions 1 and

2 to the entropy H(Y|Mt) is minimized when one of the

sets G01,G10 is empty. Let us start with a multisymbol {xs}
in which none of the sets G01(z1, z2),G10(z1, z2) is empty.

Without losing generality, we will “empty” the set G01(z1, z2)
as follows: If there is s ∈ S such that xs,1 = 0, xs,2 = 1,

these two positions in the representative xs are swapped. That

is, if there is a representative x = 01 · · · , it is changed to

10 · · · . Using the concavity of the entropy, we can show that

these swapping operations can decrease the contribution of the

positions f = 1, 2 to the entropy (41). Note that after swapping

(44), the new distributions are:

u′
1 = Q00q0 + (Q01 +Q10 +Q11)q1

u′
2 = (Q00 +Q01 +Q10)q0 +Q11q1 (45)

Using the concavity property, it can be shown that (see Lemma

4 in Appendix D)

H(u1) +H(u2) ≥ H(u′
1) +H(u′

2) (46)

where u1,u2 and u′
1,u

′
2 are given by (44) and (45), respec-

tively. Analogously, the contribution from the two positions

will decrease to the value (46) if the set G10(z1, z2) is emptied.

APPENDIX D

Lemma 4: Let q0 and q1 be vectors of equal dimen-
sions, each representing a probability distributions. Let Q =
{Q1, Q2, Q3, Q4} be a probability distribution. Then the fol-
lowing holds:

H
(

(Q1 +Q2)q0 + (Q3 +Q4)q1

)

+H
(

(Q1 +Q3)q0 + (Q2 +Q4)q1

)

≥ H
(

Q1q0 + (Q2 +Q3 +Q4)q1

)

+H
(

(Q1 +Q2 +Q3)q0 +Q4q1

)

(47)

Proof: The members on the left-handed side of (47) can
be written as:

H
(

(Q1 +Q2)q0 + (Q3 +Q4)q1

)

= H
(

λv1 + (1-λ)v2

)

H
(

(Q1 +Q3)q0 + (Q2 +Q4)q1

)

= H
(

(1-λ)v1 + λv2

)

where v1 = Q1q0 + (Q2 +Q3 +Q4)q1, v2 = (Q1 +Q2 +
Q3)q0 + Q4q1, and λ = Q3

Q2+Q3
. Since H(·) is concave, we

finalize the proof by writing:

H
(

λv1 + (1-λ)v2

)

+H
(

(1-λ)v1 + λv2

)

≥ λH(v1) + (1-λ)H(v2) + (1-λ)H(v1) + λH(v2)

= H(v1) +H(v2)

at most s − 1 ones can have the same positions in both

representatives, such that there are at least two more columns

i1, i2 with xi1(s) = xi2(s) = 0 and xi1(s+1) = xi2(s+1) =
1. Hence, there is at least one pair of representatives for which

Lemma 1 is not satisfied, which contradicts the assumption

that X ′
r minimizes I(X;Y|T = t).
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