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Detection of Excessive Wind Turbine Tower Oscillations Fore-Aft and
Sideways.

Torben Knudsen, Thomas Bak and Seyedmojtaba Tabatabaeipour

Abstract— Fatigue loads are important for the overall cost of
energy from a wind turbine. Loading on the tower is one of the
more important loads, as the tower is an expensive component.
Consequently, it is important to detect tower loads, which are
larger than necessary.

This paper deals with both fore-aft and sideways tower
oscillations. Methods for estimation of the amplitude and
detection of the cause for vibrations are developed. Good results
are demonstrated for real data from modern multi mega watt
turbines. It is shown that large oscillations can be detected and
that the method can discriminate between wind turbulence and
unbalanced rotor.

I. INTRODUCTION

Excessive wind turbine tower oscillations are important to
detect for many reasons:

• The tower fatigue increases.
• The tower cost is approximately 15% of total turbine

cost [1].
• The oscillations will also effect other components e.g.

blades.
• The oscillations can be a sign of failures.
• An early detection can be used for scheduled mainte-

nance.
Large tower oscillations will normally occur either at

the eigenfrequency or at the rotational frequency (1P) for
modern large MW turbines. At the eigenfrequency the cause
can be turbulence, perhaps in combination with the speed
controller, or it can be waves for offshore turbines. At 1P
the reason can be aerodynamic or mass imbalance. A pitch
error on one blade or a blade being dirtier than the others can
give aerodynamic imbalance. Mass imbalance can be due to
different blade weight at installation or because one blade
has cracks where moisture finds its way into the blade [2].

Detection and damping of tower oscillations has been
given some attention in the patent literature. These patent are
typically very general. Estimation of the tower oscillations
“range” and using it for control is suggested in [3]. Both
[4] and [5] suggests to use offline estimation of the tower
frequency and then “use” it for control and avoid rotational
speed at that frequency. At least the two last patents only
mention the tower eigenfrequency and can then miss an
oscillation at 1P. To the authors knowledge, modern wind
turbines will monitor their tower vibrations, but it will
only be based on simple methods e.g. range or standard
deviation for a filtered acceleration signal focusing on the
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tower frequency. This acceleration indicator will not be used
for control but when exceeding a threshold an error is issued
and the turbine stops for a while. In the research literature
there is many papers on the control of towers in normal
operation [6], [7]. Detection of excessive tower oscillations
is however not so well covered. The method mentioned
above where the range or similar of 1P filtered acceleration
signals are used with thresholds are also suggested in [2], [8].
Here, the thresholds are found from statistics from turbine
with known tower behavior. The methods are demonstrated
with simulation and on a small test turbine. Looking into
the broader area of system identification of wind turbines
more advanced methods as wavelet [9] and periodic subspace
methods [10] are used but then the evaluation are typically
only based on simulation.

The objective in this paper is: to develop a simple method
for online detection of excessive tower vibrations that can
be used on a standard modern turbine and to demonstrate
the functionality on real data. Also, it must be capable of
discriminating between at least the two causes 1) turbulence
and/or wave and 2) imbalance. An indication of whether the
imbalance is from aerodynamic or mass would of course be
beneficial.

The paper proceeds with a section discussing the necessary
physical background and modelling. Then, the estimation and
detection methods are developed and discussed. These are
demonstrated on real data from standard turbines and finally
conclusions are given.

II. TURBINE MODEL

The aim is to keep the methods simple and therefore
the models are also as simple as possible. Moreover, the
modeling below is more to gain the conceptual understanding
needed in the method developed in the next section than
to build models for model based detection. Another reason
to keep it simple is that the available experimental data
is at one Hz sampling frequency so that only frequencies
below half an Hz can be seen. Therefore, the focus is on
the tower dynamics. The available data channels will also
limit the type and complexity of useful models. The data
channels for this investigation are quite standard: generator
rpm, nacelle direction, pitch angle, power, power reference,
rotor rpm, tower acceleration longitudinal and transverse,
wind direction and wind speed. Notice that tower torsion
and blade loads are not in the measurements.

Figure 1 illustrates the tower, nacelle and rotor and some
of the turbine dynamics.
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Fig. 1. Wind turbine tower, nacelle and rotor with indication of
roll/transverse/side to side and pitch/longitudinal/fore aft dynamics.

The tower dynamics can be simplified as a large mass
(nacelle) fixed on top of a mass less spring and a damper
(tower) with the same characteristics in all directions. The
spring also has torsional stiffness and damping. Fixed to the
first mass is a rotating mass (rotor) with a large angular
momentum.

If the mass on top of the tower is characterized by a
pitch α, a roll β and a yaw γ where the pitch and the
roll corresponds to the longitudinal and transverse movement
respectively, then the simplified equations looks like:

Iα̈ = −dα̇− kα+ hFas + Tauy + Tgy (1)

Iβ̈ = −dβ̇ − kβ + Tg + Tmu (2)
Iz γ̈ = −dz γ̇ − kzγ + Tauz + Tgz (3)

The right handed coordinate system used here is with x down
wind, y to the side and z along the tower pointing upward.
In (1) and (2) I, d, k are tower inertia, damping and stiffness
for rotation around a horizontal axis on the ground. In (1)
Fas is the aerodynamics symmetrical thrust i.e. the force
that acts in the hub center and pointing down wind, Tauy is
the torque component along the y axis from aerodynamics
asymmetry and Tgy is the gyro reaction torque from the rotor
also along the y axis. In (2) Tg is the generator torque and
Tmu is the torque from a mass unbalance which would be
along the x axis as the centrifugal force always is in the
rotor plane pointing out from the hub center. In (3) Tauz is
the torque component along the z axis from a aerodynamics
asymmetry and Tgz is the gyro reaction torque. Notice that
the aerodynamics asymmetry is assumed to give a force down
wind, which however has its center displaced from the hub
center.

The eigenfrequency and damping are:

ωn =

√
k

I
, ρ =

d

2
√
kI
. (4)

The longitudinal and transverse eigenfrequency for MW
turbines will be from 0.2 to 0.5 Hz. The damping for
transverse movements is small as it is only due to materiel
damping from steel, which is very low. In the longitudinal
direction there is some significant additional damping from
aerodynamics which enter via the thrust force Fas from the
rotor.

The rotor and its coupling to the nacelle is assumed
stiff. Then, the direction of the rotor angular momentum Lr
follows the pitch, roll and yaw movements of the nacelle.
The resulting torque necessary for this is given by:

Tr =
dLr
dt

. (5)

From (5) and figure 1, we see that pure roll with horizontal
rotor axis, α = 0, gives no change in Lr and hence no gyro
effects. In contrast, yawing will require a torque along the y
axis which then will give pitching movements. Consequently,
yaw couples with pitch motion and visa verse but roll does
not couple with the others. In practice, some coupling from
the roll must be expected, as the rotor axis is not horizontal
and the aerodynamic forces has transverse components under
yaw. Still, the coupling between the yaw and the pitch is
stronger than the coupling to the roll.

From this the following types of oscillation can be iden-
tified:

• On the tower eigen frequency
– Longitudinal tower pitching coupled with smaller

transverse roll component due to turbulence, blade
pitching and waves.

– Generator torque variation and transverse waves
can increase the transverse component.

• On the 1P frequency
– Yawing coupled with longitudinal tower pitching

due to aerodynamic asymmetry.
– Transverse rolling oscillation with minor longitudi-

nal components due to mass imbalance.

III. ESTIMATION AND DETECTION METHODS

A brief discussion of possible approaches is presented
before a method is developed. For the estimation of the size
of the oscillation, the following main methods can be iden-
tified: Standard deviation of band filtered accelerations, FFT
based methods, System identification (SI) based methods and
Kalman filter (KF) based methods.

In particular, the FFT approach, but also the first approach,
will have to be performed on batches of say 600 1 sec.
samples. This is considered a disadvantage. SI methods
can be used on-line for adaptive estimation. This makes
it possible to follow changing 1P frequency and to detect
sudden large oscillations fast. The KF based approach can
also be included in the class of SI methods. Here SI methods
points to simpler black box type models while KF methods
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means more tailored models with many inputs and outputs
[11]. Also, for the detection part there is a choice between
simple threshold methods and more advanced methods based
on statistical test theory. As already stated the idea here is
to develop as simple methods as possible. To this end the SI
black box methods are developed next.

A. Parameter estimation in transfer function models
Following [12] the general transfer function model can be

formulated as

A(q)y(t) =
B(q)

F (q)
u(t) +

C(q)

D(q)
e(t) ,

e(t) ∈ NID(0, σ2),

(6)

where A(q) to F (q) are shift operator polynomials of orders
na to nf , y(t) is the output, u(t) the input and e(t) is white
noise. The simplest and most numerical robust models are
so called ARX models with F (q) = C(q) = D(q) = 1.
These ARX models will be used initially and it will be
tested if extensions to more flexible models give worth-while
improvements.

To model the tower eigenfrequency oscillations a second
order model is necessary. For turbines without structural
problems the eigenfrequency will be constant or might
change change slowly e.g. because of varying water level
offshore. To model oscillations at 1P, one possibility is to
use the rotor azimuth φ for a harmonic input function by
defining two auxiliary inputs as follows:

u1(t) = ω2
rsin(φ(t)) ,

u2(t) = ω2
rcos(φ(t)),

(7)

where the term ω2
r account for the centrifugal force depen-

dence. The simplest ARX version of this would then be with
na = 2 and only two parameters in B(q) as follows:

(1+a1q
−1 + a2q

−2)y(t)

= b1u1(t) + b2u2(t) + e(t).
(8)

Notice that the amplitude and phase of the harmonic are
fixed for given parameters at

√
b21 + b22 and arctan( b1b2 )

respectively.
Another possibility is simply to use a second order model

for a narrow band process representing the possible mass
or aerodynamic asymmetry. This would give more flexibility
as the amplitude and phase then will have a variation that
increases with bandwidth. The total model including both
eigenfrequency dynamics and 1P input would then be of 4th
order. The simple ARX version is then with na = 4 and no
input so it will be a AR(4) model which is short for Auto
Regressive with no eXogenous input and of forth order. The
estimation can be made adaptive to follow changes in rotor
speed.

For a AR(na) model structure, the recursive adaptive
estimation based on the “forgetting factor” [12] method is
given by:

ε(t) = y(t)− ŷ(t) ,

ŷ(t) = φT(t)θ̂(t) ,

φT(t) =
(
y(t− 1) . . . y(t− na)

) (9a)

ε(t) =


−εm(t) , ε(t) < −εm(t)

ε(t) , |ε(t)| < εm(t)

εm(t) , ε(t) > εm(t)

, (9b)

εm(t) = γσ̂(t− 1) (9c)

σ̂2(t) = λσ̂2(t− 1) + (1− λ)ε(t)2 (9d)

P (t) =
1

λ

(
P (t− 1)−

P (t− 1)φ(t)φT(t)P (t− 1)

λ+ φT(t)P (t− 1)φ(t)

) (9e)

θ̂(t) = θ̂(t− 1) + P (t)φ(t)ε(t− 1) (9f)

The above procedure (9) is standard except for (9b)–(9d)
which is needed in case of outliers, where γ is then typical
chosen in the range 1.5–3. The same procedure is applied for
ARX models with one or more input signals by extending the
φ vector in (9a). The advantage with this procedure for ARX
models is that it is always stable except when the input is
not sufficiently exciting which is not a problem with the AR
model as there is no input. Adaptive estimation procedures
for model structures with C(q), D(q), F (q) polynomials
different from 1 also exists but they will have stability issues
to deal with.

B. Detection methods

In the development of detection methods the focus will
be on the AR(4) model as this turned out to be the most
successful for the real data. One method is developed for
both longitudinal and transverse oscillations. The AR(4)
model will give at most two peaks in the spectrum. It seems
reasonable to base the detection on the heights and frequency
for these peaks. There will always be exactly four poles often
in two complex conjugated pairs. One measure would be
the damping and frequency of these poles. Of cause lower
damping at a particular frequency means higher spectral peak
but the same damping on different frequencies gives different
peak heights. Also, poles and then damping and frequencies
cannot be found analytically but require numerical iterative
methods.

An alternative analytical solution that directly gives the
frequencies and peak heights is hence presented. The spec-
trum of the AR(4) process

y(t) = G(q)e(t) =
1

A(q)
e(t) ,

A(q) =

4∑
j=0

ajq
−j , a0 = 1

(10)

is given by

Φy(ω) = G(eiω)G(eiω)Φe(ω)

= G(eiω)G(eiω)
1

2π
σ2

=
1

A(eiω)A(e−iω)

1

2π
σ2,

(11)

where i =
√
−1.
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Clearly the maximum of Φy(ω) can be found from the
minimum of X(ω)

X(ω) = A(eiω)A(e−iω)

=

4∑
j=0

aje
jiω

4∑
k=0

ake
−kiω

=

4∑
j=0

gj cos(jω)

=

4∑
j=0

hj cos(ω)j ,

(12)

where the coefficients gj and hj are functions of aj .
To find the minimum of X(ω) the first derivative must be

zero and the second must be positive.

dX(ω)

dω
=

− sin(ω)

4∑
j=1

hjj cos(ω)j−1
(13)

d2X(ω)

ω2
=

− cos(ω)

4∑
j=1

hjj cos(ω)j−1

+ sin2(ω)

4∑
j=2

hjj(j − 1) cos(ω)j−2

(14)

The crucial point is now that the first derivative in (13)
includes a third order polynomial in cos(ω) which mean that
there is an analytical solution. However, the explicit formulas
to go from the estimated parameters aj to gj , hj ,Φy and the
first and second derivatives of X is to too long to state here.
For the same reason they are derived using Maple.

The above peak heights and frequencies are used in the
detection procedure below where normal peak height can
be based on statistics from turbines with known normal
operation. Finding the right thresholds for the peaks is not
part of this investigation.

• A peak height is to too high:
– If it is at the tower frequency, signal high tower

oscillations due to something else than asymmetry.
– If it is at the 1P frequency, signal high tower

oscillations due to asymmetry.
∗ If the peak height for transverse oscillations are

high enough compared to longitudinal oscilla-
tions, signal mass unbalance.

∗ Signal aerodynamic unbalance otherwise.
At least approximate uncertainties on the frequency and

peak height can be developed. The covariance on the param-
eter estimate for aj can be approximated by

Cov(θ̂(t)) = P (t)σ̂2(t) = Σ. (15)

From this follows

z = Σ− 1
2 (θ̂ − θ0)⇒ zTz ∈ χ2(4) , (16)

Σ− 1
2 = EΛ− 1

2 , (17)

where E is the eigenvector matrix for Σ and Λ is the diagonal
matrix holding the eigen values. Then, the 1−α “confidence
points” for θ̂ are given by

θ = θ̂ ± Σ
1
2 e1
√
χ2(4)1−α, (18)

where e1 is any vector of length 1. If the four basis vectors
are chosen this gives points corresponding to the columns of
Σ

1
2 i.e. the scaled eigen vectors of Σ. An approximate con-

fidence interval for the frequency and peak height can then
be found by using minimum and maximum for the results
based on θ̂ and the eight “confidence points”. Alternatively,
a Monte Carlo like procedure using a number of random
points can be used.

IV. DEMONSTRATION ON REAL DATA

The available data consist of the channels listed in sec-
tion II. There are 20379 1 Hz samples equal to 5 hours and
20 min. Considering that the interesting frequencies are from
1/4 to 1/3 Hz, the ideal sampling frequency would be higher
than the 1 Hz available. The data is from modern multi-MW
turbines placed in a farm.

To demonstrate that the method is useful, a number of
turbines has been analysed using FFT with the Welch [13,
sec. 10.1] method where all data are included. Among these,
one with small transverse tower oscillation and one with large
transverse oscillations are chosen. The FFT-Welch estimated
spectra are shown in figures 2 and 3.

Power spectral density

0  0.1 0.2 1P 0.3 0.4 0.5
0

0.5
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h
i(
f)

f (Hz)

 

 

D5_TowerAccLong
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Fig. 2. Power spectrum for longitudinal and transverse tower oscillations
estimated by the Welch method for a turbine with transverse oscillations.
1P on the x-axis marks the average 1P frekvency.

As already mentioned, the simple AR(4) accelerations
signal model (10) eventually turn out to be the best model
as its prediction performance was only improved slightly by
other more complicated model structures (6). Moreover, it
has the advantage of being a simple and robust parameter
estimation procedure (9). This conclusion is the result of
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Fig. 3. Power spectrum similar to figure 2 but for a turbine with only
small transverse oscillations.

offline cross validation i.e. estimating parameters on an
estimation data set and evaluating the prediction performance
on another validation data set. This was done for a number of
potentially promising models including AR, ARX with dif-
ferent versions of azimuth harmonic input, generator torque
as input to transverse direction, full flexible PEM models (6)
with all polynomial A,B,C,D, F in play.

When investigating the model including the harmonic
azimuth in the input, it was observed that the amplitude of
1P oscillations seems to vary with time. Also, the azimuth
was not in the measurements but had to be calculated as
the integral of the rotor speed, which then will results in a
drifting error. To account for both of these effects a recursive
adaptive estimation was tested but still without success.

Consequently, the AR(4) model parameters obtained from
adaptive estimation then was used in the above procedure
to obtain corresponding peak frequencies and heights. The
results are shown in figures 4, 5 and 6.

Figure 4 illustrate the adaptive estimation. The upper
left corner subplot shows the measurements and 1 step
prediction errors and the subplot below is a zoom covering
60 sec. so it is possible to see the signals and that the
prediction follows the measurement. The lower right subplot
is a “normal plot” of the 1 step prediction errors. For a
normal distribution it would follow the straight red line.
Clearly there are many extreme outliers which also spoils
the estimation completely if the robustification (9b) is not
used. The parameter estimates, including σ̂/100, is shown
in the top right subplot. Here γ in (9b) is 2.

The peak frequencies and heights for the turbine with
transverse oscillations are shown in figure 5. Notice that only
peaks are shown so “holes” in the curves means the peak
disappear i.e. the damping gets to too high. For this turbine
there are clearly two peaks for longitudinal oscillations, one
at the 1P frequency shown with the violet curve and one at
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Fig. 4. Illustration of the adaptive parameter estimation. Se text for details.
Except for the lower right subplot the x axis is time.

the tower frequency, the tower frequency peak around 2.2104

is higher than the 1P peak. The transverse part shows a clear
peak at 1P which is around 1105 which is much higher than
the tower frequency peak when it is present, and it is at
least five times higher than the longitudinal peaks. Specific
thresholds are not found here. According to the detection
procedure it can at least be suggested that this turbine suffers
from a transverse tower oscillation due to mass imbalance.
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Fig. 5. Spectral frequencies and peaks for a turbine with transverse
oscillations. The violet curve in the frequency plot is the LP filtered 1P
frequency. The violet curve in the peak plot is a scaled version of the squared
LP filtered wind speed. The x axis is time. See text for more details.

For the turbine in figure 6 there are only 1P peaks
sometimes for the transverse oscillations and in this case the
peak is small and also small compared to the tower frequency
peak, which means that no mass or aerodynamic imbalance
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is present. The longitudinal tower frequency peaks are up to
1105 which might be high.
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Fig. 6. Spectral frequencies and peaks for a turbine with small transverse
oscillations. See 5 more details.

V. CONCLUSION

Estimation and detection methods for excessive tower
oscillations in modern multi-MW turbines are developed in
this paper. The aim is to obtain a simple solution, which
can be demonstrated to be useful on real standard turbine
data. Several different approaches has been considered. The
resulting method developed only uses tower longitudinal and
transverse accelerations sampled with 1 Hz. An analytical
solution to finding the spectral peak frequencies and heights
for a AR(4) process is develop. The parameters for this
AR(4) process is obtained from an adaptive robust estima-
tion. The advantage with this method is that everything is
analytical i.e. no, potentially newer ending, numerical search
is necessary. The method is shown to be useful on real data.

Finally, a method to calculate the uncertainty for estimated
peak frequencies and heights are also given.
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