
 

  

 

Aalborg Universitet

Economic COP Optimization of a Heat Pump with Hierarchical Model Predictive Control

Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik; Meybodi, Soroush Afkhami

Published in:
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on

DOI (link to publication from Publisher):
10.1109/CDC.2012.6425810

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Tahersima, F., Stoustrup, J., Rasmussen, H., & Meybodi, S. A. (2012). Economic COP Optimization of a Heat
Pump with Hierarchical Model Predictive Control. In Decision and Control (CDC), 2012 IEEE 51st Annual
Conference on (pp. 7583 - 7588 ). IEEE Press. https://doi.org/10.1109/CDC.2012.6425810

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 11, 2024

https://doi.org/10.1109/CDC.2012.6425810
https://vbn.aau.dk/en/publications/2a8d3390-e73f-4e3f-b0f8-08c481e0029e
https://doi.org/10.1109/CDC.2012.6425810


Economic COP Optimization of a Heat Pump with Hierarchical Model
Predictive Control

Fatemeh Tahersima, Jakob Stoustrup, Henrik Rasmussen and Soroush A. Meybodi

Abstract— A low-temperature heating system is studied in
this paper. It consists of hydronic under-floor heating pipes
and an air/ground source heat pump. The heat pump in such
a setup is conventionally controlled only by feed-forwarding
the ambient temperature. Having shown >10% cut-down on
electricity bills by involving feedback control in a previous
study, this paper has continued the same line of argument
and has investigated effects of a priori knowledge on weather
forecast and electricity price profile to alleviate the total
electricity cost subject to constraints on resident’s thermal
comfort. A two level hierarchical control structure is chosen
for this purpose. While local PI controllers at the bottom level
maintain individual temperature set-points of the rooms, a
model predictive controller at the top level minimizes water
supply temperature, and hence maximizes the heat pump’s
coefficient of performance. At the same time, it determines the
actual temperature set-points of the rooms by deviating from
the user-defined set-points within a thermal tolerance zone.
Simulations results confirm significant cut-down on electricity
bills without sacrificing resident thermal comfort. The proposed
control strategy is a leap forward towards balanced load control
in Smart Grids where individual heat pumps in detached
houses contribute to preserve load balance through intelligent
electricity pricing policies.

I. INTRODUCTION

Low-temperature heating systems with renewable energy
sources have become more popular due to growing public
attention to the environmental issues. Hydronic under-floor
heating system is an example of such systems which offers
a profitable heating solution in suburban areas by utilizing
a ground/air-source heat pump. A heat pump acts like a
refrigerator and transfers heat from a colder medium, e.g.
ambient air, shallow ground or water to the building which
is at a higher temperature. An electrically driven heat pump
can generate 3-4 kWh of heat from 1 kWh of electricity for
driving the heat pump’s compressor. A geothermal heat pump
system is shown in Fig. 1. There are typically two hydronic
and one refrigerant circuits interconnected through two heat
exchangers. These are: 1) the underground buried brine-filled
– mixture of water and anti-freeze – pipes with a small
circulating pump; 2) the refrigerant-filled circuit, equipped
with an expansion valve and driven by a compressor which
is called heat pump; and 3) the indoor under-surface grid of
pipes with another small circulating pump which distributes
heat to the concrete floor of the building.

The underground temperature is fairly constant during
several days and slowly varies with an annual pattern. This
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Fig. 1. An under-floor heating system with a geothermal heat pump

slow dynamic is due to the huge capacity of the ground and
is an advantage to the air-source heat pump with the brine
pipes exposed to the ambient air. The higher temperature
at the evaporator side of the refrigerant circuit potentially
increases the heat pump’s Coefficient of Performance (COP)
in the cold season. It is also an advantage in the warm
season when heat pump works in reverse to cool down the
building; because underground temperature is cooler than
the ambient air in summer. Therefore, we specifically focus
on geothermal heat pumps and assume a constant brine
temperature.

Most commercial control solutions for heat pumps are
based on feed-forwarding the ambient temperature. The for-
ward temperature of water in the distribution hydronic circuit
is adjusted based on a priori known adjustment curves. This
method is further explained in one of our recent works [1]. In
that paper, we investigated feedback control of heat pumps
based on specific heat demands of individual houses. Effects
of calculating the minimum heat demand of a building that
handles all system constraints systematically were studied
using a model predictive controller (MPC). It turned out
that approximately 13% saving can be achieved in electricity
consumption compared to pure feed-forward control.

Feedback control for a similar heating/cooling system
is investigated in several other references too. Reference
[2] conducts a comparison study among proportional (P),
P-integral (PI), PI-derivative (PID) and relay controllers
with a fixed control strategy. The approach is to lock the
floor heating valve at fully-open position and control the
forward temperature based on feedback from the room
temperature. This method is practically efficient for a single-
temperature zone. Multiple-temperature zones with different
heat demands in a residential/office building can not be
controlled by this control scheme. Reference [3] presents
an MPC controller for both cooling and heating purposes.
It focuses on a distributed model predictive control (DMPC)



where different zones are controlled by semi-separated MPCs
that only communicate their temperature setpoints with the
adjacent zones. In another approach [4], the main simplifying
assumption is to choose a constant COP for the heat pump.
However, the amount of electricity saving by controlling a
heat pumps’ varying COP is considerable and should not be
neglected at all.

This paper presents an integrated framework for COP and
cost optimization of the specified hydronic heating system.
We optimized COP by minimizing the supply temperature
and shifting power consumption according to variations
of the ambient temperature. The principal idea for this
optimization method is developed in our previous work
[1]. Optimization of electricity price is also feasible by
load shifting, [5]. This is maintained by incorporating the
concrete floor as a heat reservoir to store heat. By deferring
daily power consumption from price-peak times to off-peak
periods, residents can cut down electricity bills. According to
[6], approximately half of the economic potential for saving
in annual electricity bills, can be achieved by postponing
power consumption in each day for a couple of hours.

The rest of this paper is structured as follows. As the first
detailed step, our control strategy for the heating system
of a specific apartment is given in Section II. Section III
presents problem formulation by describing the plant model
and introducing an optimization problem. The optimization
problem is tackled by the control strategy and the results are
presented in Section IV. Section V concludes the paper by
offering a discussion on results and a road map to future
works.

II. CONTROL SYSTEM STRUCTURE

Our case study is a 54 m2 apartment which consists of
three separate heat zones, i.e. rooms, shown in Fig. 2.

Fig. 2. Sketch of the apartment with three separate heat zones

Each room in Fig. 2 has a separate grid of under-surface
floor heating pipes. As a whole, they form the hydronic
distribution circuit of the apartment. The flow of heating
water in each room is controlled by a valve. Valve openings
are adjustable and are controlled by local PI controllers
such that room-specific temperature setpoints are followed
in presence of exogenous disturbances.

The circulation pump in the distribution circuit is con-
trolled to regulate the differential pressure across all three
parallel branches of the rooms’ pipe grids. Thus, the flow
through each valve is assumed to be only dependent on its
opening percentage.

As of the refrigerant circuit, the expansion valve has
a built-in mechanical feedback mechanism to marginally
prevent flow of condensed refrigerant into the compressor,
i.e. the heat pump. The heat pump could be continuously
controlled. In [1], we have employed a Model Predictive
Controller (MPC) to reduce heat pump’s power consumption
as much as possible. This goal was achieved by minimizing
the forward temperature. Forward temperature is the temper-
ature of water at inlet of the distribution piping grid; and it
should be high enough in order to facilitate room temperature
control by local PI controllers without driving any of the
room valves into the fully-open saturated status, otherwise
no actuation capacity is left for compensating exogenous
disturbances that may hit the system at any time.

In the aforementioned paper, however, we did not con-
sider the influence of a priori known disturbances like the
ambient temperature and electricity price. Knowledge about
the ambient temperature in advance could help to improve
thermal comfort and result in a higher daily COP. A higher
COP means less electricity consumption and a cut down in
energy costs. The control strategy which lead us toward this
objective is deferring heat load from nighttime to daytime.
We can store heat in the concrete floor during day when the
demanded forward temperature is lower than in night, or in
the other words, COP is higher. The buffered heat can then
be used in night time when COP is normally higher.

A priori knowledge about price of electricity could be
provided by the grid utility 24 hours in advance. Two types
of electricity tariffs are considered: daily and hourly prices.
Deferring the load can be well accommodated by daily price
variations, however hourly variations do not influence the
pattern of daily load shifting. The concrete floor, as a low-
pass filter, can be cooperated to diminish the influence of
slow disturbances. A similar control strategy is envisioned
for this purpose like the one employed in [5]. The difference
with the latter study, however, is that the grid utility provides
users with the electricity price profile instead of a power
setpoint for the heat pump. Besides, we proposed a MPC
in order to systematically reduce daily energy prices of the
heating, by including future disturbances in the optimization
process.

MPC can systematically incorporate forecast data of
weather and price along with other system constraints in
the optimization procedure. Besides constraint handling,
MPC gives systematic feedforward design based on future
demands [7]. Therefore, we designed a MPC in the top
level of control hierarchy to orchestrate functioning of local
controller units at the lower level.

The closed loop hierarchical control system is shown in
Fig. 3. There are as many internal loops as the number of
rooms and an outer loop with a multiplexer and a MPC.
In the inner loops, each PI regulates a specific room’s
temperature to the setpoint value received from the MPC.
In the outer loop, the room with highest heat demand is
selected. The MPC controller then minimizes the supply
temperature based on the dynamics of that room.

In the real case, a PI’s signal to a thermal wax actuator



Fig. 3. Block diagram of the closed loop system consisting of three
individual rooms with under-floor heating pipes. Temperature of the rooms
are controlled by local PI controllers which give signal to the Thermal
Wax Actuators (TWA) to adjust the flow rate. The MPC controller specifies
temperature setpoints of supply, TsRef , and each room, Tsp, based on the
actual heat demand of individual rooms.

(TWA) is a two-level Pulse Width Modulation (PWM) signal
which is translated into a continuous signal in simulations.
Thus, the corresponding control signal determines the valves
opening percentage.

III. PROBLEM FORMULATION AND METHOD

A. Plant Model

This section gives an introduction to the model of the plant
and control model that is used in simulations. A description
of all symbols, subscripts and parameter values are given
later in table I. The chosen values for all parameters are in
accordance with experimental data. Some experiments have
been conducted on a low-energy building in Copenhagen
for the purpose of model verification and testing designated
control solutions.

The state space equations which govern a single room’s
dynamics are derived based on the analogy between thermal
systems and electrical circuits [8]. The energy balance equa-
tions based on three main thermal masses: air, concrete floor,
and water are as follows:

CiṪi = Ba(Ta − Ti) +Bij(Tj − Ti) +Bif (Tfi − Ti)
Cfi Ṫfi = Bif (Ti − Tfi) +Bfw(Twi

− Tfi) (1)

Cwi Ṫwi = Bfw(Tfi − Twi) + cwqi(Ts − Tfi)

in which i and j are indices of two adjacent rooms, i, j ∈
{1, 2, 3}. B represents the equivalent convection/conduction
heat transfer coefficient between two connected nodes. For
instance, Bfw is the conduction heat transfer coefficient
between the concrete layer and floor heating pipes that are
at temperature Tw. The third equation which models heat
flow to the concrete floor through a network of pipes is
the simplified version of a more accurate simulation model
which is presented in [5].

The local PI controller for the ith room in state space form
is:

ξ̇ =
Kp

Tint
(Tspi

− Ti) (2)

qi = Kp(Tspi
− Ti) + ξ

with ξ as the auxiliary state. The parameters of the PI
controller are chosen based on the plant step response around
the desired operating point which is q = 90%qmax. The
choice of the operating point is originated from the fact that
water supply temperature should be high enough not to drive
floor heating valves to the fully open position.

The heat pump dynamics is much faster than the fastest
dynamic in the building. Therefore, we consider it as a
static gain. Relation between the transferred heat from the
condenser to water in the distribution circuit, Qc, and the
heat pump’s electrical work, Wc, is given by:

Wc =
Qc

ηcop
(3)

with ηCOP representing the coefficient of performance. This
term depends on the temperature difference between the
evaporator i.e. brine water temperature, and the condenser
i.e. floor heating supply temperature. COP as a manufacturer
parameter is usually documented in the heat pump data sheet.
We have used a COP curve, see Fig. 4 based on the statistical
data given in [9]. The aforementioned models comprise the
plant’s simulation model.

Fig. 4. Statistical data showing the relation between Ts − Tbrine and the
heat pump’s COP. x represents the temperature lift, Ts − Tbrine.

Assuming a geothermal heat pump with deeply buried
pipes in brine side, the brine temperature is assumed to be
constant during heating season. Presuming Tbrine = 5 ◦C,
ηcop(Ts) is formulated by interpolation in the following:

ηcop = 0.0021T 2
s − 0.35Ts + 16.7 (4)

The prediction model for MPC controller can be formu-
lated as a linear time invariant system in spite of a bilinear
term in the last row of 1. In the vicinity of the desired
operating point which is q = 0.9qmax, the bilinear term
can be linearized. Hence the internal model of the MPC
controller can be written in a state space form as:

ẋ = Ax+Buu+Bdd (5)
y = Cx+Duu+Ddd

with x = [Ti, Tfi , Twi
, ξ]T , u = [Ts, Tspi

]T , y = [Ti, qi]
T ,

and d = Ta. Matrices A, B, C and D are derived based
on (1) and (2). Room temperatures are measured and the
flow rate is estimated by knowing the valve opening degree



and the differential pressure across the valve. The other state
variables, ξ, Twi

and Tfi are estimated using a Kalman state
observer. The above model is discretized using a sampling
time, ts which is chosen based on the fastest dynamic of the
system.

B. The Optimization Problem

The main objective is to minimize power consumption
and the corresponding energy price. Power consumption, as
mentioned earlier in 3, is:

Wc =
cwq(Ts − Tf )

−aT 2
s + bTs + c

(6)

with a, b and c defined in (4). Wc is positively correlated with
supply temperature Ts for a constant transferred heat to the
building. In the above equation, lessening Ts does not change
the numerator because the mass flow rate will be increased
in return. Denominator will increase as Ts decreases (the
quadratic approximation function is negative definite until
Ts < 83.5) which consequently leads to reduction of Wc.
Therefore, the optimization problem with discretized model
(5) is formulated as:

min
Ts,Tspi

N∑
k=1

cs(k)Ts(k) + |Ti(k)− Tcmfi(k)|

s.t. x(k + 1) = Ax(k) +Buu(k) +Bdd(k)

y(k) = Cx(k) +Ddd(k) (7)
0 ≤ qi(k) ≤ 0.9qmax

Ts,min ≤ Ts(k) ≤ Ts,max

−TT ≤ Tspi(k)− Tcmfi(k) ≤ TT

The prediction model is selected according to the dynam-
ics of the room with the highest heat demand. N is the
prediction horizon. In the cost functional, the weight cs(k)
represents electricity price and Tcmfi(k) stands for user-
defined temperature setpoint, both of them at time instant
k. Tspi

is the manipulated variable that must be bounded
within comfort levels defined by the user. TT stands for
Thermal Tolerance. We also considered constraints on the
manipulated variables rate of change which is not indicated
in the above formulation. Supply temperature variations rate
is limited to 1 ◦C and the setpoint temperature modification
rate is limited by 0.1 ◦C, both per sample time ts.

IV. SIMULATION RESULTS

We have selected discretization sampling rate of the sys-
tem equal to the MPC sample time, ts = 6min which is
chosen based on the operation time of the TWAs, i.e. less
than 5min.

A. Weather Forecast Data

This section investigates the improvement achieved for
COP optimization by exploiting weather forecast data.
Recorded weather data was provided by the Danish Meteo-
rological Institute (DMI) for 12 days from January 20 to 31,
2012. In the simulations where weather forecast is involved,
we assumed that a perfect forecast was available 6 hours

in advance. The coefficient cs(k) and the Thermal Tolerance
level (TT) in (7) are zero indicating that price of energy does
not influence the optimization. Also, Tspi is not a control
input in this simulation scenario, but it is equivalent to the
user specified comfort temperature, Tcomfi .

The simulation results for the three-room apartment is
shown in Fig. 5. However, only the room with the highest
heat demand at each time instant affects the results. In other
words, the graph is associated with only one room.

Both comfort and energy costs are improved compared to
the case without weather forecast data. In order to quantify
comfort improvement, the variance of error in both cases are
compared using (8). ∆T is the evaluation time horizon over
which the variance is integrated.

σ =

∫
∆T

|Ti(t)− Tcmfi(t)|
∆T

dt (8)

It turned out that in case of employing weather forecast,
the variance of error was approximately 0.018, while it was
around 0.04 when no forecast data was available. Thus, the
comfort level is improved by almost 55%.

In order to evaluate the effect of weather forecast on
the average COP values, we calculated the average COP
over 10 days using (4). The average COP with and without
weather forecast data is 7.24 and 7.25, respectively. The
COP is degraded around 0.17% compared to the situation
without weather forecast involvement. This does not convey
any meaningful outcome in regard to power savings. In the
contrary, it confirms that despite having a significant positive
influence on thermal comfort, weather forecast have a minor
negative impact on the total energy consumption cost. The
effect of weather forecast was diminishing fluctuations in the
water temperature, therefore the average water temperature
in both simulation scenarios is quite the same which means
weather forecast does not change or improve COP, nor the
energy consumption cost.

B. Price Profile

To satisfy monetary interests of end users, another mech-
anism is devised in this section to directly affect electricity
consumption based on the instantaneous price of electrical
power. In this method a list of provisional price values for
the coming 24 hours is communicated through the power
grid by the power utility provider. Such a price profile is
designed in a way to encourage less consumption during
peak hours by assigning a higher price. However, the task
of the MPC controller at the end user is not to reduce the
overall consumption which adversely affects user comfort.
Instead, its job is to force the heat pump to consume energy
when it is cheap and deprive it of energy consumption when
the price is high.

To fulfill its job, the MPC modifies the setpoint of each
zone according to the energy price in order to shift the heat
demand from peak hours to off-peak periods, based on (7).
Fig. 6 illustrates how it becomes possible to decrease the
consumption cost with the same average water temperature
and not sacrificing thermal comfort of residents. It shows



Fig. 5. Simulation results with and without accurate weather forecast data

that the average water temperature is even increased 2.2% in
average compared to the scenario when energy is minimized
not the energy cost. COP is also increased 1.2% which is
due to the increased average water temperature. However,
the cost of electricity consumption is reduced by 10% in
average which is subject to the Elspot price variations shown
in Fig.6. Higher fluctuations of the electricity price would
lead to much more cost benefits.

Increase of the average water temperature and by this
mean reduction of COP is due to the fact that load shifting
for the purpose of cost minimization might not be in the
same direction as the energy efficiency. More clearly, the
two objectives could be in contradiction depending on the
periodic signal of price. From the energy perspective, it is
more efficient to shift the load from night to daytime when
COP is usually higher. However, electricity price is normally
higher in daytime due to peak load. Therefore it is more
economic to consume in night time than during the day.
This contradiction has led to a deficit in the system energy
efficiency, but to a lower energy cost which is the final target
of the optimization problem.

Starting in the steady state, when the price goes down,
the actual temperature setpoint in the building increases.
Therefore, the valves tend to become fully open. The local PI
controllers interpret this situation as saturation and impaired
regulation. However, in reality the building is intentionally
getting warmer than what the user had desired in order to
store energy for the next peak period. On the other hand,
when the price goes up, the actual temperature setpoint in
the building decreases. This will result in tightening of the
valves on floor heating pipes and preventing expensive power
consumption. Deviating from the user-defined setpoint is of
course already permitted and approved by the user through
adjustment of the thermal tolerance level.

It should also be noted that the constraint on flow may not

be replaced with an additional term in the objective function
in (7). The reason is that the free move of floor heating valves
in a permissible interval is essential if the combination of
local PI controllers and the MPC controllers should be able
to function properly. It is not consistent design if the top
level MPC directly regulates both the setpoint and the control
signal of PI controllers. At least, one should be free and we
have chosen to let PI controllers have complete control on
their actuators. This is a consistent hierarchical design.

In summary, it can be stated that the main contribution of
the paper is to formulate objectives and constraints in the op-
timization problem in (7) such that a consistent hierarchical
structure is created.

V. CONCLUSION

In this paper we studied the effects of: 1) weather forecast
data, 2) electricity price profile, and 3) the indirectly found
heat demand, on control of a heat pump. This was done by
employing a two level control system structure. The lower
level consisted of local PI controllers which were used to
regulate temperature setpoints of individual heat zones in a
building. The size of the control signal in each of the heat
zones was interpreted as an indication of the heat demand in
that zone and was taken into account as the basis for selection
of the zone with the highest heat demand. Afterwards,
the weather forecast data and electricity price profile were
involved in an optimization problem by the top level MPC
controller. An interesting result was that a priori knowledge
on weather conditions proved to have negligible effects on
saving money despite its significant role in improving user’s
comfort and improving temperature regulation capability of
the control system. On the contrary, a priori knowledge on
electricity price profile turned out to have a vast potential for
providing monetary savings in electricity bills. At the end,
it is the user who adjusts his desired thermal tolerance, and



Fig. 6. Simulation results with and without price profile data

hence determines the constraints that must be satisfied by the
control system. It is a deal between end users and the power
utility company. Should the company send out inexpensive
bills, it requires to affect control of users’ heat pumps via
their pricing policies.
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TABLE I
SYMBOLS AND SUBSCRIPTS

Nomenclature
B heat transfer coefficient between two nodes

in an electric circuit (kJ/s◦K)
Bif heat transfer coefficient between a room air

and the layer of concrete floor(kJ/s◦K)
Bij heat transfer coefficient between two adjacent

rooms (kJ/s◦K)
Bfw heat transfer coefficient between influent water

and concrete floor (kJ/s◦K)
C thermal capacitance (J/kg ◦C)
cs electric power price
Kp proportional gain
Qc transferred power to the house
Q heat (W )
q water flow rate in floor heating (kg/sec)
qmax maximum water flow rate in floor heating

pipes (kg/sec)
T temperature (◦C)
Tcmf comfort temperature set by the user (◦C)
Tint integration time
Ts supply temperature (also called forward

temperature) (◦C)
Ts,min minimum supply temperature (◦C)
Ts,max maximum supply temperature (◦C)
TT Thermal Tolerance (◦C)
Wc consumed power by compressor
ξ auxiliary state
ηcop coefficient of performance

Subscripts
a ambient
cmf comfort
f floor (with i index corresponding to

the ith room concrete floor)
fi floor of the ith room
i, j room number
k time instant (s)
s supply temperature
sp setpoint
w water


