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Abstract  

Observations are reported in tensile relaxation tests under stretching and retraction on poly-

propylene/clay nanocomposites with various contents of filler. A two-phase constitutive model 

is developed in cyclic viscoelasticity and viscoplasticity of hybrid nanocomposites. Adjustable 

parameters in the stress-strain relations are found by fitting the observations. Ability of the 

constitutive equations to describe characteristic features of the time-dependent response 

under loading and unloading is confirmed by numerical simulation. 

 

1 Introduction  

This paper deals with experimental investigation and constitutive modeling of the time-

dependent response of polypropylene/clay nanocomposites. The study focuses on the so-

called anomalous behavior [1] of nanohybrids observed in relaxation tests on specimens 

stretched up to some maximum strain εmax and unloaded down to various minimum stresses 

ζmin.  

Experimental data in conventional relaxation tests under tension demonstrate a monotonic 

decrease in stress with time. The situation changes drastically when relaxation is conducted 

on samples subjected to tension up to a maximum strain εmax and retraction down to a 

minimum stress ζmin. Depending on the difference δζ=ζmax-ζmin, where ζmax stands for 

maximum stress under tension, three regimes of relaxation are revealed (i)  simple relaxation 

(stress decays monotonically with time) at δζ<0.3ζmax, (ii) mixed relaxation (stress increases, 

reaches its maximum value, and decreases afterwards) at 0.3ζmax<δζ<0.8ζmax, (iii) inverse 

relaxation (stress grows with time) at δζ>0.8ζmax.  

Transitions from simple to mixed to inverse relaxations have been observed in semicrystalline 

and amorphous polymers [1-3]. However, this phenomenon has not yet been examined in 

hybrid nanocomposites. The objective of this work is twofold: (i) to analyze the effect of clay 

content on the time-dependent behavior of polypropylene/nanoclay hybrids in three-step 

(loading–unloading–relaxation) tests, and (ii) to derive a constitutive model for the 

viscoelastic and viscoplastic behavior of nanocomposites subjected to cyclic deformation. 

 

2 Experimental results 

Isotactic polypropylene Moplen HP 400R was purchased from Albis Plastic Scandinavia AB 

(Sweden). Maleic anhydride grafted polypropylene Eastman G 3015 was supplied by Eastman 
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Chemical Company (USA). Organically modified montmorillonite nanoclay Delitte 67G was 

donated by Laviosa Chimica Mineraria S.p.A. (Italy). 

Hybrid nanocomposites were manufactured in a two-step process [4]. At the first step, a 

masterbatch was prepared in a twin-screw extruder Brabender PL2000. At the other step, 

pellets of the masterbatch were mixed with polypropylene in various proportions 

corresponding to nanoclay concentrations χ=0, 1, 3, and 5 wt.%. Dumbbell specimens for 

tensile tests were molded by using injection-molding machine Arburg 320C. 

Mechanical tests were performed at room temperature by means of universal testing machine 

Instron–5568 equipped with an electro-mechanical sensor for control of longitudinal strains. 

The experimental program involved two series of tests. 

The first series was conducted to evaluate the effect of clay content on the time-dependent 

response of nanocomposites under tension. In each test, a specimen was stretched with cross-

head speed d=100 mm/min (which corresponded to strain rate e=1.7·10
-2

 s
-1

) up to strain 

ε=0.1. Afterwards, the strain was fixed, and changes of stress ζ with time t were monitored. 

 

 
 

Figure 1. Stress ζ versus relaxation time η. Symbols: experimental data in relaxation tests under tension on 

nanocomposites with various clay contents χ wt.% (unfilled circles – χ=0, filled circles – χ=1, asterisks – χ=3, 

stars – χ=5). Solid lines: results of numerical simulation. 

 

Observations in short-term relaxation tests (with duration trel=20 min) on nanocomposites 

with χ=0, 1, 3, and 5 wt.% of clay are reported in Figure 1 where stress ζ is plotted versus 

relaxation time η=t-t0 (t0 stands for the instant when relaxation starts). Following common 

practice, the semi-logarithmic plot is employed with log=log10. The following conclusions are 

drawn: (i) at all concentrations of nanoclay, stress decreases monotonically with η, and (ii) the 

relaxation diagrams are weakly affected by clay content χ. 

The other series of tests was conducted to examine the influence of filler on the viscoplastic 

behavior of nanocomposites under loading–unloading and their viscoelastic response under 

retraction. In each test, a specimen was loaded with cross-head speed d=10 mm/min (which 

corresponded to strain rate e=1.7·10
-3

 s
-1

) up to maximum strain εmax=0.1 and unloaded down 

to minimum stress ζmin=1 MPa with the same cross-head speed (this value was chosen instead 

of ζmin=0 MPa to avoid buckling of specimens). Afterwards, the strain was fixed, and 

evolution of stress ζ with time t was measured during trel=20 min. 

An example of the stress–strain diagram under cyclic loading for nanocomposite with χ=5 

wt.% is reported in Figure 2. Experimental data in cyclic tests show that reinforcement of 

polypropylene with nanoclay results in (i) an increase in yield stress ζy (defined as the 

maximum stress under tension), (ii) a decrease in yield strain εy (the strain at which tensile 

stress reaches its maximum value), and (iii) evolution of shapes of stress–strain curves under 

retraction (curvatures of these diagrams increase monotonically with χ). 
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Figure 2. Stress ζ versus strain ε. Stars: experimental data in cyclic test with εmax=0.1 and ζmin=1 MPa on 

nanocomposite with χ=5 wt.%. Solid line: results of numerical simulation. 

 

Observations in relaxation tests under retraction are depicted in Figure 3. According to this 

figure, relaxation diagrams under retraction are weakly affected by clay content χ. 

 

 
 

Figure 3. Stress ζ versus relaxation time η. Symbols: experimental data in relaxation tests on nanocomposites 

with various clay contents χ wt.% stretched up to εmax=0.1 and unloaded down to ζmin=1 MPa (unfilled circles – 

χ=0, filled circles – χ=1, asterisks – χ=3, stars – χ=5). Solid lines: results of numerical simulation. 

 

3 Constitutive model 

A hybrid nanocomposite with a semicrystalline matrix is thought of as a two-phase medium 

consisting of crystalline and amorphous regions (clay platelets and their stacks are assumed to 

be randomly distributed in crystalline and amorphous domains, and their influence is 

accounted for by treating coefficients in the stress–strain relations as functions of nanofiller 

content χ). Both phases are modeled as viscoelastoplastic continua with plastic deformations 

governed by different flow rules. The viscoelastic response of the crystalline phase is 

independent of plastic deformation, whereas relaxation spectrum of the amorphous phase 

evolves with intensity of plastic strain. 

Constitutive equations for uniaxial tension of a nanocomposite with an arbitrary deformation 

program ε(t) involve (i) kinematic relations for elastic strains εae and εce in the crystalline and 

amorphous regions  
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 εae=ε-εap,     εce=ε-εcp, (1) 

 

where ε stands for tensile strain, and εap and εcp denote corresponding plastic strains, (ii) 

kinetic equation for plastic strain in the crystalline phase  

 

 dεcp/dt=θdε/dt, (2) 

 

where coefficient θ obey the equations  

 

 dθ/dt=a(1-θ)
2
dε/dt   (loading),      dθ/dt=0      (unloading), (3) 

 

and a is a positive constant, (iii) kinetic equation for plastic strain in the amorphous phase  

 

 dεap/dt=S[εae-∫0
∞
 f(v)Za(t,v)dv]|dε/dt|, (4) 

 

where S adopts positive values S1 and S2 under loading and unloading, dumb variable v stands 

for dimensionless activation energy for rearrangement, and the function f(v) (it characterizes 

distribution of relaxation times in a nanocomposite) accepts the quasi-Gaussian expression  

 

 f(v)=f0exp[-v
2
/(2Σ

2
)]        (v≥0),        f(v)=0    (v<0) (5) 

 

with a positive coefficient Σ, (iv) evolution equations for functions Za and Zc that describe 

relaxation of stresses in amorphous and crystalline phases  

 

 ∂Za/∂t=Γa(εae-Za),         ∂Zc/∂t=Γc(εce-Zc), (6) 

 

(v) the Eyring formulas for rates of rearrangement Γa and Γc in amorphous and crystalline 

regions  

 

 Γa=Aγexp(-v/B),      Γc=γexp(-v), (7) 

 

where γ stands for the relaxation rate, (vi) linear equations that account for changes in 

relaxation spectrum of the amorphous phase driven by plastic deformation in crystallites  

 

 A=1,   B=1   (loading),     A=1+C(εcp
max

-εcp),   B=1+D(εcp
max

-εcp)    (unloading), (8) 

 

where εcp
max

 stands for maximum plastic strain in crystalline domains under tension, and C, D 

are positive constants, (vii) formulas for stresses ζa and ζc in amorphous and crystalline 

domains  

 

 ζa(t)=Ea[εae(t)-∫0
∞
 f(v)Za(t,v)dv],      ζc(t)= Ec(1-θ(t))[εce(t)-∫0

∞
 f(v)Zc(t,v)dv], (9) 

where Ea and Ec denote elastic moduli, and (viii) the expression for tensile stress in a 

nanocomposite  

 

 ζ=ζa+ζc. (10) 
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Stress–strain relations (1)–(10) involve nine adjustable parameters with transparent physical 

meaning: (i) Ea, Ec denote Young’s moduli, (ii) γ and Σ characterize the linear viscoelastic 

response, (iii) a determines rate of plastic deformation in the crystalline phase under tension, 

(iv) S1, S2 denote rates of plastic flow in the amorphous phase under loading and unloading, 

(v) C, D describe evolution of relaxation spectrum in amorphous domains at retraction. 

 

4 Fitting of observations 

Adjustable parameters in the stress–strain relations are found by matching the observations 

reported in Figures 1–3. Each set of experimental data is approximated separately. As an 

example, the effect of clay content χ on elastic moduli Ea and Ec is illustrated in Figure 4 

where the data are approximated by linear dependencies. 

 

 
 

Figure 4. Elastic moduli Ea and Ec versus clay content χ. Circles: treatment of observations in three-step tests. 
Solid lines: results of numerical simulation. 

 

 

5 Numerical simulation 

To demonstrate ability of the constitutive model to predict the viscoelastic and viscoplastic 

responses of nanocomposites with various concentrations of filler χ in three-step (loading–

unloading–relaxation) tests, numerical integration is conducted of the stress–strain relations 

with the adjustable parameters found by matching observations. 

Simulation is carried out for nanocomposites with χ=0, 5, 10, and 15 wt.% subjected to cyclic 

loading with strain rate e=1.7·10
-3

 s
-1

, maximum strain εmax=0.1, and minimum stresses 

ζmin=0, 5, 10, 15, 20, 25 MPa. 

The stress–strain diagrams under loading and unloading are depicted in Figure 5. This figure 

demonstrates that an increase in clay content χ causes (i) a noticeable growth of yield stress  

ζy, (ii) a strong reduction of yield strain εy, and (iii) a growth of curvature of the stress–strain 

diagrams under retraction. 

Relaxation curves under retraction toward various minimum stresses ζmin are reported in 

Figure 6 (as an example, only data for χ=0 wt.% are presented). This figure demonstrates that 

the model predicts adequately transitions from simple (at ζmin>20 MPa) to mixed (at 

5<ζmin<20 MPa) to inverse (at ζmin<5 MPa) relaxations (the critical stresses at which these 

transitions occur coincide with the data on semicrystalline polymers reported in [1-3]). 

Results of numerical simulation show that these stresses are practically independent of clay 

content χ. Reinforcement of polypropylene with nanoclay does not affect relaxation curves at 

ζmin>15 MPa and induces a decrease in peaks on the relaxation diagrams at ζmin<15 MPa. The 

effect of clay content becomes substantial at low minimum stresses only. For example, at 
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ζmin=0, maximum stress under relaxation of neat polypropylene exceeds that under relaxation 

of nanocomposite with χ=15 wt.% by 81%. 

 

 
Figure 5. Stress ζ versus strain ε. Symbols: results of numerical simulation for cyclic tests with εmax=0.1 and 

ζmin=0 on nanocomposites with various clay contents χ wt.% (unfilled circles – χ=0, filled circles – χ=5, asterisks 

– χ=10, stars – χ=15).  

 

6 Conclusions 

Observations are reported on isotactic polypropylene/organically modified montmorillonite 

clay nanocomposites with various concentrations of filler in (i) relaxation tests under tension, 

(ii) loading–unloading tests with various maximum strains, and (iii) relaxation tests under 

retraction down to the zero stress. Experimental data in relaxation tests show a monotonic 

decrease in stress with time (simple relaxation) under tension and a monotonic growth of 

stress with time (inverse relaxation) under retraction. 

 

 
 

Figure 6. Stress ζ versus relaxation time η. Symbols: results of numerical simulation for relaxation tests on 

nanocomposites with χ=0 wt.% stretched up to εmax=0.1 and unloaded down to various stresses ζmin MPa 

(unfilled circles – ζmin=0, filled circles – ζmin=5, asterisks – ζmin=10, stars – ζmin=15, diamonds – ζmin=20, 

triangles – ζmin=25). 

 

Constitutive equations are derived for the viscoelastic and viscoplastic responses of 

nanocomposites with semicrystalline matrices. A nanocomposite is treated as a two-phase 

continuum. Both phases are modeled as viscoelastoplastic media with different kinetic 
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equations for plastic flow and different assumptions regarding the influence of plastic 

deformation on the viscoelastic behavior. The stress–strain relations involve nine adjustable 

parameters that are found by fitting the observations. 

Ability of the model to predict the mechanical response of nanocomposites with various 

concentrations of clay is confirmed by numerical simulation. 
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