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Abstractions for Mechanical Systems ?

Christoffer Sloth ∗ Rafael Wisniewski ∗∗

∗Department of Computer Science, Aalborg University, 9220 Aalborg
East, Denmark (e-mail: csloth@cs.aau.dk).

∗∗ Section of Automation & Control, Aalborg University, 9220 Aalborg
East, Denmark (e-mail: raf@es.aau.dk)

Abstract: This paper proposes a method for discretizing the state space of mechanical systems.
This is a first attempt in using reduction techniques for mechanical systems in the partitioning of
the state space. The method relies on a combination of transversal and tangential manifolds for
the conservative mechanical system. The tangential manifolds are generated using constants
of motion, which can be derived from Noether’s theorem. The transversal manifolds are
subsequently generated on a reduced space given by the Routhian, via action-angle coordinates.
The method fully applies for integrable systems.
We focus on a particular aspect of abstraction - partitioning the state space, as existing
methods can be applied on the discretized state space to obtain an automata-based model.
The contribution of the paper is to show that well-known reduction methods can be used to
generate abstract models, which can be used for formal verification.

Keywords: Mechanical Systems, Formal Verification, Reduction, Reachability, Timed
Automata.

1. INTRODUCTION

In the design of a safety-critical system, it is vital to
formally verify the system before its deployment. Formal
verification can be used to prove the safety of a system, i.e.,
that no admissible solution trajectories reach a forbidden
subset of the state space, see Guéguen et al. (2009) for a
survey.

There exist lots of methods for verifying different proper-
ties of systems, and the choice of a method should be done
based on the dynamics of the considered system and the
properties that should be verified. A method for verifying
timed and temporal specifications of timed automata is
presented in Alur and Dill (1994). In addition, a framework
for verifying the safety of more general stochastic hybrid
systems, by the use of Lyapunov-like functions called bar-
rier certificates, is presented in Prajna et al. (2007).

To verify the system, we generate an abstract model of
a mechanical system based on a partition of the state
space. We follow the ideas of Broucke (1998) and generate
the partition using invariant sets. However, in contrast to
Broucke (1998), we provide a method for generating the
tangential and transversal manifolds used in the partition-
ing for mechanical systems. To allow the verification of
timed and temporal specifications, we abstract the system
by a timed automaton instead of a directed graph, which
is most commonly used.

The contribution of this paper is to show that symme-
try reduction techniques from mechanics can be utilized
for realizing the partition used for abstracting dynami-
cal systems presented in Section 2. We apply Lagrange-

? This work was supported by MT-LAB, a VKR Centre of Excel-
lence for the Modelling of Information Technology.

D’Alembert’s principle to model the mechanical system.
At first, we remove all dissipation and discretize the result-
ing conservative system. Using the Lagrangian, we identify
cyclic coordinates, and generate tangential manifolds given
by constants of motion of the system found via Noether’s
theorem. Subsequently, we generate transversal manifolds
on a reduced system, given by the Routhian, via the
use of action-angle coordinates. Afterwards, we add the
dissipation and obtain a so-called transversal partition.
This gives a finite discretization of the state space for
integrable mechanical systems. For more general mechan-
ical systems, the effectiveness of the method depends on
the symmetries of the system. Note that our approach is
elementary as it is accomplished in coordinates, in contrast
to abstract coordinate free formalism for reductions in
mechanical systems Marsden and Ratiu (1999). The gen-
erated abstract model is a timed automaton that can be
checked in existing tools; hence, allowing the verification of
timed and temporal properties of the mechanical system.
To delimit the content of the paper, we only present the
method for generating the partition, as the abstract model
subsequently can be generated using Sloth and Wisniewski
(2011).

This paper is organized as follows. Section 2 contains
preliminary definitions, Section 3 explains how to make
abstractions for a mechanical system, and Section 4 applies
the proposed partition on a model of the inverted pendu-
lum on a cart. Finally, Section 5 comprises conclusions.

2. PRELIMINARIES

The purpose of this section is to provide definitions related
to dynamical systems and partitions of state spaces.
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2.1 Dynamical System

An autonomous dynamical system Γ = (X, f), with state
space X ⊆ Rn and continuous map f : X → Rn, has
dynamics described by ordinary differential equations

ẋ = f(x). (1)

Let φΓ : [0, ε]×X0 → X, ε > 0 be the flow map satisfying

dφΓ(t, x0)

dt
= f (φΓ(t, x0)) (2)

for all t ∈ [0, ε] and x0 = φΓ(0, x0).

For a map f : A → B, and a subset C ⊆ A, f(C) ≡
{f(x)| x ∈ C}. Thus, the reachable set of a system Γ from
a set of initial states X0 ⊆ X on the time interval [t1, t2]
is defined as

φΓ([t1, t2], X0). (3)

2.2 Partitioning

A definition of a cell, generated by a collection of functions
is given below, where k denotes the set {1, . . . , k}.
Definition 1. (Cell). Let Φ = {ϕi : Rn → R|i ∈ k} be a
collection of functions, let A = {Ai|i ∈ k} be a collection

of sets of regular values, where Ai = {aji ∈ R|j ∈ Ii ⊆ N}
is a set of regular values of ϕi and aji < aj

′

i if j < j′.

Assume that the level sets ϕ−1
i (aji ) and ϕ−1

i′ (aj
′

i′ ) intersect
transversally for all i 6= i′, j ∈ Ii, and j′ ∈ Ii′ . Then a
connected component of

k⋂

i=1

ϕ−1
i ([aji , a

j′

i ]) (4)

with aji , a
j′

i ∈ Ai and j < j′ is called a cell.

In the definition, Ii indexes regular values of ϕi. A finite
partition E(Φ,A) is defined to be the collection of all cells
generated by Φ and A according to Definition 1.

Definition 2. (Transversal Partition). Let X be an open
connected subset of Rn. Suppose f : X → Rn is con-
tinuous and let Cr(f) be the set of critical points of f
(equilibria). Let Φ = {ϕi : X → R|i ∈ k} be a set of real
differentiable functions, where

Lfϕ(x) ≡
n∑

j=1

∂ϕ

∂xj
(x)f j(x) (5a)

and let A = {Ai|i ∈ k} be a collection of sets of regular
values. Then the finite partition E(Φ,A) is said to be
transversal (we call it a transversal partition) if for each
cell e ∈ E(Φ,A) there is a partitioning function ϕi ∈ Φ
such that

Lfϕi(x) 6= 0 ∀x ∈ e\Cr(f) (5b)

and for all i ∈ k

Lfϕi(x) = 0 ∀x ∈ Cr(f). (5c)

It is seen from (5b) that at least one partitioning function
has to have nonzero gradient in each cell (5b); hence, the
vector field should be transversal to the level sets of at
least one partitioning function. This is important in the
generation of time information for the abstraction.
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Fig. 1. A phase plot of a system and a partition of its state
space. The behavior of the system is abstracted by a
timed automaton.

2.3 Abstraction

To motivate the proposed abstraction procedure, it is
briefly explained in the following. For details see Sloth and
Wisniewski (2011).

Consider a state space partitioned into a number of cells,
as shown in Fig. 1. The abstraction procedure consists of
first generating discrete locations E, representing the cells.
Second, an edge is added between two locations if there
exists a trajectory initialized in one cell that eventually
reaches the adjacent cell. Finally, time information is
added as guards and invariants to quantify “eventually
reached”. A timed automaton is illustrated in Figure 1.
The locations are denoted by e1, . . . , e4; there are two
clocks denoted by c and d. The transition between location
e1 and e2 may happen whenever the clock c ≥ 2 and must
take place before the clock c exceeds 3. Once this transition
occurs, the clock c resets to 0. The timed automaton T
models the system by bounding the time that a trajectory
can stay within a cell. Note that the clock valuations of
c and d should be initialized appropriately to represent
the initial configuration. We denote the reachable locations
from initial locations E0 on the time interval [t1, t2] by

φT ([t1, t2], E0). (6)

To the partitioning E, we associate an abstraction func-
tion, which to each point in the state space associates the
cells that this point belongs to.

Definition 3. (Abstraction Function). Let Λ ⊂ N be a
finite index set, and E ≡ {eλ| λ ∈ Λ} be a finite partition
of the state space X. An abstraction function for E is the
multivalued function defined by

αE : X → 2E , αE(x) = {e ∈ E| x ∈ e}.
To be able to draw conclusions about the original system
Γ based on the abstraction T , it is essential to determine
how the two models are related. This relation is given in
terms of reachable sets in the following.

Definition 4. Let Γ = (X, f) be a dynamical system,
and suppose its state space X is partitioned by E =
{e1, . . . , ek}. Let the initial states X0 =

⋃
i∈I ei, with

I ⊆ k. Then an abstraction T with locations E and initial
locations E0 = {ei|i ∈ I} is said to be

(1) sound on an interval [t1, t2] if

αE ◦ ΦΓ(t,X0) ⊆ ΦT (t, αE(X0)), for all t ∈ [t1, t2]

(2) complete on an interval [t1, t2] if

αE ◦ ΦΓ(t,X0) = ΦT (t, αE(X0)) for all t ∈ [t1, t2].
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A sound abstraction T of Γ reaches all locations reached by
Γ = (X, f), and a complete abstraction T reaches exactly
the same locations as Γ.

3. METHOD

In this section, the method for discretizing mechanical
systems is presented. The discretization is accomplished
in the following steps

(A) Discard all dissipation of the system and partition
the state space of the conservative system using
tangential and transversal manifolds.

(B) Add dissipation and select level sets to obtain a
transversal partition, see Definition 2.

(C) Generate a timed automaton abstracting the system,
according to Wisniewski and Sloth (2011).

We show in Proposition 2 that a transversal partition
generated by n partitioning functions can be realized for
integrable systems using the presented procedure.

First, we consider the mechanical system without dissi-
pation, as this enables the identification of cyclic coor-
dinates and first integrals or constants of motion. The
constants of motion are functions with level sets being
tangential manifolds; hence, they are used as partition-
ing functions. Then the model is reduced using Routh
reduction Goldstein (1960). This reduced space is parti-
tioned using transversal manifolds, which are generated via
action-angle coordinates. Finally, we add dissipation to the
system. This implies that the system trajectories no longer
are confined to a certain constant of motion. Instead, the
system trajectories traverse the manifolds according to
dynamics described by the dissipation. This partition is
shown to be transversal.

3.1 Discretizing Conservative Mechanical System

The aim of this subsection is to provide guidance for
finding 2nmutually transversal partitioning functions for a
conservative mechanical system with n degrees of freedom.
It is required to find 2n mutually transversal partitioning
functions, i.e., functions whose gradients are linearly inde-
pendent at each point (except of critical points), to obtain
arbitrary accuracy of the abstraction. The method consists
of the following steps

(1) Identify cyclic coordinates from the Lagrangian.
(2) Find tangential manifolds via Noether’s theorem.
(3) Reduce the system using Routh reduction.
(4) Find transversal manifolds for the reduced system

using action-angle coordinates.

We assume that the mechanical system with n degrees
of freedom is described by n Euler-Lagrange equations of
motion in generalized coordinates.

Identification of Cyclic Coordinates Recall that a coor-
dinate qi is said to be cyclic if the Lagrangian of a system
does not depend on it.

From the Lagrangian of a system, it is seen that ∂L/∂qi =
0 if qi is cyclic; hence, the generalized momentum ∂L/∂q̇i

is constant. This means that cyclic coordinates identify
symmetries of the system, where a symmetry is a trans-
formation that generates a displacement under which the

system is invariant, e.g., a translation along a cyclic coor-
dinate. Therefore, each cyclic coordinate should be parti-
tioned independently of the other coordinates, i.e., if qi is
a cyclic coordinate then

ϕ : (q, q̇) 7→ qi (7)

should be used as partitioning function. The cyclic coor-
dinate should be discarded in the remainder of the parti-
tioning procedure.

Identification of Tangential Manifolds Broucke (1998)
proposes a partition based on tangential and transversal
manifolds, generated by foliations. This method is based
on the local existence of m− 1 linear independent tangen-
tial manifolds on Rm.

Definition 5. Suppose N1, . . . , Nk are co-dimension 1 sub-
manifolds of Rm, and let ν(Ni,R

m) be normal bundles of
Ni (in Rm) (Lee, 2000, p. 253). Then N1, . . . , Nk are said
to be linear independent manifolds, if for any x ∈ ⋂i∈kNi
there exist (x, vi) ∈ ν(Ni,R

m), i ∈ k with vi 6= 0, vi are
linearly independent.

It is seen that the normal to the linear independent
manifolds are linearly independent at each point of their
intersection. From Flow Box Theorem, see Junior and
de Melo (1980), it is seen that locally there exist m − 1
tangential manifolds and one transversal manifold in the
neighborhood of a regular point.

We are interested in constructing the tangential manifolds
without the use of solutions of the differential equations.
This motivates the identification of tangential manifolds,
via the Euler-Lagrange equations. In contrary to the local
analysis, the presented method may not identify 2n − 1
constants of motion; however, the tangential manifolds are
identified globally. The number of constants of motion that
one can find for a given system is not a priori known.

Following (Arnold, 1989, p. 207), the function H is a first
integral of the Hamiltonian phase flow with Hamiltonian
function H. This implies that we can always find one
constant of motion: the Hamiltonian. The Hamiltonian
function should be used as a tangential partitioning func-
tion

ϕ(q, q̇) = H(q, q̇). (8)

An integrable system has, per definition, n linear indepen-
dent tangential manifolds. These are also called function-
ally independent constants of motion. The Poisson bracket
is used in the definition of an integrable system. Recall that
given two smooth real-valued functions A and B defined
on the phase space of a Hamiltonian system, the canonical
Poisson bracket of A and B is defined by

{A,B} =

N∑

i=1

(
∂A

∂qi
∂B

∂pi
− ∂B

∂qi
∂A

∂pi

)
, (9)

where (qi, pi) are conjugate pairs of canonical coordinates
Marsden (1992).

Definition 6. (Integrable System). A Hamiltonian systems
in a 2n-dimensional symplectic manifold is said to be
integrable (in the Arnold-Liouville sense) if there exist n
functionally independent constants of motion that are in
involution, meaning that they pairwise satisfy

{Fi, Fj} = 0 ∀i, j. (10)
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Constants of motion can be found, by using the symmetries
of the system, given by the cyclic coordinates, according
to the following theorem (Arnold, 1989, p. 88).

Theorem 1. (Noether’s Theorem). Let M be a smooth
manifold, L : TM → R a smooth function on its tan-
gent bundle TM . If the system (M,L) admits the one-
parameter group of diffeomorphisms hs : M →M , s ∈ R,
then the lagrangian system of equations corresponding to
L has a first integral I : TM → R. In local coordinates q
on M the integral I is written in the form

I(q, q̇) =
∂L

∂q̇

dhs(q)

ds
s=0. (11)

From the theorem, it is seen that we can find one con-
stant of motion per cyclic coordinate, as the generalized
momentum ∂L/∂q̇i is constant if qi is cyclic; hence, the
generalized momentum should be used as a tangential
partitioning function

ϕ(q, q̇) =
∂L

∂q̇i
. (12)

In relation to Theorem 1, let M = Rn and let the first
coordinate be a cyclic coordinate, then hs : (q1, . . . , qn) 7→
(q1 + s, . . . , qn) is a one-parameter group. Note that sym-
metry under translation corresponds to momentum con-
servation, symmetry under rotation to angular momentum
conservation, symmetry in time to energy conservation
Butterfield (2005).

Reduction of the System The remaining partition should
be conducted on a reduced state space, given by the
following theorem, which can be used to restrict the
dynamics of a system to a lower dimensional surface using
constants of motion, Langerock et al. (2010).

Theorem 2. (Routh Reduction).
Let L : R2n → R be the Lagrangian for a system with n
degrees of freedom. Assume that q1 is a cyclic coordinate
and that locally ∂2L/∂q̇1∂q̇1 6= 0 so that q̇1 can be
expressed as q̇1 = %(q2, . . . , qn, q̇2, . . . , q̇n). Consider the
Routhian Rµ : R2(n−1) → R defined as the function
Rµ = L − q̇1µ, where all instances of q̇1 are substituted
by the function % and momentum p1 = µ. The Routhian
is now interpreted as the Lagrangian for a system with
(n− 1) degrees of freedom (q2, . . . , qn).

Any solution (q1(t), . . . , qn(t)) of the Euler-Lagrange equa-
tions of motion

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n (13)

with momentum p1 = µ, projects onto a solution
(q2(t), . . . , qn(t)) of the Euler-Lagrange equations

d

dt

∂Rµ

∂q̇k
− ∂Rµ

∂qk
= 0, k = 2, . . . , n. (14)

Conversely, any solution of the Euler-Lagrange equations
for Rµ can be lifted to a solution of the Euler-Lagrange
equations for L with momentum p1 = µ.

Using Theorem 2, we can obtain Euler-Lagrange equations
of reduced dimension, which should be used in the gener-
ation of the transversal manifolds.

The idea of Routh reduction is to use the constants of
motion as coordinates in the system description. This
enables the system to be analyzed using fewer coordinates,

as the system has no dynamics in the coordinates given by
the constants of motion. The concept is shown in Fig. 2.

{A,B} =
N∑

i=1

(
∂A

∂qi
∂B

∂pi
− ∂B

∂qi
∂A

∂pi

)
(8)

where (qi, pi) are conjugate pairs of canonical coordinates.

Definition 7. (Integrable System). A Hamiltonian systems
in a 2n-dimensional symplectic manifold is said to be
integrable (in the Arnold-Liouville sense) if there exist n
functionally independent constants of motion that are in
involution, meaning that they pairwise satisfy

{Fi, Fj} = 0 ∀i, j. (9)

Constants of motion can be found, by using the symmetries
of the system, given by the cyclic coordinates, according
to the following theorem (Arnold, 1989, p. 88).

Theorem 1. (Noether’s Theorem). Let M be a smooth
manifold, L : TM → R a smooth function on its tan-
gent bundle TM . If the system (M,L) admits the one-
parameter group of diffeomorphisms hs : M →M , s ∈ R,
then the lagrangian system of equations corresponding to
L has a first integral I : TM → R. In local coordinates q
on M the integral I is written in the form

I(q, q̇) =
∂L

∂q̇

dhs(q)

ds
s=0. (10)

From the theorem, it is seen that we can find one con-
stant of motion per cyclic coordinate, as the generalized
momentum ∂L/∂q̇i is constant if qi is cyclic; hence, the
generalized momentum should be used as a tangential
partitioning function

ϕ(q, q̇) =
∂L

∂q̇i
. (11)

In relation to Theorem 1, let M = Rn and let the first
coordinate be a cyclic coordinate, then hs : (q1, . . . , qn) 7→
(q1 + s, . . . , qn) is a one-parameter group. Note that sym-
metry under translation corresponds to momentum con-
servation, symmetry under rotation to angular momentum
conservation, symmetry in time to energy conservation
Butterfield (2005).

Reduction of the System The remaining partition should
only be conducted on a reduced state space, given by
the following theorem, which can be used to restrict the
dynamics of a system to a lower dimensional surface using
constants of motion.

Theorem 2. (Routh Reduction Langerock et al. (2010)).
Let L : R2n → R be the Lagrangian for a system with n
degrees of freedom. Assume that q1 is a cyclic coordinate
and that ∂2L/∂q̇1∂q̇1 6= 0 so that q̇1 can be expressed
as q̇1 = %(q2, . . . , qn, q̇2, . . . , q̇n). Consider the Routhian
Rµ : R2(n−1) → R defined as the function Rµ = L − q̇1µ,
where all instances of q̇1 are replaced by %. The Routhian
is now interpreted as the Lagrangian for a system with
(n− 1) degrees of freedom (q2, . . . , qn).

Any solution (q1(t), . . . , qn(t)) of the Euler-Lagrange equa-
tions of motion

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n (12)

with momentum p1 = µ, projects onto a solution
(q2(t), . . . , qn(t)) of the Euler-Lagrange equations

d

dt

∂Rµ

∂q̇k
− ∂Rµ

∂qk
= 0, k = 2, . . . , n. (13)
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Fig. 3. Simulation results of the inverted pendulum. The
two surfaces are level sets of the constants of motion.
The black line is the simulated trajectory.

Conversely, any solution of the Euler-Lagrange equations
for Rµ can be lifted to a solution of the Euler-Lagrange
equations for L with momentum p1 = µ.

Using Theorem 2, we can obtain Euler-Lagrange equations
of reduced dimension, which should be used in the gener-
ation of the transversal manifolds.

The idea of Routh reduction is to use the constants of
motion as coordinates in the system description. This
enables the system to be analyzed using fewer coordinates,
as the system has no dynamics in the coordinates given by
the constants of motion. This concept can be seen from
Fig. 3.

The figure illustrates two constants of motion and a
solution trajectory (black line) that is located at their
intersection; hence, the solution can be described using
only one coordinate (apart from the constants of motion).

Identification of Transversal Manifolds We have not
found general method for finding transversal manifolds;
however, for integrable systems, we can find transversal
manifolds via the use of action-angle coordinates.

Theorem 3. (Jose and Saletan (1998)). Consider a com-
pletely integrable Hamiltonian system with constants of
motion C1(q, p) = H(q, p), C1(q, p), . . . , Cn(q, p) which are
in involution. The hypersurfaces given by sets of constants
c = {ci|i ∈ n}

S(c) = {(q, p) ∈ T ∗Q|Ci(q, p) = ci, i = 1, . . . , n} (14)

are invariant under the flow of the Hamiltonian system. If
S(c) is compact and connected, then S(c) can be mapped
in a diffeomorphic way on a n-torus Tn = S1 × · · · × S1.
Each circle can be described by an angle coordinate θi(t)
with dynamics

dθi
dt

= Ωi(c), i = 1, . . . , n. (15)

From the theorem we see that for integrable systems we
can find a coordinate system, where n coordinates are
given by constants of motion and n coordinates which
are independent of each other and are given by trivial
dynamics. For each action-angle θi, a transversal partition
function

ϕi(q, p) = θi (16)

Fig. 2. The two surfaces are level sets of the constants of
motion. The black line is the simulated trajectory.

The figure illustrates two constants of motion and a
solution trajectory (black line) that is located at their
intersection; hence, the solution can be described using
only one coordinate (apart from the constants of motion).

Identification of Transversal Manifolds We have not
found general method for finding transversal manifolds;
however, for integrable systems, we can find transversal
manifolds via the use of action-angle coordinates.

Theorem 3. (Jose and Saletan (1998)). Consider a com-
pletely integrable Hamiltonian system with constants of
motion C1(q, p) = H(q, p), C1(q, p), . . . , Cn(q, p) which are
in involution. The hypersurfaces given by sets of constants
c = {ci|i ∈ n}

S(c) = {(q, p) ∈ T ∗Q|Ci(q, p) = ci, i = 1, . . . , n} (15)

are invariant under the flow of the Hamiltonian system. If
S(c) is compact and connected, then S(c) can be mapped
in a diffeomorphic way on a n-torus Tn = S1 × · · · × S1.
Each circle can be described by an angle coordinate θi(t)
with dynamics

dθi
dt

= Ωi(c), i = 1, . . . , n. (16)

From the theorem we see that for integrable systems one
can find a coordinate system, where n coordinates are
given by constants of motion and n coordinates which
are independent of each other and are given by trivial
dynamics. For each action-angle θi, a transversal partition
function

ϕi(q, p) = θi (17)

should be used in the partitioning of the state space. For
details in the synthesis of the coordinate transformation,
see Jose and Saletan (1998).

Note that the proposed method does not provide 2n
linear independent partitioning functions for all systems;
however, for integrable systems they can be found via
Theorem 3. Therefore, the proposed partition can be
applied to partly partition a state space, and then the
remaining part of the state space can be partitioned
using, e.g., hypercubes as used in most other abstraction
procedures.

3.2 Obtaining Transversal Partition

The final step of the partitioning procedure is to check if
the partition is transversal. We show that a transversal
partition can always be found for integrable systems.
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Proposition 1. Let the system (M,L) be defined as shown
in Theorem 1 with first integral in local coordinates (U, ς)

I(q, q̇) =
∂L

∂q̇

dhs(q)

ds
. (18)

Then by adding external forces Q to the system, the time
derivative of I becomes

d

dt
I(q, q̇) = Q

dhs(q)

ds
. (19)

Proof 1. Let φ : R→ U , q = φ(t) be a local solution to the
Lagrange equation. Since hs preserves L, the translation
of a solution, hs ◦ φ : R → U also satisfies the Lagrange
equations for any s.

Let the mapping Υ : R×R→ Rn, given by q = Υ(s, t) =
hs(φ(t)). We will denote the derivatives with respect to t
by dots and with respect to s by primes. By hypothesis

∂L(Υ, Υ̇)

∂s
=
∂L

∂q
Υ′ +

∂L

∂q̇
Υ̇′ = 0 (20)

where the partial derivatives of L are taken at the point
q = Υ(s, t), q̇ = Υ̇(s, t).

For any fixed s, Υ : R→ Rn satisfies

∂L

∂q
(Υ(s, t), Υ̇(s, t)) =

∂

∂t

(
∂L

∂q̇
(Υ(s, t), Υ̇(s, t))

)

−Q(Υ(s, t), Υ̇(s, t))

(21)

By inserting (21) into (20) we get(
d

dt

∂L

∂q̇

)
Υ′ −QΥ′ +

∂L

∂q̇
Υ̇′ =

d

dt

(
∂L

∂q̇
q′
)
−QΥ′ = 0

(22a)

dI

dt
= QΥ′. (22b)

Proposition 2. Let (M,L) be an integrable system, and
let k = 2n; thus, k = {1, . . . , 2n}. Then there exists a
collection of nonempty sets of regular values A = {Ai|i ∈
k} for the partitioning functions Φ = {ϕi(q, q̇)|i ∈ k} (see
Theorem 3), such that the generated partition K = (Φ,A)
is transversal.

Proof 2. Consider cells containing no critical points. Only
one of the 2n partitioning functions should have a nonzero
gradient in each cell. We look at points, where dI/dt =
0, i.e., QΥ′ = 0. Let G = {(q, q̇)|QΥ′ = 0} and let
Cr(f) be the set of critical points. By the definition
of transversality, the transversal partitioning functions
ϕi(q, q̇) are transversal to the vector field at each point
in G\Cr(f), i.e., for each transversal partitioning function
given by (17)

Lfϕi(q, q̇) 6= 0 ∀(q, q̇) ∈ G\Cr(f). (23)

This implies that there exists A such that the partition is
transversal.

4. EXAMPLE

The proposed abstraction is applied to an inverted pendu-
lum. The units are omitted to clarify the presentation.

The cart has a point mass mc, a position xc, velocity
ẋc, and acceleration ẍc. The pendulum is modeled as a
point mass mp extended from the cart in a massless rod
of length l and has inertia Ip with respect to the point,
where the pendulum is attached to the cart. The angle of

the pendulum with respect to the vertical axis is θ. Finally,
the cart is affected by a frictional force Ff = −kẋc. A state
space model of the system is shown in (Khalil, 2002, p. 28),
and we use the following parameter values: g = 9.82, l = 1,
mp = 1, mc = 2, Ip = 1, k = 1. The Lagrangian is

L(x) =
1

2
(mc +mp)ẋ2

c +
1

2
(Ip +mpl

2)θ̇2 +mpẋcθ̇l cos θ

−mpgl cos θ. (24)

4.1 Discretizing Conservative Mechanical System

Identification of Cyclic Coordinates The cart position
xc is a cyclic coordinate, as ∂L/∂xc = 0. The partitioning
function for the cyclic coordinate is given by

ψ1(x) = xc. (25)

Identification of Tangential Manifolds The Hamiltonian
is a constant of motion. Therefore, we get the following
partitioning function

ψ2(x) =
1

2
(mc +mp)ẋ2

c +
1

2
(Ip +mpl

2)θ̇2 +mpẋcθ̇l cos θ

+mpgl cos θ. (26)

Second, Theorem 1 is used to identify ∂L/∂ẋc as a con-
stant of motion, since this is the conjugate momentum
corresponding to xc

ψ3(x) = (mc +mp)ẋc +mpθ̇l cos θ. (27)

The dimension of both ψ−1
2 (a2) and ψ−1

3 (a3) is two,
and their intersection is one dimensional (Bredon, 1993,
p. 114); hence, there exist no more linearly independent
tangential manifolds. Level sets of ψ2(x) and ψ3(x) are
shown in Fig. 2.

Reduction of the System The reduced system only de-
pends on the variables θ and θ̇, and has Routhian

Rµ(θ, θ̇) =− 1

2

(
µ−mpθ̇l cos θ

)2

mc +mp
+

1

2
(Ip +mpl

2)θ̇2

−mpgl cos θ (28)

where ψ3(x) = µ.

Identification of Transversal Manifolds From Rµ(θ, θ̇),

the momentum pθ ≡ ∂Rµ(θ, θ̇)/∂θ̇ can be expressed in
terms of the value of the hamiltonian function Hµ(θ, pθ) =

Eµ corresponding to Rµ(θ, θ̇) and θ

pθ(θ, E
µ) = ±

√
2b

(
Eµ +

1

2

µ2

mc +mp
−mpgl cos θ

)
+ a2

(29)

where

a =
µmpl cos θ

mc +mp
, b = (Ip +mpl

2)− (mpl cos θ)2

mc +mp
.

The action variable is defined as

J =

∮
pdq, (30)

where the integration is over an entire period. In par-
ticular, if the pendulum takes a full rotation, then the
integration is from 0 to 2π. Otherwise the integration
is from the minimum angle to the maximum angle and
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back again. This angle can be found from (29), as the
momentum pθ is zero, when the pendulum reaches its
minimum and maximum angle. This expression is solved
in Maple, and is a third degree polynomial in cos(θ). The
expression is not explicitly shown, as it is very long, but
the graph of the hamiltonian function Hµ as a function of
θ and µ for pθ = 0 is shown in Fig. 3.
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Fig. 4. Graph of Hµ as a function of θ and µ for pθ = 0.

motion equals the simulated trajectory exactly. Hence, the
intersection describes the reachable states of the system in
the (θ, θ̇, ẋc)-space.

Reduction of the System The reduced system only de-
pends on the variables θ and θ̇, and has Routhian

Rµ(θ, θ̇) =− 1

2

(
µ−mpθ̇l cos θ

)2

mc +mp
+

1

2
(Ip +mpl

2)θ̇2

−mpgl cos θ (27)

where ψ3(x) = µ.

Identification of Transversal Manifolds From Rµ(θ, θ̇),

the momentum pθ ≡ ∂Rµ(θ, θ̇)/∂θ̇ can be expressed in
terms of the value of the hamiltonian function Hµ(θ, pθ) =

Eµ corresponding to Rµ(θ, θ̇) and θ

pθ(θ,E
µ) = ±

√
2b

(
Eµ +

1

2

µ2

mc +mp
−mpgl cos θ

)
+ a2

(28)

where

a =
µmpl cos θ

mc +mp
, b = (Ip +mpl

2)− (mpl cos θ)2

mc +mp
.

The action variable is defined as

J =

∮
pdq, (29)

where the integration is over an entire period. In par-
ticular, if the pendulum takes a full rotation, then the
integration is from 0 to 2π. Otherwise the integration
is from the minimum angle to the maximum angle and
back again. This angle can be found from (28), as the
momentum pθ is zero, when the pendulum reaches its
minimum and maximum angle. This expression is solved
in Maple, and is a third degree polynomial in cos(θ). The
expression is not explicitly shown, as it is very long, but
the graph of the hamiltonian function Hµ as a function of
θ and µ for pθ = 0 is shown in Fig. 4.

It is seen that θ = π (hanging downwards), when µ = 0
andHµ = −mpgl and there are no solutions with lowerHµ

when µ = 0. Furthermore, the pendulum swings between
θ and −θ+ 2π until the value of the hamiltonian function
gets greater that mpgl, where the pendulum starts to do
full rotations; hence, pθ 6= 0 everywhere.

The action variable J only depends on Eµ, not θ. There-
fore, J = J(Hµ, µ) = J(Eµ, µ) and

ẇ =
∂Hµ(J)

∂J
= v(J). (30)

The value of v as a function of Eµ and µ can be calculated
in Maple, and relates to frequency at which the pendulum
oscillates. Finally, we get

w = v(J)t+ β. (31)

The action variable is not used as a partitioning function,
as it is a constant, but ψ4(x) = w is a transversal
partitioning function.

4.2 Generation of Abstraction

We do not show the abstraction of for the inverted pen-
dulum, but a detailed description of the abstraction pro-
cedure, including a method for calculating the invariants
and guards is shown in Wisniewski and Sloth (2011). We

use ψ̇i(x)

ψ̇1(x) = ẋc, ψ̇2(x) = −kẋc, ψ̇3(x) = −kẋ2
c . (32)

The value of ψ̇4(x) is again calculated in Maple. Now
regular values can be chosen to generate E in accordance
with Proposition 2.

The generated timed automaton is a sound abstraction
and can be automatically verified by a tool. Therefore, we
can verify timed temporal properties of the mechanical sys-
tem via the verification of the generated timed automaton.
Note that for integrable systems, we can generate arbitrary
small cells. Hence, the abstraction can be generated with
an arbitrary accuracy.

5. CONCLUSION

In this paper, we have provided a constructive method
for partitioning the state space of integrable mechanical
systems. This partitioning can be used in the abstraction
of the mechanical system by a combinatorial model such
as a timed automaton. The partition is generated by inter-
secting tangential and transversal manifolds. The genera-
tion of the manifolds is based on reduction techniques for
mechanical systems, via the Euler-Lagrange equations and
Noether’s theorem. We identify cyclic coordinates, find
constants of motion, and find transversal functions. The
method is presented and applied on the inverted pendulum
on a cart, showing its applicability for a nonlinear system.
Furthermore, it is shown that a transversal partition can
always be obtained for integrable systems using the pro-
posed partition.
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It is seen that θ = π (hanging downwards), when µ = 0
andHµ = −mpgl and there are no solutions with lowerHµ

when µ = 0. Furthermore, the pendulum swings between
θ and −θ+ 2π until the value of the hamiltonian function
gets greater that mpgl, where the pendulum starts to do
full rotations; hence, pθ 6= 0 everywhere.

The action variable J only depends on Eµ, not θ. There-
fore, J = J(Hµ, µ) = J(Eµ, µ) and

ẇ =
∂Hµ(J)

∂J
= v(J). (31)

The value of v as a function of Eµ and µ can be calculated
in Maple, and relates to frequency at which the pendulum
oscillates. Finally, we get

w = v(J)t+ β. (32)

The action variable is not used as a partitioning function,
as it is a constant, but ψ4(x) = w is a transversal
partitioning function.

4.2 Generation of Abstraction

We do not show the abstraction of for the inverted pen-
dulum, but a detailed description of the abstraction pro-
cedure, including a method for calculating the invariants
and guards is shown in Wisniewski and Sloth (2011). We
use Lfψi(x)

Lfψ1(x) = ẋc, Lfψ2(x) = −kẋc, Lfψ3(x) = −kẋ2
c .
(33)

The value of Lfψ4(x) is again calculated in Maple. Now
regular values can be chosen to generate E in accordance
with Proposition 2.

The generated timed automaton is a sound abstraction
and can be automatically verified by a tool. Therefore, we
can verify timed temporal properties of the mechanical sys-
tem via the verification of the generated timed automaton
in tools such as Uppaal or Kronos.

5. CONCLUSION

In this paper, we have provided a constructive method
for partitioning the state space of integrable mechanical

systems. This partitioning can be used in the abstraction
of the mechanical system by a combinatorial model such
as a timed automaton. The partition is generated by in-
tersecting tangential and transversal manifolds. The gen-
eration of the manifolds is based on reduction techniques
for mechanical systems, via the Euler-Lagrange equations
and Noether’s theorem. The method is applied to the
inverted pendulum on a cart, showing its applicability
for a nonlinear system. Furthermore, it is shown that a
transversal partition can always be obtained for integrable
systems using the proposed partition.
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