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Packetized Predictive Control for Rate-Limited Networks via
Sparse Representation

Masaaki Nagahara Member, IEEE, Daniel E. Quevedo, Member, IEEE,
and Jan Ostergaard, Senior Member, IEEE

Abstract— We study a networked control architecture for
linear time-invariant plants in which an unreliable data-rate
limited network is placed between the controller and the plant
input. The distinguishing aspect of the situation at hand is that
an unreliable data-rate limited network is placed between con-
troller and the plant input. To achieve robustness with respect
to dropouts, the controller transmits data packets containing
plant input predictions, which minimize a finite horizon cost
function. In our formulation, we design sparse packets for rate-
limited networks, by adopting an an ¢° optimization, which can
be effectively solved by an orthogonal matching pursuit method.
Our formulation ensures asymptotic stability of the control
loop in the presence of bounded packet dropouts. Simulation
results indicate that the proposed controller provides sparse
control packets, thereby giving bit-rate reductions for the case
of memoryless scalar coding schemes when compared to the
use of, more common, quadratic cost functions, as in linear
quadratic (LQ) control.

I. INTRODUCTION

In networked control systems (NCSs) communication be-
tween controller(s) and plant(s) is made through unreliable
and rate-limited communication links such as wireless net-
works and the Internet; see e.g., [1]-[3] Many interesting
challenges arise and successful NCS design methods need
to consider both control and communication aspects. In
particular, so-called packetized predictive control (PPC) has
been shown to have favorable stability and performance
properties, especially in the presence of packet-dropouts
[4]-[10]. In PPC, the controller output is obtained through
solving a finite-horizon cost function on-line in a receding
horizon manner. Each control packet contains a sequence
of tentative plant inputs for a finite horizon of future time
instants and is transmitted through a communication channel.
Packets which are successfully received at the plant actuator
side, are stored in a buffer to be used whenever later
packets are dropped. When there are no packet-dropouts,
PPC reduces to model predictive control. For PPC to give
desirable closed loop properties, the more unreliable the
network is, the larger the horizon length (and thus the number
of tentative plant input values contained in each packet)
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needs to be chosen. Clearly, in principle, this would require
increasing the network bandwidth (i.e., its bit-rate), unless
the transmitted signals are suitably compressed.

To address the compression issue mentioned above, in the
present work we investigate the use of sparsity-promoting
optimizations for PPC. Such techniques have been widely
studied in the recent signal processing literature in the
context of compressed sensing (aka compressive sampling)
[11]-[16]. The aim of compressed sensing is to reconstruct
a signal from a small set of linear combinations of the signal
by assuming that the original signal is sparse. The core idea
used in this area is to introduce a sparsity index in the
optimization. To be more specific, the sparsity index of a
vector v is defined by the amount of nonzero elements in
v and is usually denoted by [|v|o, called the “/° norm.”
The compressed sensing problem is then formulated by
an (°-norm optimization, which, being combinatorial is, in
principle hard to solve [17]. Since sparse vectors contain
many 0-valued elements, they can be easily compressed by
only coding a few nonzero values and their locations. A well-
known example of this kind of sparsity-inducing compression
is JPEG [18].

The purpose of this work is to adapt sparsity concepts for
use in NCSs over erasure channels. A key difference between
standard compressed sensing applications and NCSs is that
the latter operate in closed loop. Thus, time-delays need to
be avoided and stability issues studied, see also [19]. To keep
time-delays bounded, we adopt an iterative greedy algorithm
called Orthogonal Matching Pursuit (OMP) [20], [21] for
the on-line design of control packets. The algorithm is very
simple and known to be dramatically faster than exhaustive
search. In relation to stability in the presence of bounded
packet-dropouts, our results show how to design the cost
function to ensure asymptotic stability of the NCS.

Our present manuscript complements our recent confer-
ence contribution [19], which adopted an ¢*-regularized ¢>
optimization for PPC. A limitation of the approach in [19]
is that for open-loop unstable systems, asymptotic stability
cannot be obtained in the presence of bounded packet-
dropouts; the best one can hope for is practical stability. Our
current paper also complements the extended abstract [22],
by considering bit-rate issues and also presenting a detailed
technical analysis of the scheme, including proofs of results.
To the best of our knowledge, the only other published
works which deal with sparsity and compressed sensing for
control are [23] which studies compressive sensing for state
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Fig. 1.

NCS with PPC. The dotted line indicates an erasure channel.

reconstruction in feedback systems, and [19], [24] which
focus on sampling and command generation for remote
applications.

The remainder of this work is organized as follows:
Section II revises basic elements of packetized predictive
control. In Section III, we formulate the design of the
sparse control packets in PPC based on sparsity-promoting
optimization. In Section IV, we study stability of the resultant
networked control system. Based on this, in Section V
we propose relaxation methods to compute sparse control
packets which leads to asymptotic (or practical) stability. A
numerical example is included in Section VI. Section VII
draws conclusions.

Notation:: We write Ny for {0,1,2,3,...}, | - | refers to
modulus of a number. The identity matrix (of appropriate
dimensions) is denoted via I. For a matrix (or a vector) A,
AT denotes the transpose. For a vector v = [v1,...,v,]" €
R™ and a positive definite matrix P > 0, we define

.....

i=1

and also denote ||v||2 := Vv Tv. For any matrix P, Apax(P)
and Apin (P) denote the maximum and the minimum eigen-
values of P, respectively; 02, (P) := Amax(P ' P).

II. PACKETIZED PREDICTIVE NETWORKED CONTROL
We consider discrete-time (LTT) plants with a scalar input:
x(k+1) = Az(k) + Bu(k) + v(k), k € No,
x(0) = xo,

where (k) € R™, u(k) € R and v(k) € R” is the plant
noise. Throughout this work, we assume that the pair (A, B)
is reachable.

We are interested in an NCS architecture where the
controller communicates with the plant actuator through
an erasure channel, see Fig. 1. This channel introduces
packet-dropouts, which we model via the dropout sequence

{d(k)}ren, in:

d(k) é{ (1):

With PPC, as described, for instance, in [8], at each time
instant k, the controller uses the state (k) of the plant (1)
to calculate and send a control packet of the form

w(@(k)) 2 [uo(x(k)), ur (x(k)), ..., un_1(z(k))] e RN
)

(1

if packet-dropout occurs at instant k,
if packet-dropout does not occur at time k.

to the plant input node.

To achieve robustness against packet dropouts, buffering
is used. More precisely, suppose that at time instant k, we
have d(k) = 0, i.c., the data packet u(x(k)) is successfully
received at the plant input side. Then, this packet is stored in
a buffer, overwriting its previous contents. If the next packet
u(x(k+1)) is dropped, then the plant input u(k + 1) is set
to uy (x(k)), the second element of wu(x(k)). The elements
of u(x(k)) are then successively used until some packet
u(x(k +0)), £ > 2 is successfully received.

III. DESIGN OF SPARSE CONTROL PACKETS

In PPC discussed above, the control packet u(z(k)) is
transmitted at each time £ € Ny through an erasure channel
(see Fig. 1). It is often the case that the bandwidth of the
channel is limited, and hence one has to compress control
packets to a smaller data size, see also [25]. To design
packets which are easily compressible, we adapt techniques
used in the context of compressed sensing [11], [12] to design
sparse control vectors u(w(k)) Since sparse vectors contain
many 0-valued elements, they can be highly compressed by
only coding their few nonzero components and locations, as
will be illustrated in Section VI. Thus, the control objective
in this paper is to find sparse control packets u(z(k))
which ensure that the NCS with bounded packet dropouts
is asymptotically stable.

We define the sparsity of a vector u by its ¢

norm,”
|u|o £ the amount of nonzero elements in u € RY
and introduce the following sparsity-promoting optimization:

w() £ argmin ull

ueR
N-1 3)
subject to ||y ||% + Z lzil < x We,
i=1

where we omit the dependence on k, and
xi, = Axi+ Bu), i=0,1,...,N—1,

]T

/!
Ty =,

u =

!/ /! !
UO,ul,. "7U’N—1

are plant state and input predictions. The matrices P > 0,
@ > 0, and W > 0 are chosen such that the feedback system
is asymptotically stable. The procedure of choosing these
matrices is presented in Section IV.

At each time instant k € Ny, the controller uses the current
state (k) to solve the above optimization with x = x(k)
thus providing the optimal control packet w((k)). This
(possibly sparse) packet can be effectively compressed before
it is transmitted to the buffer at the plant side.

IV. STABILITY ANALYSIS

In this section, we show that if

° 'U(k) = 0,

o the matrices P, (), and W in the proposed optimization
(3) or (5) are appropriately chosen,

o and the maximum number of consecutive dropouts is
bounded,



then the NCS is asymptotically stable. The proof is omitted
due to limitation of space.

To consider the stability of the networked system affected
by packet dropouts, we follow akin to what was done in
[8] and denote the time instants where there are no packet-
dropouts, i.e., where d(k) = 0, as

K ={ki}ien, € No,  kip1 > ki, Vi € Ny

whereas the number of consecutive packet-dropouts is de-
noted via:

m; 2 kiy1 — ki — 1, €N “4)

Note that m; > 0, with equality if and only if no dropouts
occur between instants k; and k; 1.

When packets are lost, the control system unavoidably
operates in open-loop. Thus, to ensure desirable properties
of the networked control system, one would like the number
of consecutive packet-dropouts to be bounded. In particular,
to establish asymptotic stability, we make the following
assumption: !

Assumption 4.1 (Packet-dropouts): The number of con-
secutive packet-dropouts is uniformly bounded by the pre-
diction horizon minus one, that is, m; < N — 1, Vi € Nj.
We also assume that the first control packet u(x(0)) is
successfully transmitted, that is, mg = 0.

Theorem 4.2 stated below shows how to design the matri-
ces P, ), and W in (3) to ensure asymptotic stability of the
networked control system in the presence of bounded packet
dropouts. Before proceeding, we introduce the matrices:

B 0 .. 0 dq
N AB B ... 0 D,
(I): . . . ) = .
_AN_lB AN-2p ... B dyn_q
P; £ [A'B B 0 0],i=0,1,...,N -1,
[ A
AQ
TA , Q £ blockdiag{Q, ..., Q, P},
: ‘\,_/
AN N—-1

which allow us to re-write (3) in vector form via

w(x) = argmin ||ul|o subject to |Gu — Hz||3 < ' W,

u€eRN
- - (%)
where G £ Q'/2® and H & —Q'/?T.
Theorem 4.2 (Asymptotic Stability): Suppose that

Assumption 4.1 holds and that the matrices P, @,
and W are chosen by the following procedure:

1) Choose () > 0 arbitrarily.
2) Solve the following Riccati equation to obtain P > 0:

P=A"PA-ATPB(B"PB)"'BTPA+Q.

'If only stochastic properties are sought, then more relaxed assumptions
can be used, see related work in [25].

3) Compute constants p € [0,1) and ¢ > 0 via
Tp&. (T -1
A { @] PO(GTE) 7 > 0,

P _Amin(QP71)7 Cé (1—p)71(1—pN)Cl.

4) Choose & such that 0 < & < (1 — p)P/c.

5) Compute W* = P — @ and set W := W* 4+ £.
Then the sparse control packets u(w(k)), k € Np, which
is the solution of the optimization (3) or (5) with the
above matrices, lead to asymptotic stability of the networked
control system.

Ay
¢ = _max

(1>
—_

V. OPTIMIZATION VIA OMP

In this section, we consider the optimization

(Py) : Ig}g}lv |ullo subject to ||Gu—Hz|3 <z We.
The optimization (Py) is in general extremely complex since
it requires a combinatorial search that explores all possible
sparse supports of u € R, In fact, it is proved to be NP hard
[17]. For such problem, there have been proposed alternative
algorithms that are much more tractable than exhaustive
search; see, e.g., the books [14]-[16].

One approach to the combinatorial optimization is an iter-
ative greedy algorithm called Orthogonal Matching Pursuit
(OMP) [20], [21]. The algorithm is very simple and dramat-
ically faster than the exhaustive search. In fact, assuming
that G € R™*™ and the solution u* of (Pg) satisfies
|lw*|lo = ko, then the OMP algorithm requires O(kqmn)
operations, while exhaustive search requires O(mn*ok2)
[26].2 The OMP algorithm for our control problem is shown
in Algorithm 1. In this algorithm, supp{«} is the support
set of a vector * = [r1,22,...,2,] , that is, supp{x} =
{i:2; # 0}, and g; denotes the j-th column of the matrix
G.

Next, we study stability of the NCS with control packets
computed by Algorithm 1.

Since Algorithm 1 always returns a feasible solution for
(Po), we have the following result based on Theorem 4.2.

Theorem 5.1: Suppose that Assumption 4.1 holds and that
the matrices P, ), and W are chosen according to the
procedure given in Theorem 4.2. Then, the control packets
uomp(z(k)), k € Ny obtained by the OMP Algorithm 1
provide an asymptotically stable NCS.

Consequently, when compared to the method used in [19],
Algorithm 1 has the following main advantages:

e it is simple and fast,

it returns control packets that asymptotically stabilize

the networked control system

We note that in conventional transform based compression
methods e.g., JPEG, the encoder maps the source signal into
a domain where the majority of the transform coefficients
are approximately zero and only few coefficients carry sig-
nificant information. One therefore only needs to encode
the few significant transform coefficients as well as their

2For control applications, OMP has recently been proposed for use in
formation control in [27].



Algorithm 1 OMP for sparse control vector u(x)

Require: « € R™ {observed state vector}
Ensure: u(x) {sparse control packet}

k= 0.

u[0] := 0.

r[0] ;== Hz — Gu[0] = Hz.

810] := supp{x[0]} = 0.

while ||7[k][|2 > "Wz do

for j=1to N do

t
Lk
o= I g min g,z — rlH2
lo; 18 ~ "5
ej = gz — r[k]3.
end for

Find a minimizer jo, ¢ S[k| such that e;, < e;, for all
j & S[k].
Slk+1] :=S[k]U{jo}

ulk+1]:= argmin ||Gu — Hx|3.
supp{u}=85[k+1]

rlk+1] := Hx — Gulk + 1].
k:=k+ 1

end while

return u(z) = u[k].

locations. In our case, on the other hand, we use the OMP
algorithm to sparsify the control signal in its original domain,
which simplifies the decoder operations at the plant side. To
obtain a practical scheme for closed loop control, we employ
memoryless entropy-constrained scalar quantization of the
non-zero coefficients of the sparse control signal and, in
addition, send information about the coefficient locations. We
then show, through computer simulations, that a significant
bit-rate reduction is possible compared to when performing
memoryless entropy-constrained scalar quantization of the
control signal obtained by solving the standard quadratic
control problem for PPC as in [4].3

VI. SIMULATION STUDIES

To assess the effectiveness of the proposed method, we
consider the following continuous-time plant model:

x. = A.x. + Beu,

[ —1.2822 0 0.98 0
L 0 0 10
= | —5.4293 0 —1.8366 0
| 1282 1282 0 0 (6)
[ —0.3
0
Be=1 _17
0

This model is a constant-speed approximation of some of the
linealized dynamics of a Cessna Citation 500 aircraft, when
it is cruising at an altitude of 5000 (m) and a speed of 128.2

31t is interesting to note that our proposed sparsifying controller could
also be useful in applications where there is a setup cost of the type found,
for example, in inventory control; see, e.g., [28]. In such a case, it would
be advantageous to have many zero control values.

Reg. Parameter vs Control Performance
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Fig. 2. Regularization parameters v; versus control performance |||z for
(Q1) (solid) and (Q2) (dash). The circles show the chosen parameters v/
and vo.

(m/sec) [29, Section 2.6]. To obtain a discrete-time model,
we discretize (6) by the zero-order hold with sampling time
T, = 0.5 (sec)*. We set the horizon length (or the packet
size) to N = 10. We choose the weighting matrix @ in (3) as
@ = I, and choose the matrix W according to the procedure
shown in Theorem 4.2 with € = 2(1—p)P/c < (1—p)P/c.

A. Sparsity and Asymptotic Stability

We first simulate the NCS in the noise-free case where
v(k) = 0. We consider the proposed method using the OMP
algorithm and also the ¢! /¢? optimization of [19]:

(Qu):

where 17 is a positive constant. To compare these two
sparsity-promoting methods with traditional PPC approaches,
we also consider a finite-horizon quadratic cost function

(Q2):

. 1 2
min vf|ulls + 5l|Gu - Ha|l;,

. Vo 1
min —[lull; + 5| Gu — Hall3,

where 15 is a positive constant, yielding the ¢2-optimal
control
us(z) = (1l + G'G)'GTHe.

To choose the regularization parameters v4 in (Qp) and 14
in (Q2), we empirically compute the relation between each
parameter and the control performance, as measured by the
% norm of the state {x(k)}}2,. Fig. 2 shows this relation.
By this figure, we first find the optimal parameter for v > 0
that optimizes the control performance, i.e., o = 3.1 X 102.
Then, we seek v, that gives the same control performance,
namely, v; = 5.3 X 103. Furthermore, we also investigate
the ideal least-squares solution w* () that minimizes ||Gu—
Hx | ‘ 2.

With these parameters, we run 500 simulations with
randomly generated (Markovian) packet-dropouts that sat-
isfy Assumption 4.1, and with initial vector &y in which

4This is done by MATLAB command c2d.
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dot) and v1 = 5.3 (dash).

each element is independently sampled from the normal
distribution with mean 0 and variance 1. Fig. 3 shows the
averaged sparsity of the obtained control vectors. The £*/¢?
optimization with v; = 5.3 x 10% always produces much
sparser control vectors than those by OMP. This property
depends on how to choose the regularization parameter
v1 > 0. In fact, if we choose smaller v; = 5.3, the sparsity
changes as shown in Fig. 3. On the other hand, if we use a
sufficiently large v; > 0, then the control vector becomes
0. This is indeed the sparsest control, but leads to very
poor control performance: the state diverges until the control
vector becomes nonzero (see [19]).

Fig. 4 shows the averaged 2-norm of the state x(k) as a
function of £ for all 5 designs. We see that, with exception
of the ¢!/¢? optimization based PPC, the NCSs are nearly
exponentially stable. In contrast, if the £ /¢? optimization of
[19] is used, then only practical stability is observed. The
simulation results are consistent with Corollary 5.1 and our
previous results in [19]. Note that the ¢! /¢? optimization with
v1 = 5.3 shows better performance than that with 11 = 5.3 x
103, while v; = 5.3 x 103 gives a much sparser vector. This
shows a tradeoff between the performance and the sparsity.

Fig. 5 shows the associated computation times. The ¢*/¢?
optimization is faster than OMP in many cases. Note that
the ideal and the /2 optimizations are much faster, since they
require just one matrix-vector multiplication.

B. Bit-rate Issues

We next investigate bit-rate aspects for a Gaussian plant
noise process v (k). To keep the encoder and decoder simple,
we will be using memoryless entropy-constrained uniform
scalar quantization; see [30]. Thus, the non-zero elements of
the control vector are independently encoded using a scalar
uniform quantizer followed by a scalar entropy coder. In
the simulations, we choose the step size of the quantizer
to be A = 0.001, which results in negligible quantization
distortion. We first run 1000 simulations with 100 time
steps and use the obtained control vectors for designing

[log plot] 2-norm of the state x(k)
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Fig. 4. 2-norm of the state (k) for the four PPC designs: log plot (above)
and linear plot (below).
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entropy coders. A separate entropy coder is designed for each
element in the control vector. For the first N/2 elements in
the vector, we always use a quantizer followed by entropy
coding. For the remaining N/2 elements, we only quantize
and entropy code the non-zero elements. We then send
additional N/2 bits indicating, which of the N/2 elements
have been encoded. The total bit-rate for each control vector
is obtained as the sum of the codeword lengths for each
individual non-zero codeword +N/2 bits. For comparison,
we use the same scalar quantizer with step size A = 0.001
and design entropy coders on the data obtained from the
¢? optimization. Since the control vectors in this case are
non-sparse, we separately encode all N elements and sum
the lengths of the individual codewords to obtain the total
bit-rate. In both of the above cases, the entropy coders
are Huffman coders. Moreover, the system parameters are
initialized with different random seeds for the training and
test situations, respectively. The average rate per control
vector for the OMP case is 55.36 bits, whereas the average
rate for the 2 case is 112.57 bits. Thus, due to sparsity, a
50.8 percent bit-rate reduction is on average achieved.
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Fig. 6 shows the 2-norm of the state x(k) and Fig. 7
shows the sparsity. We can also see the tradeoff between the
performance and the sparsity in this case.

VII. CONCLUSION

We have studied a packetized predictive control formula-
tion with a sparsity-promoting cost function for error-prone
rate-limited networked control system. We have given suffi-
cient conditions for asymptotic stability when the controller
is used over a network with bounded packet dropouts. Sim-
ulation results indicate that the proposed controller provides
sparse control packets, thereby giving bit-rate reductions
when compared to the use of, more common, quadratic
cost functions. Future work may include further study of
performance aspects and the effect of plant disturbances.
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