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Rate-distortion in closed-loop LTI systems

Eduardo I. Silva, Milan S. Derpich and Jan @stergaard

Abstract—We consider a networked LTI system subject to an d ¢ To e
average data-rate constraint in the feedback path. We prowe up-
per bounds to the minimal source coding rate required to acteve P
mean square stability and a desired level of performance. In U y
the quadratic Gaussian case, an almost complete rate-distmn Ue Ye
characterization is presented. E I
¢ channel ﬂ\
Sp Se
decoder encoder

|. INTRODUCTION

. . Fig. 1. Networked control system.
This paper focuses on the interplay between average data-

rate constraints (in bits per sample) and stationary perfor
mance for a networked control system comprising a noigyerage data-rate across the channel is defined as

LTI plant and an average data-rate constraint in the feddbac b1
path. In such a setup, the results of [8] guarantee that it RA lim EZR(Z-) 1)
is possible to find causal encoders and decoders such that koo k <= ’

the resultl_ng closed loop system 'S mean square StableWﬁereR(i) referes to the expected length (in nats)yofi).
and only if the average data-rate is greater than the su : .
e do not restrict the complexity of the encoder or the

of the logarithm of the absolute value of the unstable pIaHt o

) . o ecodera priori, and only assume them to be causal, and to
poles. This result has been extended in several directgaes ( ave access to independent side informasierand Sp. Our
e.g., [7], [9]). However, when performance bounds subject ? P D

average data-rate constraints are sought, there arevedyati aim s characterizing

fewer results available. Indeed, to our knowledge, theeenar R(D) & iznf R, (2)
computable characterizations of the optimal encodingcpesli oesp
in networked control scenarios [1], [3], [5], [9], [13]. whereo? £ trace {P.}, P. is the stationary variance matrix

In this note, we present upper and lower bounds on thé ¢, D > 0 is a desired level of performance, and the
minimal average data-rate that allows one to attain a gieen poptimization is carried out with respect to all causal erersd
formance level (as measured by the stationary varianceeof h and decoder® that render the resulting NCS (asymptot-
plant output). From a source-coding perspective, we arégimically) mean square stable (MSS), i.e., that rengeru, d)
at characterizing the rate-distortion function in closeop jointly second-order and asymptotically wide-sense ity
systems. This extends beyond causal rate-distortionyHepr processes.
due to being subject to a stability constraint. Our resufsat
a framework for networked control system design subject tolll. AN INFORMATION-THEORETIC LOWER BOUND ON

average data-rates developed in [10], [11]. AVERAGE DATA-RATES
Theorem 3.1:Consider the NCS of Figure 1. Under suitable
Il. PROBLEM SETUP assumptions,
Consider the NCS of Figure 1, wheReis an LTI plant with R 2 Loy = u) 2 Ioo(ye — uc); 3)

statex € R+ and initial statez,, u € R is the control input, where I.(a« — j) denotes the mutual information rate [6]
y € R is a sensor output, € R™ is a signal related to closedpetweeny and3, and(yq, ug) are jointly Gaussian processes
loop performance, and € R"¢ is a disturbance. We assumeyith the same second order statistics(asu). m
that (x?,d) are jointly second—or.derland Gaussian. (with finite Thus, in order to boundk(D) from below, it suffices to
entropies). The feedback path in Figure 1 comprises a delayinimize the directed mutual information rate that would
free noiseless digital channel, a causal encoder whos@ibutigppear across the source coding scheme, when all signals
ye is a sequence of binary words, and a causal decoder. he loop are jointly Gaussian.

Lemma 3.1:Suppose thaty*,»*) in Fig. 1 are second
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the feedback system of Figure 2 internally stable and well-

d e
posed. Then:
1
u 5log (1+4(D)) < R(D). (8)
Moreover, there exists a linear source coding scheme sa¢h th
1 1 2me
R(D) < 3 log (1 + 7(D)) + 3 log (E) +log2. (9)

Fig. 2. NCS that arises when, in Figure 1, the encdtdand decodet® form

a linear source coding scheme. Theorem 4.1 characterizes the minimal average data-rate

that guarantees a given stationary performance levelrinste

of v(D), i.e., in terms of the minimal SNR that guarantees
where L; : R*(~1) 5 R is a linear operator such thatthe desired performance level in a related LTI architecture
Li(y',ui~1) is the minimum mean-square error estimator dpterestingly, the upper bound in (9) is valid even if one
u(i) given (y',u"1). m removes the assumption @f,, d) being Gaussian

We conclude from the above that, for a given performanceTo find v(D), one can resort to the results in [4]. A case

level D, the minimum of I.(ys — u¢) over all causal where an explicit solution is available is whéh — oo, i.e.,
encoders and decoders is achievable by an encoder/decddgn only stabilization is sought. In that case, it followsnh
pair which behaves as a linear system plus additive whitéeorem 4.1 and [12] that

Gaussian noise* such thats(i) I (y*, u'~1), Vi. .
voo) = ([T Ipil* | - 1, (10)
i=1

We next define the class dihear source coding schemeswherepl’ -+ Pn, r€ the unstable poles &1 If one uses (10)

. . . . in (8) and (9), then one recovers, within a modest gap, the
which are capable of yielding a relationship betweeand u absolute minimal average data-rate compatible with stabil
of the form given by (4).

Definition 4.1: A source coding scheme is said to be "neadrenved in [8].

if and only if, when used around a noiseless digital channel,
is such that its inpuyy and outputu are related via

IV. LOWER AND UPPERBOUNDS ONRp
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