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Rate-distortion in closed-loop LTI systems
Eduardo I. Silva, Milan S. Derpich and Jan Østergaard

Abstract—We consider a networked LTI system subject to an
average data-rate constraint in the feedback path. We provide up-
per bounds to the minimal source coding rate required to achieve
mean square stability and a desired level of performance. In
the quadratic Gaussian case, an almost complete rate-distortion
characterization is presented.

I. I NTRODUCTION

This paper focuses on the interplay between average data-
rate constraints (in bits per sample) and stationary perfor-
mance for a networked control system comprising a noisy
LTI plant and an average data-rate constraint in the feedback
path. In such a setup, the results of [8] guarantee that it
is possible to find causal encoders and decoders such that
the resulting closed loop system is mean square stable, if
and only if the average data-rate is greater than the sum
of the logarithm of the absolute value of the unstable plant
poles. This result has been extended in several directions (see,
e.g., [7], [9]). However, when performance bounds subject to
average data-rate constraints are sought, there are relatively
fewer results available. Indeed, to our knowledge, there are no
computable characterizations of the optimal encoding policies
in networked control scenarios [1], [3], [5], [9], [13].

In this note, we present upper and lower bounds on the
minimal average data-rate that allows one to attain a given per-
formance level (as measured by the stationary variance of the
plant output). From a source-coding perspective, we are aiming
at characterizing the rate-distortion function in closed-loop
systems. This extends beyond causal rate-distortion theory [2]
due to being subject to a stability constraint. Our results exploit
a framework for networked control system design subject to
average data-rates developed in [10], [11].

II. PROBLEM SETUP

Consider the NCS of Figure 1, whereP is an LTI plant with
statex ∈ R

nx and initial statexo, u ∈ R is the control input,
y ∈ R is a sensor output,e ∈ R

ne is a signal related to closed
loop performance, andd ∈ R

nd is a disturbance. We assume
that (xo, d) are jointly second-order and Gaussian (with finite
entropies). The feedback path in Figure 1 comprises a delay-
free noiseless digital channel, a causal encoder whose output
yc is a sequence of binary words, and a causal decoder. The
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Fig. 1. Networked control system.

average data-rate across the channel is defined as

R , lim
k→∞

1

k

k−1
∑

i=0

R(i), (1)

whereR(i) referes to the expected length (in nats) ofyc(i).
We do not restrict the complexity of the encoder or the

decodera priori, and only assume them to be causal, and to
have access to independent side informationSE andSD. Our
aim is characterizing

R(D) , inf
σ2
e≤D

R, (2)

whereσ2
e , trace {Pe}, Pe is the stationary variance matrix

of e, D > 0 is a desired level of performance, and the
optimization is carried out with respect to all causal encoders
E and decodersD that render the resulting NCS (asymptot-
ically) mean square stable (MSS), i.e., that render(x, u, d)
jointly second-order and asymptotically wide-sense stationary
processes.

III. A N INFORMATION-THEORETIC LOWER BOUND ON

AVERAGE DATA-RATES

Theorem 3.1:Consider the NCS of Figure 1. Under suitable
assumptions,

R ≥ I∞(y → u) ≥ I∞(yG → uG), (3)

where I∞(α → β) denotes the mutual information rate [6]
betweenα andβ, and(yG, uG) are jointly Gaussian processes
with the same second order statistics as(y, u).

Thus, in order to boundR(D) from below, it suffices to
minimize the directed mutual information rate that would
appear across the source coding scheme, when all signals in
the loop are jointly Gaussian.

Lemma 3.1:Suppose that(yk, uk) in Fig. 1 are second
order and jointly Gaussian random sequences. Thenuk can
be constructed fromyk as

u(i) = Li(y
i, ui−1) + s(i), i = 1, . . . , k (4)

where, for eachi = 1, . . . , k, s(i) is a zero-mean Gaussian
random variable such thats(i) ⊥⊥ (ui−1, yi−1, si−1), and
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Fig. 2. NCS that arises when, in Figure 1, the encoderE and decoderD form
a linear source coding scheme.

where Li : R
i×(i−1) → R is a linear operator such that

Li(y
i, ui−1) is the minimum mean-square error estimator of

u(i) given (yi, ui−1).
We conclude from the above that, for a given performance

level D, the minimum of I∞(yG → uG) over all causal
encoders and decoders is achievable by an encoder/decoder
pair which behaves as a linear system plus additive white
Gaussian noisesk such thats(i) ⊥⊥ (yi, ui−1), ∀i.

IV. L OWER AND UPPERBOUNDS ONRD

We next define the class oflinear source coding schemes,
which are capable of yielding a relationship betweeny andu
of the form given by (4).

Definition 4.1: A source coding scheme is said to be linear
if and only if, when used around a noiseless digital channel,
is such that its inputy and outputu are related via

u = Fw, w = q + v, v = K diag
{

z−1, 1
}

[

w

y

]

, (5)

wherev andw are auxiliary signals,q is a second-order zero-
mean i.i.d. sequence, bothF andK are proper LTI systems,
andq is independent of(xo, d).

When a linear source coding scheme is used in the NCS of
Figure 1, the LTI feedback system of Figure 2 arises.

Lemma 4.1:Consider the NCS of Figure 1 and assume that
the encoderE and the decoderD form a linear source coding
scheme. Under suitable assumptions,I∞(y → u) = I∞(v →
w) and

1

4π

∫ π

−π

log
Sw(e

jω)

σ2
q

dω ≤ I∞(v → w), (6)

whereSw is the stationary power spectral density ofw and
σ2
q is the variance of the auxiliary noiseq.
Linear source coding schemes have sufficient degrees of

freedom to allow one to whitenw without compromising
optimality. Thus, our results lead to:

Theorem 4.1:Consider the NCS of Figure 1 under suitable
assumptions. Define, with reference to the feedback scheme
of Figure 2, the infimal signal-to-noise ratio function

γ(D) , inf
σ2
e≤D

σ2
v

σ2
q

, (7)

whereσ2
α, α ∈ {v, q, e}, is the stationary variance ofα in

Figure 2, and the optimization is carried out with respect to
all σ2

q ∈ R
+ and all proper LTI filtersF andK which render

the feedback system of Figure 2 internally stable and well-
posed. Then:

1

2
log
(

1 + γ(D)
)

≤ R(D). (8)

Moreover, there exists a linear source coding scheme such that

R(D) <
1

2
log
(

1 + γ(D)
)

+
1

2
log

(

2πe

12

)

+ log 2. (9)

Theorem 4.1 characterizes the minimal average data-rate
that guarantees a given stationary performance level, in terms
of γ(D), i.e., in terms of the minimal SNR that guarantees
the desired performance level in a related LTI architecture.
Interestingly, the upper bound in (9) is valid even if one
removes the assumption of(xo, d) being Gaussian

To find γ(D), one can resort to the results in [4]. A case
where an explicit solution is available is whenD → ∞, i.e.,
when only stabilization is sought. In that case, it follows from
Theorem 4.1 and [12] that

γ(∞) =

(

np
∏

i=1

|pi|
2

)

− 1, (10)

wherep1, . . . , pnp
are the unstable poles ofP . If one uses (10)

in (8) and (9), then one recovers, within a modest gap, the
absolute minimal average data-rate compatible with stability
derived in [8].
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