Aalborg Universitet

Rate-distortion in Closed-Loop LTI Systems

Silva, Eduardo; Derpich, Milan; Østergaard, Jan

Published in: 2013 Information Theory and Applications (ITA)

DOI (link to publication from Publisher): 10.1109/ITA.2013.6502964

Publication date: 2013

Document Version Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA): Silva, E., Derpich, M., & Østergaard, J. (2013). Rate-distortion in Closed-Loop LTI Systems. In 2013 Information Theory and Applications (ITA): ITA (pp. 1-2). IEEE Press. https://doi.org/10.1109/ITÁ.2013.6502964

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Rate-distortion in closed-loop LTI systems

Eduardo I. Silva, Milan S. Derpich and Jan Østergaard

Abstract—We consider a networked LTI system subject to an average data-rate constraint in the feedback path. We provide upper bounds to the minimal source coding rate required to achieve mean square stability and a desired level of performance. In the quadratic Gaussian case, an almost complete rate-distortion characterization is presented.

I. INTRODUCTION

This paper focuses on the interplay between average datarate constraints (in bits per sample) and stationary performance for a networked control system comprising a noisy LTI plant and an average data-rate constraint in the feedback path. In such a setup, the results of [8] guarantee that it is possible to find causal encoders and decoders such that the resulting closed loop system is mean square stable, if and only if the average data-rate is greater than the sum of the logarithm of the absolute value of the unstable plant poles. This result has been extended in several directions (see, e.g., [7], [9]). However, when performance bounds subject to average data-rate constraints are sought, there are relatively fewer results available. Indeed, to our knowledge, there are no computable characterizations of the optimal encoding policies in networked control scenarios [1], [3], [5], [9], [13].

In this note, we present upper and lower bounds on the minimal average data-rate that allows one to attain a given performance level (as measured by the stationary variance of the plant output). From a source-coding perspective, we are aiming at characterizing the rate-distortion function in closed-loop systems. This extends beyond causal rate-distortion theory [2] due to being subject to a stability constraint. Our results exploit a framework for networked control system design subject to average data-rates developed in [10], [11].

II. PROBLEM SETUP

Consider the NCS of Figure 1, where P is an LTI plant with state $x \in \mathbb{R}^{n_x}$ and initial state $x_o, u \in \mathbb{R}$ is the control input, $y \in \mathbb{R}$ is a sensor output, $e \in \mathbb{R}^{n_e}$ is a signal related to closed loop performance, and $d \in \mathbb{R}^{n_d}$ is a disturbance. We assume that (x_o, d) are jointly second-order and Gaussian (with finite entropies). The feedback path in Figure 1 comprises a delayfree noiseless digital channel, a causal encoder whose output y_c is a sequence of binary words, and a causal decoder. The

Fig. 1. Networked control system.

average data-rate across the channel is defined as

$$\mathcal{R} \triangleq \lim_{k \to \infty} \frac{1}{k} \sum_{i=0}^{k-1} R(i), \tag{1}$$

where R(i) referes to the expected length (in nats) of $y_c(i)$.

We do not restrict the complexity of the encoder or the decoder *a priori*, and only assume them to be causal, and to have access to independent side information $S_{\mathcal{E}}$ and $S_{\mathcal{D}}$. Our aim is characterizing

$$\mathbb{R}(D) \triangleq \inf_{\sigma_e^2 \le D} \mathcal{R},\tag{2}$$

where $\sigma_e^2 \triangleq \operatorname{trace} \{P_e\}$, P_e is the stationary variance matrix of e, D > 0 is a desired level of performance, and the optimization is carried out with respect to all causal encoders \mathcal{E} and decoders \mathcal{D} that render the resulting NCS (asymptotically) mean square stable (MSS), i.e., that render (x, u, d)jointly second-order and asymptotically wide-sense stationary processes.

III. AN INFORMATION-THEORETIC LOWER BOUND ON AVERAGE DATA-RATES

Theorem 3.1: Consider the NCS of Figure 1. Under suitable assumptions,

$$\mathcal{R} \ge I_{\infty}(y \to u) \ge I_{\infty}(y_G \to u_G), \tag{3}$$

where $I_{\infty}(\alpha \rightarrow \beta)$ denotes the mutual information rate [6] between α and β , and (y_G, u_G) are jointly Gaussian processes with the same second order statistics as (y, u).

Thus, in order to bound $\mathcal{R}(D)$ from below, it suffices to minimize the directed mutual information rate that would appear across the source coding scheme, when all signals in the loop are jointly Gaussian.

Lemma 3.1: Suppose that (y^k, u^k) in Fig. 1 are second order and jointly Gaussian random sequences. Then u^k can be constructed from y^k as

$$u(i) = L_i(y^i, u^{i-1}) + s(i), \quad i = 1, \dots, k$$
 (4)

where, for each i = 1, ..., k, s(i) is a zero-mean Gaussian random variable such that $s(i) \perp (u^{i-1}, y^{i-1}, s^{i-1})$, and

E.I Silva and M.S. Derpich are with the Department of Electronic Engineering, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile (email: eduardo.silva@usm.cl, milan.derpich@usm.cl). This work was supported in part by CONICYT through grants FONDECYT Nr. 1120468, Nr. 1110646, and Anillo ACT-53.

J. Østergaard is with the Department of Electronic Systems, Aalborg University, Niels Jernes Vej 12, DK-9220, Aalborg, Denmark (email: janoe@ieee.org).

Fig. 2. NCS that arises when, in Figure 1, the encoder ${\cal E}$ and decoder ${\cal D}$ form a linear source coding scheme.

where $L_i : \mathbb{R}^{i \times (i-1)} \to \mathbb{R}$ is a linear operator such that $L_i(y^i, u^{i-1})$ is the minimum mean-square error estimator of u(i) given (y^i, u^{i-1}) .

We conclude from the above that, for a given performance level D, the minimum of $I_{\infty}(y_G \rightarrow u_G)$ over all causal encoders and decoders is achievable by an encoder/decoder pair which behaves as a linear system plus additive white Gaussian noise s^k such that $s(i) \perp (y^i, u^{i-1}), \forall i$.

IV. Lower and upper Bounds on \mathcal{R}_D

We next define the class of *linear source coding schemes*, which are capable of yielding a relationship between y and uof the form given by (4).

Definition 4.1: A source coding scheme is said to be linear if and only if, when used around a noiseless digital channel, is such that its input y and output u are related via

$$u = Fw, \quad w = q + v, \quad v = K \operatorname{diag}\left\{z^{-1}, 1\right\} \begin{bmatrix} w \\ y \end{bmatrix},$$
 (5)

where v and w are auxiliary signals, q is a second-order zeromean i.i.d. sequence, both F and K are proper LTI systems, and q is independent of (x_o, d) .

When a linear source coding scheme is used in the NCS of Figure 1, the LTI feedback system of Figure 2 arises.

Lemma 4.1: Consider the NCS of Figure 1 and assume that the encoder \mathcal{E} and the decoder \mathcal{D} form a linear source coding scheme. Under suitable assumptions, $I_{\infty}(y \to u) = I_{\infty}(v \to w)$ and

$$\frac{1}{4\pi} \int_{-\pi}^{\pi} \log \frac{S_w(\mathrm{e}^{j\omega})}{\sigma_q^2} \, d\omega \le I_\infty(v \to w),\tag{6}$$

where S_w is the stationary power spectral density of w and σ_q^2 is the variance of the auxiliary noise q.

Linear source coding schemes have sufficient degrees of freedom to allow one to whiten w without compromising optimality. Thus, our results lead to:

Theorem 4.1: Consider the NCS of Figure 1 under suitable assumptions. Define, with reference to the feedback scheme of Figure 2, the infimal signal-to-noise ratio function

$$\gamma(D) \triangleq \inf_{\substack{\sigma_e^2 \le D}} \frac{\sigma_v^2}{\sigma_q^2},\tag{7}$$

where σ_{α}^2 , $\alpha \in \{v, q, e\}$, is the stationary variance of α in Figure 2, and the optimization is carried out with respect to all $\sigma_q^2 \in \mathbb{R}^+$ and all proper LTI filters F and K which render

the feedback system of Figure 2 internally stable and wellposed. Then:

$$\frac{1}{2}\log\left(1+\gamma(D)\right) \le \Re(D). \tag{8}$$

Moreover, there exists a linear source coding scheme such that

$$\mathcal{R}(D) < \frac{1}{2}\log\left(1+\gamma(D)\right) + \frac{1}{2}\log\left(\frac{2\pi e}{12}\right) + \log 2.$$
(9)

Theorem 4.1 characterizes the minimal average data-rate that guarantees a given stationary performance level, in terms of $\gamma(D)$, i.e., in terms of the minimal SNR that guarantees the desired performance level in a related LTI architecture. Interestingly, the upper bound in (9) is valid even if one removes the assumption of (x_o, d) being Gaussian

To find $\gamma(D)$, one can resort to the results in [4]. A case where an explicit solution is available is when $D \to \infty$, i.e., when only stabilization is sought. In that case, it follows from Theorem 4.1 and [12] that

$$\gamma(\infty) = \left(\prod_{i=1}^{n_p} |p_i|^2\right) - 1, \tag{10}$$

where p_1, \ldots, p_{n_p} are the unstable poles of *P*. If one uses (10) in (8) and (9), then one recovers, within a modest gap, the absolute minimal average data-rate compatible with stability derived in [8].

REFERENCES

- L. Bao, M. Skoglund, and K.H. Johansson. Iterative encoder-controller design for feedback control over noisy channels. *IEEE Transactions on Automatic Control*, 56(2):265–278, February 2011.
- [2] M.S. Derpich and J. Østergaard. Improved upper bounds to the causal quadratic rate-distortion function for Gaussian stationary sources. *IEEE Transactions on Information Theory*, 58(5):3131–3152, May 2012.
- [3] M. Fu. Lack of separation principle for quantized linear quadratic gaussian control. *IEEE Transactions on Automatic Control*, 57(9):2385– 2390, September 2012.
- [4] E. Johannesson. Control and Communication with Signal-to-Noise Ratio Constraints. PhD thesis, Department of Automatic Control, Lund University, Sweden, 2011.
- [5] A. Mahajan and D. Teneketzis. Optimal Performance of Networked Control Systems with Nonclassical Information Structures. *SIAM Journal on Control and Optimization*, 48(3):1377–1404, 2009.
- [6] J.L. Massey. Causality, feedback and directed information. In Proc. of the International Symposium on Information Theory and its Applications., Hawaii, USA, 1990.
- [7] P. Minero, L. Coviello, and M. Franceschetti. Stabilization over Markov feedback channels: The general case. *IEEE Transactions on Automatic Control*, 58(2):349–362, February 2013.
- [8] G.N. Nair and R. Evans. Stabilizability of stochastic linear systems with finite feedback data rates. SIAM Journal on Control and Optimization, 43(2):413–436, 2004.
- [9] G.N. Nair, F. Fagnani, S. Zampieri, and R. Evans. Feedback control under data rate constraints: An overview. *Proceedings of the IEEE*, 95(1):108–137, 2007.
- [10] E.I. Silva, M.S. Derpich, and J. Østergaard. On the minimal average data-rate that guarantees a given closed loop performance level. In *Proceedings of the 2nd IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys)*, Annecy, France, 2010.
- [11] E.I. Silva, M.S. Derpich, and J. Østergaard. A framework for control system design subject to average data-rate constraints. *IEEE Transactions on Automatic Control*, 56(8):1886–1899, August 2011.
- [12] E.I. Silva, G.C. Goodwin, and D.E. Quevedo. Control system design subject to SNR constraints. *Automatica*, 46(2):428–436, 2010.
- [13] S. Tatikonda, A. Sahai, and S. Mitter. Stochastic linear control over a communication channel. *IEEE Transactions on Automatic Control*, 49(9):1549–1561, 2004.