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Compressive Sensing for Spread Spectrum

Receivers
Karsten Fyhn, Member, IEEE, Tobias L. Jensen, Member, IEEE, Torben Larsen, Senior Member, IEEE, and Søren

Holdt Jensen, Senior Member, IEEE

Abstract—With the advent of ubiquitous computing there are
two design parameters of wireless communication devices that
become very important: power efficiency and production cost.
Compressive sensing enables the receiver in such devices to
sample below the Shannon-Nyquist sampling rate, which may
lead to a decrease in the two design parameters. This paper
investigates the use of Compressive Sensing (CS) in a general
Code Division Multiple Access (CDMA) receiver. We show that
when using spread spectrum codes in the signal domain, the
CS measurement matrix may be simplified. This measurement
scheme, named Compressive Spread Spectrum (CSS), allows for
a simple, effective receiver design. Furthermore, we numerically
evaluate the proposed receiver in terms of bit error rate under
different signal to noise ratio conditions and compare it with
other receiver structures. These numerical experiments show
that though the bit error rate performance is degraded by the
subsampling in the CS-enabled receivers, this may be remedied
by including quantization in the receiver model. We also study the
computational complexity of the proposed receiver design under
different sparsity and measurement ratios. Our work shows that
it is possible to subsample a CDMA signal using CSS and that in
one example the CSS receiver outperforms the classical receiver.

Index Terms—Compressive sensing, sparse sampling, spread
spectrum receivers, multiuser decoding

I. INTRODUCTION

As wireless communication devices are becoming more and

more widespread and ubiquitous, the need for power efficiency

and low production cost becomes paramount. A power costly

operation in wireless communication is the conversion from

analog to digital signals - the Analog to Digital Converter

(ADC). The classic ADC uses the Shannon-Nyquist sampling

theorem to represent an analog signal in digital form. The

Shannon-Nyquist sampling theorem states that to perfectly

represent an analog signal, it must be sampled at a frequency

higher than twice the signal’s bandwidth. When this theorem

is obeyed, the original analog signal may be reconstructed per-

fectly from its sampled representation. The Shannon-Nyquist

sampling theorem has been the foundation of digital signal

processing for more than half a century and is considered

a fundamental building block of digital signal processing

systems. Recently, a new concept termed Compressive Sensing

(CS) [1], [2] has been attracting more and more attention in

the signal processing community as it provides an exception

to the lower bound on the sampling rate by exploiting sparsity

The authors are with Aalborg University, Faculty of Engineering and
Science, Department of Electronic Systems, DK-9220 Aalborg, Denmark. The
authors’ e-mails are: {kfn,tlj,tl,shj}@es.aau.dk. This work is supported by The
Danish Council for Strategic Research under grant number 09-067056.

in the signal. If a signal is sparse in some arbitrary basis, it

may be sampled at a rate lower than the Nyquist frequency.

Sparsity in CS is when a signal is comprised of only a few

atoms from a given basis. The sampled signal must be acquired

through some linear measurement scheme. Examples of these

are random Gaussian, Bernoulli and Rademacher measurement

schemes, as well as the Random Demodulator (RD) [3], [4]

and the Modulated Wideband Converter [5].

Compressive sensing has primarily been studied in the

general signal processing area, and relatively few researchers

have looked into its application in communication systems. In

[6], [7] the authors examine the use of CS in Ultra-Wideband

(UWB) communication systems for channel estimation where

the sparsity of the signal lies in the time domain. Others have

used compressive sensing for source coding in communication

networks, together with network coding [8]. In the spread

spectrum area, some researchers have studied the general

use of CS for spread spectrum communication systems [9].

However, their work is mainly focused on using CS for

fast multi-user detection, rather than subsampling. Another

example is in [10], where the authors use CS to decrease

the sampling rate of a GPS receiver by exploiting sparsity

in the number of possible signal components at the receiver.

Their receiver structure is based on possibly complicated

hardware filters, which may make their implementation very

difficult considering the impact of hardware filters to CS

performance [11]. In [12] the authors treat a similar topic

where they design spread spectrum codes to enable a base

station to perform multi-user detection on a large number of

users, of which only a few are active at a time. Their work

focuses on simple on-off signalling, i.e. the existence of nodes,

rather than communication with them, and solves the multi-

user detection problem using an adapted convex optimization

algorithm. Their motivation is on increasing the number of

active users in a network, rather than decreasing the sampling

rate of the ADC. A more applied approach is taken in [13]

where compressive signal processing [14] is applied to enable

subsampling of an IEEE 802.15.4 Direct Sequence Spread

Spectrum (DSSS) signal. In [15] the authors also solve a

multiuser detection problem using compressive sensing, but

in their work the focus is on the design of possibly complex

analog filters. For this paper we focus on keeping the analog

part as simple as possible and process the signals in the digital

domain instead.

In our work we apply CS to a general CDMA system. We

show that a RD implementation may be used to subsample

the CDMA signal, but we also develop a simplified version of
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the RD which performs equally well for CDMA signals but is

simpler and cheaper to implement. Our motivation is that by

taking fewer samples we may be able to conserve power in the

receiver, as can be seen in e.g. Eqn. 13 in [16]. We show the

performance of the proposed receiver structure for the simple

discrete case, when compared to a classic receiver structure

and an RD receiver structure. Then we extend our results to a

full RF numerical simulation and demonstrate that the perfor-

mance is identical in this setting. Due to noise folding the CS

approach suffers a penalty for downsampling, but we show that

if quantization is taken into account CS outperforms the classic

receiver in some cases. We finally investigate the complexity of

the developed algorithms and compare the computational cost

of the numerical experiments with the theoretically calculated

computation cost. Following the paradigm of Reproducible

Research [17], all our results and code are made available

at http://www.sparsesampling.com/css.

To define our notation, let all vectors and matrices be

denoted using lower and upper case letters in bold, x and X,

respectively. The Penrose-Moore pseudo-inverse is denoted as

X†, the transpose of a real matrix as XT and the conjugate

transpose of a matrix as X∗. The expectation operator is

denoted by E[·].
In the following, we first develop a simple signal model in

Section II, based on a dictionary of Gold sequences. We then

elaborate on what CS is and which reconstruction algorithm

we use in the numerical experiments in Section III. Further-

more, we define a novel measurement matrix design for spread

spectrum receivers and demonstrate numerically how this

measurement matrix performs with a Gold dictionary and the

Subspace Pursuit reconstruction algorithm. This performance

is compared to that of a Rademacher measurement matrix and

a RD measurement matrix. This is followed by Section IV,

which includes a simple numerical experiment of the different

receiver structures. In Section V we extend the experiment

to a full RF simulation with and without quantization. We

then analyze the computational complexity of the proposed

method in Section VI, after which we conclude the paper in

Section VII.

II. SIGNAL MODEL

First, we consider a purely discrete model of a spread

spectrum communication system. Uncoded information bits

are sent in a slotted fashion, with each slot containing a single

CDMA signal. The system is assumed to be synchronized,

which may be obtained by e.g. having a central node or base

station transmit beacons, which signify the beginning and

end of slots. This is how mobile phone networks and some

wireless sensor networks operate. The receiver is considered

non-coherent, as information is encoded in the phase, but we

do assume that there is no carrier frequency offset between

the transmitter and receiver oscillators. This is of course not a

realistic assumption but it is done to keep the system simple.

Future work should investigate the impact of oscillator drift on

performance. Each slot contains an independent CDMA signal

and the slots are decoded sequentially and independently of

each other.

For one slot, define a discrete QPSK baseband signal, x ∈
C

N×1 as:

x = Ψα, (1)

where Ψ ∈ SΨ ⊂ {±1}N×N is an orthogonal or near-

orthogonal dictionary, containing spreading waveforms for

transmission, SΨ is the subset of {±1}N×N that contains

orthogonal or near-orthogonal dictionaries and α ∈ {±1 ±
j, 0}N×1 is a sparse vector, that selects which spreading

waveform(s) and what QPSK constellation point(s) to send.

α is a vector here because we only process one slot at a time

and we assume that within a slot, the signal amplitude for each

user is constant. That α is assumed to be sparse is justified in

some scenarios, which is demonstrated shortly.

An example of a system using the above signal model could

be a wireless sensor network in which one node must gather

information from any possible neighbors. Each node has a

unique CDMA sequence assigned, which it uses to transfer

information and each node does not know which neighbors it

has, but it knows all possible CDMA sequences. Note that in

this signal model α is defined so that all users have identical

amplitude. This is not realistic as the distance between nodes

might vary a lot, resulting in differences between amplitude in

the received signal components. We choose this simplification

here but the reconstruction algorithm is not limited by this

and also works for sparse vectors with different amplitude

components.

In cases where the number of active nodes or users in a

network is smaller than the total number of possible users,

the vector α may be assumed sparse, which is the enabling

factor for CS . Cases such as these arise in e.g. mobile phone

networks and wireless sensor networks, where the number of

surrounding nodes may be large, but is often small.

At the receiver the following signal is observed:

y = Θ (x+w) = ΘΨα+Θw, (2)

where Θ is a measurement matrix, which we shall treat later,

and w ∈ C
N×1 is Additive White Gaussian Noise (AWGN) .

Notice here that we take into account noise folding as the noise

is folded down into the compressed domain together with the

signal. This makes the noise colored and has an impact on the

demodulation performance, because each time the sampling

rate is reduced by one half, the Signal to Noise Ratio (SNR)

is decreased by 3 dB [18], [19].

A. Spread Spectrum Dictionary of Gold Sequences

In spread spectrum signals, a possible dictionary Ψ is a set

of Gold sequences, as used in e.g. GPS technology [20]. A set

of Gold sequences is a special dictionary of binary sequences

with very low auto and cross-correlation properties [21]. To

generate a Gold dictionary, two maximum length sequences

must be generated by two linear feedback shift registers

(LFSR). A maximum length sequence is often denoted an m-

sequence (it has m elements), and is a special kind of pseudo-

random noise sequence generated by a LFSR, such that it

is periodic and produces a sequence of length 2m − 1. It is

called a maximum length sequence as its period is at maximum

http://www.sparsesampling.com/css
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length. The reason for the length being 2m−1 rather than 2m

is that the state where all cells are zero must be avoided. To

obtain an m-sequence, the LFSR must be carefully chosen as

there is no algorithm for ensuring maximum length. However,

there are many known LFSR setups for varying choices of

m. Furthermore, the two m sequences must be chosen so that

their periodic cross-correlation is three-valued and takes on

only the values {−1,−t, t− 2}, where:

t =

{

2(m+1)/2 + 1 for odd m and

2(m+2)/2 + 1 for even m.
(3)

The set of Gold sequences are then generated using two

m-sequences: g1 and g2, both of length N = 2m − 1. Each

Gold sequence in the set is generated as g1 ⊕ gi (exclusive

or), where gi is g2 cyclically shifted by the parameter i. As

i can take on values between 1 ≤ i ≤ 2m − 1, each shift

constitutes a candidate for the set, resulting in a dictionary as

follows: Define a N ×N dictionary of Gold sequences as Ψ,

with each column signifying a possible code sequence.

When using such a CDMA dictionary, the received signal

must be sampled at a rate corresponding to the chip rate, where

a chip is one entry in the received Gold sequences. If α is

sparse the information rate of the signal is much lower and it

may be possible to decrease the sampling rate by using CS.
In this paper, we use three Gold dictionary sizes: m =

5,m = 7 and m = 10. The m-sequence feedback sets used to
generate these are:

• m = 5: X5
+X

2
+ 1 and X

5
+X

4
+X

3
+X

2
+ 1

• m = 7: X7
+X

6
+ 1 and X

7
+X

4
+ 1

• m = 10: X10
+X

3
+1 and X

10
+X

9
+X

8
+X

6
+X

3
+X

2
+1

The chosen polynomials may be validated by calculating

the auto and cross-correlation of the generated dictionaries and

verifying that they follow the structure listed in the above.

III. COMPRESSIVE SENSING

CS is a novel sampling scheme, developed to lower the

number of samples required to obtain some desired signal.

At the heart of CS is the linear sampling scheme, called

the measurement matrix. In classic receivers the measurement

matrix Θ may be modelled as the identity matrix, such that x

is sampled at the chip rate of each channel (I and Q). Here,

we shall denote a classic receiver using Θ1 = I, where the

subscript 1 denotes no subsampling and I is the identity matrix

of size N × N. In CS another measurement matrix is used.

Denote by Θκ ∈ R
M×N a CS measurement matrix, where

κ ∈ N1 is the subsampling ratio when compared to the Nyquist

rate and M = N/κ (If κ does not divide N , M is rounded

to the nearest integer). This measurement matrix is then

responsible for mapping the N -dimensional signal x to a M -

dimensional signal y. Normally this would make it impossible

to recover the original signal, but under the assumption that x

is sparse in some basis, it is possible to reconstruct the original

signal from the sampled, M -dimensional signal y [1], [2].

Notice that we are not interested in the reconstructed signal,

x, but in the sparse vector α, which allows us to demodulate

the data in the signal. We may obtain an estimate of α by

reconstructing the signal from y. Such a reconstruction may

be obtained using e.g. a convex optimization problem solver

or a greedy algorithm. For this work, we choose the greedy

algorithm Subspace Pursuit [22]. This algorithm is chosen

due to its good performance in terms of both reconstruction

accuracy and running time, as shown in Section III-B.

Before explaining the reconstruction algorithm, we return

to the measurement matrix and introduce a new measurement

scheme which is enabled by the use of CDMA . This new

measurement scheme is easier to implement than the RD, but

performs almost identically for spread spectrum systems. We

call this a Compressive Spread Spectrum (CSS) measurement

matrix and explain it further in the following.

A. Compressive Spread Spectrum Measurement Matrix

In most CS literature a choice of measurement matrix

or structure must be made. The Bernoulli or Rademacher

distributed measurement matrix is often seen in the theoretical

literature, but it is not well suited for practical implementa-

tion in a wireless receiver. The Random Demodulator (RD)

sampling structure [3], [4] is one of the most well-known

measurement matrix structures developed, which is well suited

for practical implementation. In the RD a Pseudo-Random

Noise (PRN) sequence is mixed with the received signal

followed by low-pass filtering. Because a spread spectrum

transmitter has already spread the signal before transmission,

we show that the RD structure can be improved so that the

mixing with a PRN sequence at the receiver may be skipped.

This is similar to what is done in [13] with IEEE 802.15.4

signals, which uses Direct-Sequence-Spread-Spectrum (DSSS)

signals. These can be viewed as a special class of CDMA

signals, which are used to counter interference from blockers

in the same frequency band, rather than to distinguish between

users or signals.

The proposed measurement matrix may therefore be defined

similarly to the definition of the RD matrix in [4]. In their

work, the measurement matrix is based on two matrices, D

and H. First, let ǫ0, ǫ1, . . . , ǫN ∈ {±1} be the chipping

sequence used in the RD for a signal of length N . The

mapping x → Dx signifies the demodulation mapping with

the chipping sequence, where D is the diagonal matrix:

D =











ǫ0
ǫ1

. . .

ǫN











. (4)

Second, the H matrix denotes the accumulate-and-dump

action performed after mixing. Let M denote the number

of samples taken and assume here that M divides N . Then

each sample is the sum of N/M consecutive entries of the

demodulated signal. The matrix performing this sampling

action may therefore be defined as an M × N matrix, with

N/M consecutive unit entries in the rth row starting in column

rN/M + 1 for each r = 0, 1, . . . ,M − 1. An example with

M = 3 and N = 6 is:

H =





1 1
1 1

1 1



 . (5)
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The RD is therefore designed to sample an analog signal, so

that in a discrete representation this is the equivalent to:

y = HDx, (6)

where x is the Nyquist sampled input signal and y is the

compressively sampled output signal.

The reason for applying a chipping sequence is to spread

the signal across the frequency spectrum, so that information

is aliased down into the lower frequency area, which is left

untouched by the low-pass filtering. In the proposed receiver

this mixing is unnecessary because the signal has already been

spread at the transmitter. The proposed receiver may therefore

be simplified to:

y = Hx. (7)

This is significantly simpler to implement in hardware than

the RD. Comparing to the notation introduced for the mea-

surement matrix in Section II we therefore have: Θκ = H.

To justify the use of no PRN sequence in the measurement

matrix, consider the following. The use of a CDMA dictionary

introduces a random-like dictionary matrix, which spreads

the signal out so that each sample contains a little bit of

the original information signal. This is similar to what the

measurement matrix does in CS. Therefore, the sampling

process may be rewritten as:

y = Hx = HΨα = ΘIα. (8)

Here, the measurement matrix becomes Θ = HΨ, i.e. the

subsampling matrix and the CDMA codes. The dictionary

then becomes the identity matrix. When viewed like this, it is

clear that Θ and I are incoherent as the identity matrix only

takes out one element in Θ. Another common mathematical

tool for verifying the validity of a measurement scheme for

compressive sensing is Restricted-Isometry-Property (RIP).

However, the RIP gives a less precise and more conservative

boundary between reconstruction success and failure than

other bounds, see e.g. the discussions in [23], [24]. Instead,

phase-transition diagrams [23] may be used to demonstrate

empirically for which levels of sparsity the dictionary and

measurement matrix are applicable. In the following, we first

define the Subspace Pursuit algorithm and then use phase-

transition diagrams to show that the proposed CSS measure-

ment matrix has transitions that are very close to those of

the Rademacher and RD measurement matrices for dictionary

matrices using Gold sequences.

B. Subspace Pursuit

To reconstruct the signal a reconstruction algorithm must

be chosen. Many different approaches have been developed,

but two main classes of reconstruction algorithms are in

widespread use: ℓ1 minimization and greedy algorithms. Often,

ℓ1 minimization provides the best solution, but if the matrices

Ψ and Θ are very large, it is much more efficient to use the

simpler greedy algorithms [25]. Therefore, we choose to use

greedy algorithms in this work.

In [25] an extensive numerical comparison between recon-

struction algorithms is performed based on phase transition

plots. Their results show that the best performance is attained

using ℓ1 (at least theoretically). Second best is the least angle

regression (LARS) algorithm. However, as shown in Table VII

in [25], the LARS algorithm is quite slow. A better choice

is a Tuned Two Stage Thresholding algorithm, which has

good performance and is very fast. In [25], two algorithms in

particular are mentioned: CoSaMP and the Subspace Pursuit

algorithm. The Subspace Pursuit algorithm from [22] is shown

to perform best of the two.

Recall that Θκ is a measurement matrix with N columns

and N/κ rows and define A = ΘκΨ. Then we define the Sub-

space Pursuit algorithm as in Algorithm 11. In each algorithm

iteration, the pseudo-inverse is calculated as the least-squares

solution as this is less computationally demanding.

Algorithm 1 Subspace Pursuit Algorithm [22]

Input:

Sparsity S, measurement and dictionary matrices combined

A and received, sampled signal y

Initialization:

T 0 = {indices of the S largest absolute magnitude entries

in the vector ATy}
y0
r = y −AT 0AT

T 0y

ℓ = 0
repeat

ℓ← ℓ+ 1
T̃ ℓ ← T ℓ−1∪{indices of the S largest absolute magnitude

entries in the vector ATyℓ−1
r }

T ℓ ← {indices of the S largest absolute magnitude

entries in the vector A
†

T̃ ℓ
y}

yℓ
r ← y −AT ℓA

†

T ℓy

until ‖yℓ
r‖2 > ‖yℓ−1

r ‖2, ℓ ≥ S

To demonstrate the performance of the Subspace Pursuit

algorithm with the Gold dictionary, we have performed numer-

ical experiments to find the phase transition in the noise-less

case for various choices of measurement matrices. The size of

Gold dictionary used is m = 10, i.e. the dictionary matrix Ψ

is of size 1023× 1023. The results are shown in Fig. 1. For

each curve, we generate a surface plot of the rate of success,

based on Monte Carlo simulations. In this surface plot, a clear

transition curve is evident and to condense the results we only

plot the transition curve where the probability of error crosses

0.5. Each surface plot is generated so that new simulations

are conducted until the Mean Squared Error (MSE) between

the ith and the (i − 1)th figure is less than 10−5. For each

parameter set and in each simulation, an experiment is a

success (1) if the MSE between the reconstructed and the

received signal is less than 10−6 and a failure (0) otherwise.

The three measurement matrices used are as follows:

• A Rademacher distributed measurement matrix, with a

dense structure where entries are either −1 or 1,

1In the first initialization step we choose to take the transpose of A,
rather than the Penrose–Moore pseudo-inverse. If instead the Penrose–Moore
pseudo-inverse is used, the performance at high values of δ and ρ is increased
in Fig. 1, but so is the computational complexity. This issue is not treated in
more detail here, since our problems are assumed to always have low ρ.
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Encoding
b CDMA

mapping

α x

+
w

Sampling
x+w

Prewhite
y

Subspace

Pursuit Py
Decoding

α̂b̂

Fig. 2: Flow chart of the discrete numerical experiment.

0.0 0.2 0.4 0.6 0.8 1.0
δ=M/N

0.0

0.2

0.4

0.6

0.8

1.0

ρ
=
S
/M

Bernoulli

RD

CSS

Tuned TST

Fig. 1: Phase Transition Diagrams for the three different mea-

surement matrices (Rademacher, RD and CSS measurement

matrix) with dictionary size m = 10. The black line is the

phase transition line for the Tuned Two Stage Thresholding

(TST) algorithm from [25].

• A RD measurement matrix, with a banded structure,

where entries are either −1 or 1 on the band and 0
outside, and

• the proposed CSS measurement matrix.

To validate the above results, we have inserted the phase

transition line for the Tuned Two Stage Threshold (TST)

algorithm from [25] in Fig. 12. As can be seen our imple-

mentation corresponds well with their results and it is clear

that the proposed CSS measurement matrix performs close

to identically to the RD measurement matrix and that, as

previously argued, the D matrix is unnecessary. Notice also

the clear horizontal line in the graph around δ = 0.9 and

ρ = 0.5. We analyze this irregularity more in Section VI.

IV. DISCRETE NUMERICAL EXPERIMENT

In the above analysis, we have focused on the noise-

less case and have shown that the presented dictionary and

measurement matrix setup does enable CS for certain levels of

sparsity. We therefore now return to the original signal model

2Data from http://sparselab.stanford.edu/OptimalTuning/main.htm

in Eqn. (2) and investigate the noisy case by carrying out Bit

Error Rate (BER) experiments. In Fig. 2 a flow chart of the

numerical experiment is shown. First, we encode a randomly

generated bit sequence b to form the sparse vector α from

Eqn. (1). The non-zero positions are chosen randomly from a

uniform distribution. Each non-zero position contains a QPSK

symbol. Then, α is used to create a CDMA signal using the

Gold dictionary as x = Ψα. This signal is then corrupted

by additive white Gaussian noise, generated according to a

chosen SNR value. Here, SNR is defined as follows:

SNR = E

[

‖x‖22
‖w‖22

]

=
‖x‖22
Nσ2

, (9)

where w ∼ N (0, σ2I) with σ2 the variance of the noise.

At the receiver, the sampling is modelled as in Eqn. (2) with

multiplication by a measurement matrix. In the simulations we

use κ = 2 or κ = 4. As is shown in the phase transition

plots previously, the method also works for other choices

of κ in the noise-less case. However, to clearly demonstrate

that our implementation produces the expected 3 dB drop in

performance per doubling of κ due to noise folding, we have

chosen these two values. A measurement matrix based on

samples obtained from a Rademacher distribution introduces

colored noise. This decreases the performance, unless the

signal is prewhitened before the reconstruction algorithm.

This coloring occurs because the rows in the Rademacher

matrix are not orthogonal. In the RD and CSS measurement

matrices the rows are orthogonal and prewhitening is therefore

unnecessary. The prewhitening is achieved by multiplying the

received y vector with a new matrix P to obtain ỹ = Py. By

setting P = C−1, where C is e.g. the Cholesky factorization

(CCT = ΘκΘ
T
κ ), the variance of the noise term w̃ = PΘκw

from Eqn. (2) becomes:

E[PΘκwwTΘT
κP

T ] = σ2C−1CCT (C−1)T = σ2I. (10)

After prewhitening, we reconstruct the sparse vector α̂

using the Subspace Pursuit algorithm, which now also must

include the P matrix, i.e. A = PΘκΨ. It is clear that

this extra step increases complexity, but note that this step

is only performed for the Rademacher measurement matrix.

The A matrix must be generated anew for each slot because

a new measurement matrix Θκ is generated. The RD and

CSS measurement matrices skip this step as their rows are

orthogonal. After obtaining the sparse vector α̂, we are able

to decode the original bit sequence, b̂.

To validate the obtained results, we compare the numeri-

cal results with the theoretical performance for non-coherent

http://sparselab.stanford.edu/OptimalTuning/main.htm
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Fig. 3: BER versus SNR for different dictionary sizes and choices of κ. CS here is the Rademacher measurement scheme.

Simulations were run until 100 bit errors were found for each SNR point.

MFSK [26]:

Pb =
N

2(N − 1)

1

N

N
∑

k=2

(−1)k
(

N

k

)

·

exp

(

N · SNR

(

1

k
− 1

))

, (11)

where SNR is the signal to noise ratio. We use the non-

coherent formula because the CDMA codes are QPSK modu-

lated. This corresponds to a phase shift of the original codes,

which makes the receiver non-coherent. Furthermore, for the

above result to hold, we must fix S = 1, i.e. the CDMA

signal is 1-sparse. Then, instead of performing reconstruction

of the sparse α, we may instead perform classification as in

[13], [14]. This would replace the Subspace Pursuit algorithm

with a simpler estimation framework. However, to conserve

generality and because we use S = 10 later, we continue using

the general CS framework and the Subspace Pursuit algorithm.

As dictionary we use Gold sequences with m ∈ {5, 10}.
This reveals the performance for different dictionary sizes and

especially m = 10 is interesting as it is the LFSR length

used in e.g. GPS. The results of the numerical experiments

are shown in Fig. 3.

As can be seen, for m = 5 both the Rademacher, RD

and especially the CSS measurement matrix seems to perform

poorly. For high SNR values there is more than the expected

3 dB loss per octave due to noise folding. At m = 10
the loss is almost exactly 3 dB per halving of the sampling

rate. For m = 10 we have also included the result for

κ = 4 to show the performance when the sampling rate is

reduced to a quarter of the Nyquist sampling rate. Again,

the curve follows the previous results for noise folding, as

the performance degrades by approximately 3 dB more for

all the CS-enabled receiver structures. These results show

that the CSS measurement matrix, though simpler than all

the other measurement matrices, performs equally well in the

above experiments for m = 10. For small dictionary sizes, its

performance is worse.

V. RF NUMERICAL EXPERIMENT

To obtain more realistic communication-relevant results, we

have extended the above discrete numerical experiment to a

full transmitter/receiver simulation with RF up and down-

conversion and with root raised cosine pulse shaping and

matched filter. This we have done to demonstrate that the

results from Fig. 3 translate to a realistic transmitter/receiver

system. The construction of the experiment is visualized in

Fig. 4. This conceptual flow chart also visualizes how the

ADC process must be incorporated in a receiver structure to

implement the proposed CSS method. The experiment we have

conducted is based on a QPSK signal with a chip rate of 106

chips per second using a root raised cosine pulse shaping filter

with a roll-off factor of 1. This signal is represented in the

simulation as sampled at 10 times that rate, to emulate an

analog signal. The signal is up-converted to an RF frequency

of 3 MHz, i.e. 3 times the chip rate. The RF signal is sampled

at 12 MHz, again to emulate an analog signal. Here, AWGN

is added followed by down-conversion again. The down-

conversion is implemented as perfect direct down-conversion.

This is accomplished by first multiplying with a complex

exponential, followed by taking an FFT of the signal. In the

output from the FFT, all values above the chip rate are set

to 0, after which the inverse FFT is taken. At baseband, the

sampling is done by a matched filter based on the same root

raised cosine that is used for pulse shaping. The samples are

then input to the Subspace Pursuit algorithm, similar to the

discrete numerical experiment.
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Fig. 4: Conceptual flow chart of the RF numerical experiment. Note that all continuous variables here are only conceptual. In

the numerical experiments they are represented as discrete, oversampled sequences. Here, MF is a matched filter and LPF is a

low–pass filter. Dark boxes signify components that must be changed compared to a traditional architecture to enable the CS

subsampling described in this work.
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Fig. 5: BER versus Eb/N0 for different dictionary sizes. CS here is the Rademacher measurement scheme. Simulations were

run until 100 bit errors were found for each Eb/N0 point.

The results of the experiment are shown in Fig. 5. The

theoretical curve is calculated using a modified version of the

non-coherent MFSK equation used before:

Pb =
M

2(M − 1)

1

M

M
∑

k=2

(−1)k
(

M

k

)

·

exp

(

log2(4)
Eb

N0

(

1

k
− 1

))

, (12)

where Eb/N0 is the energy per bit per noise spectral density

and we multiply Eb/N0 with log2(4) because there are 4
constellation points in QPSK. As can be seen, the results

here are close to identical with those for the simpler discrete

numerical experiment. Noise folding still gives rise to a

penalty, which makes CS a trade-off between sampling rate

and BER performance. However, previous work has suggested

that quantization may shift the trade-off point, so that CS

obtains both the low sampling rate and a better performance

than a classical receiver [18]. We investigate this in the

following.

A. RF Numerical Experiment with Quantization

In [18], it is proposed to combat noise folding with quan-

tization as a CS receiver is able to quantize the sampled

signal better, since it takes fewer measurements. By better

quantization we mean that if the CS receiver takes half as many
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Fig. 6: BER versus Eb/N0 for a classical receiver and a CSS

receiver, both with quantization. m = 7, S = 10, κ = 2 and

100 errors found for each Eb/N0 point. The dotted line is for

a classical receiver with 4 bits of quantization per sample.

samples, it may quantize twice as well at no additional cost.

We have investigated this by applying uniform quantization

to the RF experiment performed in the previous section.

However, as simple QPSK modulation is used, only the sign

matters for demodulation and therefore quantization has no

effect in the simple case of S = 1 used so far. Therefore, we

investigate S = 10 instead and used 2 bits of quantization per

sample (i.e. 4 bits of quantization for CSS as κ = 2). This

is merely intended as an example study to show that when

taking into account quantization, CS may perform better than

a classical receiver. The result of the numerical experiment

is shown in Fig. 6. As can be seen, quantization makes

CS a better alternative in this scenario. The CS approach

becomes significantly better for high Eb/N0 values, because

the classical receiver is not able to quantize the signal properly.

For comparison, we have also included the same result for a

classical receiver with 4 bits of quantization, i.e. the same

level of quantization as the CSS receiver. Then it becomes

clear that the classical receiver again is the best choice, but

remember that it operates at twice the sampling frequency. A

CS-enabled receiver can therefore be seen as a trade-off point

between sampling rate and dynamic range.

VI. COMPLEXITY ANALYSIS

To evaluate the Subspace Pursuit algorithm, we investigate

the computational complexity of the algorithm, shown in

Tab. I, where K is the number of iterations used in the

Subspace Pursuit algorithm, S is the sparsity, M is the number

of measurements taken and N is the number of Nyquist

samples.

The matrix A is real, but since y is complex this affects

the matrix-vector computations. A matrix-vector product then

costs 4MN and calculating a residual costs 2M + 8MS.

The pseudo-inverse is never calculated, instead a linear

least-squares problem is solved using the Singular Value

Decomposition (SVD). Solving a least-squares problem with

S variables and M observations using the SVD costs [27]:

CostLS with SVD ∼ 2MS2 + 11S3. (13)

Notice that the first least square problem in the loop takes in

2S atoms from the dictionary. The cost of sorting and locating

entries is not taken into account here, as those algorithms are

more memory then computationally demanding.

It is also important to notice that the problem sizes involved

here are very small. Compressive sensing only works for

sparse signals, so S is often small compared to M and N . In

the examples given here, N = 1023 is the largest dimension

we have worked with. Because of this, the mathematical model

in Tab. I is not adequate, as the computational complexity is

instead dominated by programming language overhead, such

as the cost of calling different functions. Therefore, it is

important to include an extra term: cK, where K is the number

of iterations performed and c is some constant that depend on

system and programming language overhead.

It is of interest to investigate the required number of

iterations, K, of the Subspace Pursuit algorithm, to better

understand the cost of using CSS . In Fig. 7 we show the

number of iterations used to generate the results in Fig. 1. The

horizontal line through ρ = 0.5 is interesting and unexpected.

If we change the input sparsity to the Subspace Pursuit

algorithm from S to 2S, the line moves from ρ = 0.5 to

ρ = 0.25, which means it is related to the number of atoms

available to the Subspace Pursuit algorithm in each iteration.

It is not related to the dictionary type, as we have obtained

exactly the same phase transition diagrams and iteration counts

with a Haar wavelet packet dictionary. Furthermore, it is not

due to a ”lucky” initial guess, as the line first emerges in the
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Fig. 7: Number of Subspace Pursuit iterations for the CSS

measurement matrix and Gold Dictionary size m = 10.
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TABLE I: Computational cost of the Subspace Pursuit algorithm.

Action Approx. cost

Initialization:

• 1 computation of ATy 4MN
• 1 computation of y −AT 0AT

T0
y 2M + 8MS

Loop:

• K computations of ATy 4KMN

• K least squares problems (A
†

T̃
y) K(2M(2S)2 + 11(2S)3)

• K computations of y −AT 0A
†
T0
y K(2M + 4MS + 2MS2 + 11S3)

Total: 99KS3 + 4(K + 1)MN
+2(K + 1)M + 4(K + 2)MS + 10MKS2
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Fig. 8: Computational cost of the Subspace Pursuit algorithm for the CSS measurement matrix and Gold Dictionary size

m = 10. The figure to the left shows measured execution time in seconds from the numerical experiment conducted in Fig. 1

and the figure to the right is generated using the formula for the total computational cost found in Tab. I plus the term cK
with c = 3 · 109. For the figure to the right, the number of iterations of the Subspace Pursuit algorithm, K, is taken from

Fig. 7 and the numbers are normalized.

third iteration of the algorithm. It seems to be an overlooked

property of the algorithm, which has gone unnoticed so far

because the line in Fig. 7 lies in the region of Fig. 1, where

the algorithm cannot find the correct solution anyway.

Finally, we have measured the computation time for run-

ning the Subspace Pursuit algorithm for the CSS numerical

experiment in Fig. 1. These are compared to the theoretical

values obtained by using Tab. I. The constant c has been set to

3 ·109, which is a value found to give a good accordance with

the numerically found values. It is important to note that this

choice of c is very much a function of the algorithm, problem

size, programming language and the machine on which the

experiment is conducted and should therefore not be seen as

a general choice. The result is shown in Fig. 8. The values

in the figure on the right are normalized to one, as they are

completely dependent on machine power and are only shown

here to visualize how much the computational requirements

change with the parameters. As can be seen, the numerically

obtained computation times seem to correspond fairly well

to the mathematical model. Each point in the above numerical

experiment has been run as a simulation on 1 out of 16 threads

on computation nodes with 2x Intel Xeon X5570 CPUs and

48GB memory.

VII. CONCLUSION

In this work we apply CS to a general CDMA system and

we show that it is possible to use a very simple measurement

scheme at the receiver side to enable subsampling of the

CDMA signal. We show that the performance of the proposed

receiver scheme is affected negatively in BER performance,

similar to other CS schemes. However, we also show that

when taking quantization into account, the proposed receiver

model performs better in our example than a classical receiver

with the same quantized bit rate. Finally, we investigate the

complexity of the developed algorithms and compare the

computational cost of the numerical experiments with the

theoretically calculated computation cost.

Our work here has shown that CS used in spread spectrum

receivers allows for a simplified front-end compared to other
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state-of-the-art CS sampling designs. Furthermore, we have

shown that the problem of noise folding may be remedied

in some cases by using quantization. Future work should

investigate further which scenarios may benefit from CS and

also perform laboratory experiments with the CSS receiver

structure. Furthermore, the premise of this work is that tak-

ing fewer samples conserves power. This must be validated

through laboratory experiments and the power efficiency of

the CSS receiver structure should be better evaluated.
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