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Topology Optimization of Acoustic-Structure Interaction Problems 

 using a Mixed Finite Element Formulation 
 

Gil Ho Yoon, Jakob Søndergaard Jensen, Ole Sigmund* 
 

SUMMARY 
 

The paper presents a gradient based topology optimization formulation that allows to solve acoustic-
structure (vibro-acoustic) interaction problems without explicit boundary interface representation. In 
acoustic-structure interaction problems, the pressure and displacement fields are governed by 
Helmholtz equation and the elasticity equation, respectively. Normally, the two separate fields are 
coupled by surface-coupling integrals, however, such a formulation does not allow for free material re-
distribution in connection with topology optimization schemes since the boundaries are not explicitly 
given during the optimization process. In this paper we circumvent the explicit boundary representation 
by using a mixed finite element formulation with displacements and pressure as primary variables (a 
u/p-formulation). The Helmholtz equation is obtained as a special case of the mixed formulation for the 
elastic shear modulus equating zero. Hence, by spatial variation of the mass density, shear and bulk 
moduli we are able to solve the coupled problem by the mixed formulation. Using this modeling 
approach, the topology optimization procedure is simply implemented as a standard density approach. 
Several two-dimensional acoustic-structure problems are optimized in order to verify the proposed 
method.  
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1. INTRODUCTION 
 

Since topology optimization was introduced by Bendsøe and Kikuchi [1], the method has been applied 

to a large range of engineering problems and has become an important engineering tool [2]. Multi-

physics problems, where coupled analyses are required, are promising applications due to the inherent 

difficulties in obtaining good designs intuitively, and thus recently more research has been conducted in 

this area [2,3,4,5,6]. These applications, however, have mostly been restricted to problems where the 

multi-physics behavior is limited to the material-part of the design. The problems become much more 

complex if the governing equations for the “void” regions are different from those of the material 

regions, as seen for pressure loads [7,8] or electrostatic actuation [9]. The main problem here is to 

define a parameterization of the interface between the solid and void regions that allows for topology 

changes. For the same reason, acoustic-structure optimization problems mainly have been treated with 

shape and topology optimization formulations where the interface is explicitly known, e.g. 

reinforcement problems such as design of noise reducing stiffeners [10,11, 12,13, 14, and 15]. However, 

in [13] topology optimization using genetic algorithms, was applied to acoustic-structure interaction 

problems for minimization of noise levels allowing for the generation of holes.  

 

For a successful application of gradient-based topology optimization to acoustic-structure interaction 

problems, a major issue needs to be resolved. The difficulty can be understood by noticing that the 

pressure and the displacements are the primary variables of the acoustic domain and the structural 

domain, respectively. To make the two different domains interact with each other, the boundary 

conditions must be accurately imposed. This implies that the position and parameters of the boundary 

conditions depend on the given topology. The level set method [12,16-21] inherently has a well-

described boundary, however, it is at present not clear how to deal with the two different sets of 

governing equations using the method. To circumvent the problem, we suggest to look at the interface 
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problem in an alternative way. 

 

Instead of handling the acoustic and structural domains as two separate domains coupled by boundary 

integrals, we propose to use a mixed displacement and pressure formulation coupled with the standard 

density approach to topology optimization. This mixed formulation has previously been suggested for 

efficient and accurate acoustic-structure interaction analysis [22,23,24]. Our idea to use the mixed 

formulation in connection with topology optimization comes from previous work on topology 

optimization of pressure loaded structures [7]. Instead of defining separate and distinct equilibrium 

equations for the two physical domains, we define a mixed displacement/pressure finite element 

formulation on the whole domain with both displacements and pressure as primary variables. It can be 

shown that for vanishing shear modulus, the mixed elasticity formulation degenerates to the Helmholtz 

equation thus the response of the acoustic domain is also modeled correctly using the mixed 

formulation when proper shape functions are used. 

 

The paper is organized as follows. Section 2 compares the standard and the mixed formulations for 

acoustic-structure interaction problems. The mixed displacement/pressure formulation is implemented 

using the commercial software FEMLAB and tested for two-dimensional problems. Section 3 presents 

the formulation and the material interpolation functions for topology optimization using the mixed finite 

element formulation. Section 4 presents several examples of topology optimization applied to two-

dimensional vibro-acoustic structures. Section 5 concludes the paper.  
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2. u/p MIXED FORMULATION FOR THE ACOUSTIC-STRUCTURE INTERACTION PROBLEM  

 

The acoustic and elastic fields in acoustic-structure interaction problems are commonly solved 

separately and the coupling is obtained through the surface integral of the interfacing boundary 

conditions [22,23,24]. In structural optimization, this segregated analysis method with the explicit 

boundary representation has been used for shape optimization of acoustic devices [11,20,25,26,27]. 

However, this analysis approach is not applicable to topology optimization problems where boundaries 

are not explicitly defined. Thus, in this paper, instead of separately solving the Helmholtz equation and 

the linear elasticity equation, we propose to adopt a mixed displacement/pressure (u/p) finite element 

formulation, in which displacements as well as pressure are the primal variables. 

 

2.1. Segregated field equations for acoustic-structure interaction problem 

 

Although our topology optimization scheme is based on the mixed formulation, the governing equations 

for the acoustic and structural domains as well as the coupling boundary conditions [22, 23, 24,28,] will 

be shortly outlined for comparison.  

 

Governing equation - Helmholtz equation 

Assuming harmonically varying pressure, i.e. ( ) i tp t p e ω=� , the governing equation for the pressure in 

an inhomogeneous acoustic medium is the Helmholtz equation 

 
2

2

1( ) 0
a a a

pp
c

ω
ρ ρ

∇⋅ ∇ + =  , (
a

k
c
ω

= ) on aΩ    (1) 

where p, aρ , and ac  are the pressure in the analysis domain aΩ , the density of the acoustic domain, 

and the local speed of sound, respectively. The angular frequency and the wave number are denoted by 
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ω  and k , respectively.  

 

The pressure field is obtained by solving the Helmholtz equation with the proper boundary conditions. 

In this paper, we consider the following four types of boundary conditions: 

Pressure boundary condition: 0p p=              (2a) 

Hard wall condition:  0p⋅∇ =n           (2b) 

Acceleration boundary condition: np a⋅∇ =n             (2c) 

Sommerfeld boundary condition: 2 inp i k p i k p⋅∇ + ⋅ ⋅ = ⋅ ⋅n              (2d) 

 

where 0p ,n , na , and inp  are the pressure input, the outward unit normal to the fluid medium, the input 

acceleration, and the pressure amplitude of an incoming wave, respectively. To simulate an absorbing 

boundary condition without reflection, the Sommerfeld boundary condition (2d) is applied with 0inp =  

[25].    

 

Governing equation - Linear elasticity problem  

Time-harmonic linear structural analysis neglecting the body force can be described by Newton’s 

second law: 

2
sω ρ∇⋅ = −σ u   on sΩ      (3) 

where σ , sρ , and u  are the stress tensor in the structural domain sΩ , the structural mass density, and 

the displacement vector, respectively.  

 

Neumann and Dirichlet boundary conditions are applied as follows:  

Neumann boundary condition: fS
s ⋅ =n σ f  on fS   (4a) 
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Dirichlet boundary condition: uS=u u   on uS    (4b) 

where fSf  and uSu  are the surface traction on fS , and the prescribed displacements on uS , 

respectively. The outward unit normal to the solid medium is denoted by sn . 

 
Analysis method to couple acoustics and structure 

If the radiating or scattering structure consists of an elastic material, as shown in Figure 1, then the 

interaction between the body and the surrounding fluid must be considered [23]. In the multi-physics 

coupling analysis, the acoustic analysis provides sound pressure to the structural analysis, and the 

structural analysis provides accelerations to the acoustic analysis. 

 

The interfacing boundary conditions between the acoustic domain and the structural domain can be 

derived from the continuum equation of the fluid (or air), which actually moves due to the acoustic 

pressure. For the acoustic domain, the local balance of linear momentum equation should be satisfied as 

follows:  

Interface condition for the acoustic domain: 2 T
ap ω ρ⋅∇ =n n u  in intS   (5) 

where intS  is the interfacing boundary.  

 

At the interface of the structural domain, the traction of the solid part should equal the pressure. Thus, 

the following condition should be imposed.  

Interface condition for the solid part: intS p= ⋅f n   on  intS     (6) 

After imposing the interface boundary conditions of equation (5) and equation (6), the scattering wave 

and the structural response can be obtained by a standard finite element procedure [13].  
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Acoustic Domain
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Helmholtz equation

Linear elasticity equation

n

2 T
ap ω ρ⋅∇ =n n u

intS p= ⋅f n

interS

Acoustic Domain

Structural Domain

Helmholtz equation

Linear elasticity equation

n

2 T
ap ω ρ⋅∇ =n n u

intS p= ⋅f n

interS

 

Figure 1. Interaction boundary conditions between acoustic and structural domains. 

 

This procedure has been widely used to calculate responses of acoustic-structure interaction problems 

[23]. For the procedure, the interfacing boundaries should be exactly or at least approximately defined 

with parametric curves such as splines, which, for optimization, can be controlled by design variables [8, 

29]. Thus, shape optimization has become a natural choice with this analysis procedure 

[10,12,17,18,19,20,21,25,26,30]. However, in topology optimization the design variables are normally 

the local material densities. This means that no predefined boundaries exist. Conclusively, although a 

segregated acoustic-structure analysis method is suitable for calculating responses, the requirements of 

this method make it difficult to use in topology optimization.  

 
2.2. A mixed finite element formulation for acoustic-structure interaction problems 
 

Topology optimization of acoustic-structural interaction is possible with an explicit boundary 

representation if one uses discrete variables and thus well-described boundaries (c.f. a genetic algorithm 

approach [13]). However, in order to reduce computational time and increase mesh resolution it is 
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desirable to use math-programming algorithms for the solution of the optimization problem and 

therefore we need continuous design variables. Hence, we propose a simpler method without the need 

for explicit boundary representation. The method is based on density based material interpolation 

schemes, by adopting a mixed displacement/pressure finite element procedure [7,22].  

 

In the mixed finite element procedure, the pressure variable is added as an additional primary variable. 

This mixed displacement/pressure method has been addressed in many books and papers and has 

especially been used for incompressible or the nearly incompressible elastic media and acoustic-

structure interaction problems [22,24,28]. In [7], a mixed formulation was used to solve topology 

optimization problems with pressure loads, however, to our knowledge, this paper is the first to employ 

the mixed displacement/pressure formulation for topology optimization of acoustic-structure interaction 

problems. 

 

Basic principles of the mixed finite element formulation 

 

In the mixed finite element formulation, the governing equations without body forces are: 

 

Frequency dependent equilibrium equation: 2ω ρ∇⋅ = −σ u  on Ω     (7) 

Stress-strain relationship: v 2K Gε= +σ δ e       (8) 

Pressure and volumetric strain relationship: vp Kε= −      (9) 

 Deviatoric strain: V

3
ε

= −e ε δ  (3D)  or  V

2
ε

= −e ε δ  (2D)   (10) 

Volumetric strain: v kk
V

V
ε ε∆

= =      (11) 
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where K , G and ρ  are the bulk modulus, the shear modulus and the mass density in the analysis 

domain Ω , respectively, and δ  is Kronecker’s delta. The strain tensor is denoted by ε  in equation 

(10). 

 
The bulk and shear moduli are defined as follows: 

3(1 2 )
EK
ν

=
−

, 
2(1 )

EG
ν

=
+

 (3D)     (12a) 

2(1 )(1 2 )
EK

ν ν
=

+ −
, 

2(1 )
EG
ν

=
+

(2D-Plane strain)   (12b) 

2(1 )
EK
ν

=
−

, 
2(1 )

EG
ν

=
+

 (2D-Plane stress)   (12c) 

where E, and ν  are the Young’s modulus and the Poisson’s ratio, respectively.  
 

The basic approach of mixed displacement/pressure finite element formulations is to interpolate the 

displacements and the pressure, simultaneously. This requires that we express the principle of virtual 

work in terms of the independent variables u and p: 

 

T ' 2 T
Vd p d dδ δε ω ρ δ

Ω Ω Ω

Ω − Ω = − Ω∫ ∫ ∫e C e u u    (13) 

V( / ) 0p K p dε δ
Ω

+ Ω =∫      (14) 

     

where the virtual displacement, the virtual deviatoric strain and the virtual strain are denoted by δu , 

δe , and δε , respectively, 'C  is the stress-strain matrix for the deviatoric stress and strain component 

satisfying the following equation. 

' 1
V3( ) ( )p ε+σ Cδ = ε − δ   (3D)   or   ' 1

V2( ) ( )p ε+σ Cδ = ε − δ   (2D)  (15) 

 

The three involved material properties, the bulk modulus, K, the shear modulus, G, and the mass density 
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ρ  can be used to alternate between the acoustic and the structural domains. For instance, if the 

analysis domain Ω  is assumed to be divided into a structural domain sΩ  and an acoustic domain 

aΩ , the three material properties are specified as follows: 

 

s aΩ = Ω Ω∪ , 0s aΩ Ω =∩      (16) 

Structural domain: , ,s s sK K G G ρ ρ≡ ≡ ≡  on  sΩ    (17) 

Acoustic domain: , 0,a a aK K G G ρ ρ≡ ≡ = ≡   on  aΩ   (18) 

 

where the subscripts ‘s’ and ‘a’ denote structural and acoustic, respectively.  

 

The mixed finite element implementation of equations (13) and (14) has been used for incompressible 

media [22,24,28]. Recently, it has also been demonstrated that by varying the shear modulus G and the 

bulk modulus K, the acoustic domain and the structural domain can be described simultaneously [22, 23, 

28]; see Table 1 or reference [7]. Compared to a segregated analysis procedure, a disadvantage of the 

mixed displacement/pressure formulation is the increased system size due to the additional primary 

variables, which is significant especially for three dimensional problems.  

 
Table 1. The various analysis types depending on the bulk and the shear moduli.  
 

Category K (Bulk Modulus) G (Shear Modulus)
Compressible elasticity >0K  
Almost incompressible elasticity K G>>  Solid Media 
Incompressible elasticity Infinite 

 
>0G  

Compressible inviscid fluid >0K  
Incompressible inviscid fluid Infinite Fluid Media 

Air Small 

 
G=0 
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The derivation of the wave equation from the mixed displacement/pressure formulation 

 

The mixed analysis procedure for a linear solid medium is well understood. We will now show that the 

Helmholtz equation indeed can be derived from the mixed displacement/pressure formulation by 

assigning the appropriate material properties.  

 

If we set the shear modulus in the acoustic domain aΩ  equal to zero:  

 

aK K≡ , 0aG G≡ = , aρ ρ≡      (19) 

 

Then the governing (7) and constitutive equation (9) can be simplified as follows: 

2 0ap ω ρ∇ − =u       (20) 

0
a

p
K

∇⋅ + =u        (21) 

 

Actually, equations (20) and (21) correspond to the linearized Euler equation and the linear continuity 

equation, respectively, which provide the basis for the derivation of the linear wave equation (see 

chapter 5 in the reference [31]). Substituting the displacement in (20) into equation (21), the Helmholtz 

equation can be re-derived: 
21( ) 0

a a

p p
K
ω

ρ
∇⋅ ∇ + =   (with 2

a a aK cρ= )   (22) 

Having shown that the Helmholtz equation is contained in the elasticity equations for 0aG = , the 

remaining issues are the finite element implementation and the boundary conditions. When solving the 

mixed variational formulations – equations (13) and (14) - a proper finite element implementation must 

fulfill the so called Inf-sup condition [28] and the boundary conditions. In this paper, we use triangular 

or quadrilateral elements with second and first order Lagrangian shape functions (T6/3 or Q9/4) for the 
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displacements and the pressure variables, respectively [22,28]. For the structural domain, 

implementation of the boundary conditions is straightforward, but some care should be taken in order 

for the mixed finite element procedure to provide the correct solutions to the Helmholtz equation. In 

this paper, the boundary conditions shown in Figure 2 have been implemented and tested.  

 

(Normal acceleration)

op p=

( ) np a⋅ ∇ =n ( ) 0p⋅ ∇ =n

Acoustic domain

( ) 2 inp i k p i k p⋅ ∇ + ⋅ ⋅ = ⋅ ⋅ ⋅n

(Pressure Input)

(Hard wall)

(Radiation condition)

n

(Normal acceleration)

op p=

( ) np a⋅ ∇ =n ( ) 0p⋅ ∇ =n

Acoustic domain

( ) 2 inp i k p i k p⋅ ∇ + ⋅ ⋅ = ⋅ ⋅ ⋅n

(Pressure Input)

(Hard wall)

(Radiation condition)

n

T 0⋅ =n u

T 2( )a naω ρ⋅ =n u

n

Acoustic domain

T 2( ) 2a ini k p i k pω ρ⋅ + ⋅ ⋅ = ⋅ ⋅ ⋅n u

T 0⋅ =n u

op p=

(Normal acceleration)

T 0⋅ =n u

T 2( )a naω ρ⋅ =n u

n

Acoustic domain

T 2( ) 2a ini k p i k pω ρ⋅ + ⋅ ⋅ = ⋅ ⋅ ⋅n u

T 0⋅ =n u

op p=

(Normal acceleration)   

(a)      (b)  
Figure 2. Boundary conditions. (a) Boundary conditions for the Helmholtz equation and (b) the 
implemented boundary conditions for the mixed finite element method. 
  
Numerical test of the mixed displacement/pressure formulation 
 
In order to verify the model we analyze a number of test problems. 
 
Analysis example 1: Pressure calculation by the mixed finite element formulation 
 

The first analysis example, is the simple acoustic wave problem shown in Figure 3(a). It is solved by 

the Helmholtz equation as well as by the mixed finite element formulation with the same discretization. 

Figure 3(b) shows the pressure distribution along the line AA´ computed with the two methods. The 

small discrepancy is due to the element interpolation order. The mixed formulation uses second and first 

order interpolations for the displacements and pressure, respectively, whereas second order elements are 
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used for the pure pressure Helmholtz equation. The discrepancy thus disappears with mesh-refinement.  

    

(a)    (b) 

Pressure calculation by
Helmholtz equation

2[N/m ]

A

'A

 

Pressure calculation by the
mixed displacement/pressure 

formulation equation

2[N/m ]

A

'A

Pressure calculation by the
mixed displacement/pressure 

formulation equation

2[N/m ]

A

'A

 

(c)     (d) 
Figure 3. Analysis example 1: Acoustic domain analysis with the mixed formulation with various 
boundary conditions. (a) Problem definition (where 0 123p =  Pa, and 1000inp = Pa), (b) the pressure 
distribution along AA´, (c) the pressure distribution with the Helmholtz equation, and (d) the pressure 
distribution with the mixed finite element method.  
 
 
Analysis example 2: Eigenfrequency analysis  
 

In this example, eigenfrequencies of an acoustic enclosure (Figure 4) are computed. Figure 4(a) and 

Figure 4(b) show the modeling domain and the boundary conditions applied for the Helmholtz equation 

and the mixed formulation, respectively. As seen from Table 2, the frequencies are accurately computed 
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using both methods (first 4 frequencies given). We now repeat the computations with the mixed 

formulation, but replace the hard wall boundary conditions ( 0p⋅∇ =n ) with a massless but very stiff 

solid region. The computed eigenfrequencies are now seen to deviate slightly from the analytical values. 

The reason for this discrepancy can be seen from the computed mode shape seen in Figure 4(c), where 

the close-up plot reveals a boundary layer in the vicinity of the solid-acoustic boundary. Thus the 

boundary introduces a no-slip condition, which is not modeled by the ordinary Helmholtz equation. 

This no-slip condition cannot be circumvented in the present topology optimization model but its effect 

is diminished with mesh-refinement. It may, however, be discussed whether the idealized Helmholtz 

equation actually represents acoustic vibrations accurately. In reality, the physical boundary condition is 

no-slip and therefore there will always be a small boundary layer in an exact model of an acoustic 

problem. 

 

0.
4 

m

1 m
0p⋅∇ =n

Helmholtz 

340  m sac =

0p⋅∇ =n

0.
4 

m

1 m
0p⋅∇ =n

Helmholtz 

340  m sac =

0p⋅∇ =n  
  Problem definition   The first mode shape (pressure) 

(a) Helmholtz equation  

Mixed finite
element formulation

0.
4 

m

1 m

T 0⋅ =n u

T 0⋅ =n u

8

3 3

0 Pa

1.156 10  Pa

1.0 10  Kg/m

a

a

a

G

K

ρ

=

= ×

= ×

Mixed finite
element formulation

0.
4 

m

1 m

T 0⋅ =n u

T 0⋅ =n u

8

3 3

0 Pa

1.156 10  Pa

1.0 10  Kg/m

a

a

a

G

K

ρ

=

= ×

= ×

  

  Problem definition   The first mode shape (pressure) 

(b) Mixed finite element formulation without the elastic foundation  
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Massless strong elastic support
6010  PaE =

=u 0

Mixed finite
element formulation

1 m

=u 0

=u 0 =u 0

0.25 m

0.25 m

0.4 m

≅u 0

Implemented 
boundary condition

8

3 3

0 Pa

1.156 10  Pa

1.0 10  Kg/m

a

a

a

G

K

ρ

=

= ×

= ×

Massless strong elastic support
6010  PaE =

=u 0

Mixed finite
element formulation

1 m

=u 0

=u 0 =u 0

0.25 m

0.25 m

0.4 m

≅u 0

Implemented 
boundary condition

8

3 3

0 Pa

1.156 10  Pa

1.0 10  Kg/m

a

a

a

G

K

ρ

=

= ×

= ×

   

  Problem definition   The first mode shape (pressure) 

(c) Mixed finite element formulation with the stiff elastic foundation  

Figure 4. Analysis example 2: Eigenfrequency analysis using Helmholtz equation and the mixed 
formulation without and with the stiff elastic foundation.  
 
 
Table 2. The comparison of the eigenfrequencies for the models shown in Figure 4. 
 

Order Helmholtz 
Figure 4(a) 

Mixed formulation
Figure 4(b)

Mixed formulation
Figure 4(c)

Analytical
Frequency in Ref. [24]

1 170.82 Hz 170.00 Hz 168.64 Hz 170.0 Hz

2 340.87 Hz 340.55 Hz 337.50 Hz 340.0 Hz

3 425.36 Hz 425.04 Hz 423.98 Hz 425.0 Hz

4 456.89 Hz 457.79 Hz 454.70 Hz 457.7 Hz

 
 
Analysis Example 3: A two-dimensional fluid-structure interaction problem 
 

A simple two-dimensional acoustic-structure problem is analyzed using both standard procedure with 

interface boundary conditions and the mixed formulation. The analysis domain is defined by Figure 5. 

With the standard finite element method, the computed displacement at the interface between the solid 
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and the acoustic domains match analytical results obtained for an identical 1D system. However, small 

discrepancies appear for the mixed formulation. The reason is that continuous shape functions are used 

for the displacements and the pressure at the interface boundary, whereas the standard displacement 

finite element procedure use discontinuous shape functions in the interface boundary. Again, the 

discrepancies diminishes with mesh-refinement. 

 

i t
inp p e ω=

,a acρ ,E ν

1L 2L

H

0p⋅∇ =n

0p⋅∇ =n

i t
inp p e ω=

,a acρ ,E ν

1L 2L

H

0p⋅∇ =n

0p⋅∇ =n
 

Figure 5. Two-dimensional acoustic-structure test problem.  

( 1 2L 2 m, L 1 m= = , 2H 1 m,  =10 N/mE= , 30.0,  1 Kg/m , 1, 1)a a inc pν ρ= = = =  

 

 
(a) The pressure distribution (Left: standard and Right: mixed formulation) 
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(b) The x-displacement (Left: standard and Right: mixed formulation) 
 
Figure 6. Analysis results for the two dimensional acoustic-structure interaction problem in Figure 5 for 
ω =3 (rad/s).   
 
Table 3. The comparison of the displacements at the position (x=2, y=0.5) with respect to the different 
angular speed. 
 

Angular Speed ω  [rad/s] 0.001 1 2 3 4 
Displacement,

1D analytical model [m]
0.1000 -0.1972 -0.1991 0.0958 -0.1848 

Displacement,
2 D standard fem [m]

0.1000 -0.1972 -0.1991 0.0958 -0.1848 

Mixed 2D formulation [m] 0.0988 -0.1932 -0.1999 0.0945 -0.1766 
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3. PARAMETERIZATION METHOD FOR TOPOLOGY OPTIMIZATION 
 
3.1. Parameterization of design variables 

For the mixed finite element governing equation to alternate between the Helmholtz equation and the 

linear elasticity equation, the involved material properties, i.e., the bulk modulus, the shear modulus, 

and the structural mass density, should be properly interpolated with respect to the design variables 

according to equations (16-18) [7]. Since we are dealing with vibration problems, it is important that we 

use an interpolation scheme that has finite stiffness to mass ratio for the design variables approaching 

zero [32]. This excludes the traditional SIMP interpolation scheme, thus we instead use a two-material 

RAMP formulation [33]:  

( ) 1
1 (1 ) 1 (1 )s aK K K

n n
γ γγ
γ γ

⎛ ⎞
= + −⎜ ⎟+ − + −⎝ ⎠

     (23a) 

( ) 1 1
1 (1 ) 1 (1 ) 1 (1 )s a sG G G G

n n n
γ γ γγ
γ γ γ

⎛ ⎞ ⎛ ⎞
= + − = −⎜ ⎟ ⎜ ⎟+ − + − + −⎝ ⎠ ⎝ ⎠

   (23b) 

( ) (1 )s aρ γ ρ γ ρ γ= + −      (23c) 

0 1γ≤ ≤        (23c) 

where γ  is the design variable. The penalty factor for the bulk/shear modulus is denoted by n . In 

these interpolation functions, the solid media properties are obtained for γ =1 and the acoustic media 

properties for γ =0. Positive values between 3 and 6 are used for n . In [34] the physical realizability 

of material microstructures with elastic properties corresponding to different interpolation schemes was 

proven for linear elasticity problems. In the present acoustic-structural formulation the question of 

physical realizability is not easy to answer since microscopic structural-acoustic response depends on 

length-scale and excitation frequency, however, it is reasonable to assume that there exist porous media 

with properties obeying the RAMP interpolation assuming that the microstructural scale is much 

smaller than the acoustic wave length. Anyway, we are only using the intermediate densities as a means 
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for using gradient-based methods for the optimization. Whether we use physically realizable 

intermediate densities or not is not important as long as we end up with solid-void final designs. 

 

3.2. Implementation of the u/p mixed finite element formulation 
 

The u/p mixed finite element procedure is implemented in the FE-package FEMLAB in a MATLAB 

environment. The Matlab based script FE-package is useful in implementing the finite element 

formulation and optimization since it allows easy implementation of different analysis domains and 

change of element types, etc. as well as for the possibility for semi-automated analytical sensitivity 

analysis, see [35,36,37].  

The topology optimization problem is implemented in the standard way. We use nodal design variables, 

mesh-independent filtering [2] and the Method of Moving Asymptotes (MMA) for solving the 

optimization problem [38]. The sensitivity analysis is performed analytically using the adjoint method. 

In order to improve convergence and obtain mesh-independent design we use the sensitivity filtering 

method proposed by Sigmund [33].
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4. TOPOLOGY OPTIMIZATION OF ACOUSTIC-STRUCTURE INTERACTION STRUCTURES 

 

In this section, several topology optimization problems for acoustic-structure interaction will be solved 

using the implemented mixed displacement/pressure (u/p) formulation. We start with simpler examples 

and proceed to more complex ones in order to demonstrate different computational and physical aspects 

of the method and the solutions. 

 
4.1. Topology optimization for a massless flexible partition 
  

First we optimize a massless partition as illustrated in Figure 7. The rightmost grey domain is supposed 

to be shielded from an incoming wave from the left. Structural material can be distributed in the central 

design domain. The full model consists of three domains: the acoustic domain with the incoming wave, 

the design domain, and another acoustic domain with absorbing boundary conditions. For simplicity, we 

assume a single excitation frequency.    

 

 

Figure 7. Topology optimization of a massless flexible partition. Definition of the optimization problem 
including boundary conditions, design domain and objective function. E ,ν , and sρ  are Young’s 
modulus, the Poisson’s ratio, and the structural density, respectively. The incoming wave amplitude 
is inp =1 kPa. 
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Topology optimization without volume constraint 
 

For structural acoustic design problems constraining structural mass is not necessarily an issue, hence 

we first approach the design problem without a mass constraint. The objective is to minimize the 

acoustic pressure in the objective domain (c.f. equation (24)). For a uniform initial design ( initialγ =0.4) 

and an excitation frequency of f=1/π  (Hz), the solution in Figure 8a is obtained. It is seen that even 

though a solid wall is forming in the initial steps, the final optimized solution has a fluid-filled cavity. 

Hence, the optimal volume fraction is a result of the optimization. Since there is no structural resonance, 

the response curve (Figure 8c) is quite smooth. The small peaks at f=0.5 and 1 (Hz) correspond to 

acoustic resonances in the left most acoustic domain. For higher excitation frequencies (above 1 Hz), 

the response curve is less smooth indicating local resonances in the cavity.   

 

Minimize
γ

  
o

p dφ
Ω

= Ω∫  (the objective domain is defined in oΩ .) (24) 

 
(a) optimizedφ =45.8598N   ( Mass=58.65%) 

 

1st iteration      2nd iteration     7th iteration 
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15th iteration     40th iteration 76th iteration 

(b) 
 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.1

1

10

100

1000

Fr
eq

ue
nc

y 
R

es
po

ns
e 

(N
)

Frequency (Hz)

Excitation frequency

 

(c) 
Figure 8. Optimized topology using formulation (24) with excitation frequency f=1/π  (Hz). (a) Mesh 
and optimized density distribution, (b) optimization history, and (c) the frequency response where the 
dashed line indicates the excitation frequency used in the optimization. 
 
 
Optimization with volume constraint 
 

If we include a volume constraint, the formulation of the optimization problem becomes  

Minimize
γ

 
o

p dφ
Ω

= Ω∫              (25) 

Subject to 0  
o

d V
Ω

Ω ≤∫ γ     

where 0V  is the allowed volume. In this example, we set 0V  equal to 50% of the area of the design 
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domain. The resulting topology is seen in Figure 9 and it can be seen that it is simply a thinned version 

of the free volume solution from Figure 8. Even though convergence to local minima was not observed 

for the present example, we recommend to impose a volume fraction constraint in all cases in order to 

hinder convergence to local minima.  

 

(a) optimizedφ =61.384 N (Mass=50.00%) 
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(b) 

Figure 9. Optimization results with the volume constraint (50%).  
 
 
4.2. Topology optimization for flexible partition including structural mass density 
 

In reality, structural mass must be included, however, this makes the optimization problem more 



 24

difficult to solve due to problems with local resonances. In this section we use the same problem 

formulation and design domain as before (equation (25) and Figure 7) but include the effects of mass 

density.  

 

The initial frequency response of the defined objective function for two different structural mass 

densities ( sρ  = 11 and 15 3/Kg m , respectively) and the structure from Figure 7 are shown in Figure 

10. Obviously, the fundamental structural eigenfrequency for sρ =11 3/Kg m  is higher than for 

sρ =15 3/Kg m . Thus, setting the excitation frequency to f=5 / 2π  between the two peaks in Figure 10 

and minimizing the objective function, one can expect a widely different behavior for the two values of 

sρ  during optimization. In Figure 11 and Figure 12, the optimized structures and the frequency 

response during some optimization steps are plotted. With the lighter structural density sρ = 311 /Kg m , 

the fundamental eigenfrequency is pushed upwards. This leads to an optimized structure having a larger 

fundamental frequency as Figure 11 shows. Oppositely, when the heavier structural density 

( sρ = 315 /Kg m ) is used, the fundamental structural frequency is pushed downwards. Thus, to minimize 

the objective function, the optimized structure gets a low fundamental frequency. Some observations 

can be made: First, it can be postulated that similar topologies will be obtained as long as the excitation 

frequency stays at the same side of the peak. Second: When the excitation frequency is placed to the left 

of the fundamental frequency and there is no mode switching during optimization, the optimized 

topologies resemble those found from direct maximization of the fundamental eigenfrequency as seen 

in Figure 11. Similar observations are reported by Olhoff and Du [15]. 

 
 

 



 25

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0

500

1000

1500

2000

2500

3000

3500

4000

4500

11 Kg/m3 for 
structural density

0 Kg/m3 for 
structural density

Excitation frequency
for topology optimization
(f=0.795 (Hz), ω=5 (rad/s)

Fr
eq

ue
nc

y 
R

es
po

ns
e 

(N
)

Frequency (Hz)

15 Kg/m3 for 
structural density

 

Figure 10. The frequency response of  
o

p dφ
Ω

= Ω∫  of  Figure 7 with various structural mass 

densities (the initial design variables are set as γ =0.5).   
 

Minimize
γ

  
o

p dφ
Ω

= Ω∫      (26) 

 

 

Design ( optimizedφ =248.68N )   Pressure in the acoustic domain 

(a) 
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(b) 

Figure 11. Results for sρ =11 3/Kg m . (a) Optimized topology, and (b) frequency response during the 

optimization process. 
 

 

Design ( optimizedφ =139.30 N)   Pressure in the acoustic domain 

(a) 
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(b) 

Figure 12. Result for sρ =15 3/Kg m . (a) Optimized topology, and (b) frequency response during the 

optimization process. 
 

Minimizing the objective function for sρ =15 3/Kg m , a topology with very thin parts is obtained as 

seen in Figure 12. The structure corresponds to a large mass suspended with very soft springs, i.e. a 

structure with a very low fundamental frequency. Although the objective function is very low, such a 

structure is not desired from a structural perspective. To overcome this difficulty, the obvious solution 

would be to impose a constraint on the static response, however, this does not make much sense for an 

acoustic load. Instead we impose an integral constraint on the response for excitation frequencies below 

a certain threshold frequency. The modified optimization problem is given in equation (27). The first 

constraint is the volume constraint. The second constraint confines the optimization results to have a 

small response in the low frequencies range thus eliminating structurally degenerate designs.  

 

Minimize
γ

 
o

p dφ
Ω

= Ω∫                          (27) 
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 Subject to 0  
o

d V
Ω

Ω ≤∫ γ     

           

*

*
0

* 0

f

f

df

f

θ
φ

ζφ
θ

⋅

− ≤
⋅

∫   

           (where 0 1θ< <  and 0 1ζ< < ) 
 

In the new constraint, θ  denotes the threshold fraction, ζ  denotes the constraint value, f* is the 

excitation frequency and the objective function at the excitation frequency is denoted by *f
φ  . Hence 

selecting θ =0.5 and ζ =1/3, we impose that the average response for frequencies below 50% of the 

excitation frequency should be less than a third of the response at the excitation frequency. We use 3 

point integration for the integral constraint.  

 

Using this formulation we obtain the results presented in Figure 13. It is clearly seen how we obtain a 

structurally reasonable design and we note that even though the fundamental frequency of the initial 

design was below the excitation frequency, it shifted to be higher than the excitation frequency for the 

final design. 

 

 

(a)  optimizedφ =   510.43N 
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(b) 

Figure 13. Results for sρ =15 3/Kg m  using the optimization formulation (27) with 0.9θ = , 0.1ζ =  

and 70% mass usage. (a) Optimized topology, and (b) the frequency response.   
 
Instability and local optima 

In the topology optimization of acoustic-structure interaction problems, we have observed fluctuation of 

the objective function represented by the acoustic pressure field, dependency on the initial design and 

dependency on the excitation frequency. To examine these phenomena in further detail, the frequency 

responses for the above example with various uniform material distributions are shown in Figure 14. 

For higher initial uniform density distributions (γ =0.7 and γ =1), the responses are quite smooth and 

for the former case the response curve is shifted to the left due to the smaller stiffness to mass ratio. 

Hence, depending on starting guess and excitation frequency we may obtain widely different solutions. 

For low initial uniform density distributions (γ =0.1), the fundamental structural frequency has shifted 

even further to the left but we also observe fluctuations in the frequency response corresponding to 

local modes in the low density structural domain [39]. Here it should be noted that the problem with 

local modes is much more pronounced when using the SIMP interpolation scheme instead of RAMP. In 
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fact, the SIMP interpolation scheme turns out to be useless for solving acoustic-structural problems with 

the present formulation due to the stiffness to mass ratio going to infinity for vanishing density. Despite 

the superiority of the RAMP approach for solving the present kind of problems, we still experience 

local mode problems as discussed above. To overcome these, we may use artificial damping, 

continuation methods for the excitation frequency or other stabilization techniques, which have not 

been used in this paper. These extensions will be left for future research.   
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Figure 14. The frequency responses of various uniform design variables.  
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4.3. Topology optimization for static pressure loading problems 
 

In reference [7], topology optimization for static pressure loads was formulated using a mixed 

displacement pressure formulation with incompressible fluid regions. In this example, we demonstrate 

that similar problems can be solved using the present acoustic formulation using low excitation 

frequencies and compressible fluid regions. The design problem is sketched in Figure 15. Slowly 

varying acoustic pressure is imposed on all boundaries except for the central part of the bottom edge. A 

rectangular box is chosen as the objective domain, i.e. a structure should be built around the objective 

domain in order to shield it from the external acoustic field. The optimized topology is seen in Figure 

15(b). The result corresponds almost exactly to those found in the literature [7, 8].     

 

Minimize
γ

 
o

p dφ
Ω

= Ω∫                          (28) 

 Subject to 0  
o

d V
Ω

Ω ≤∫ γ     

 

(a)     (b) 
Figure 15. Optimized topology for minimization of pressure intensity. (a) Problem definition (Acoustic 

properties: 1 Pa, 0a aK G= = , 1aρ =  
-51.0 10 Hz 

2
f

π
×

= , Structural properties: 1000 PaE = , 

0.3ν = , 1sρ = , Mass: 10%), (b) and optimized topology. 
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4.4. Topology optimization for vibrating structure 
 

For the last example, we consider a vibrating structure (Figure 16) submerged in two different fluid 

media. The fluid media are selected with widely different properties, e.g. Mercury and Air, in order to 

study the effect of the fluid load. The initial responses for the clamped T-shape structure in Figure 16a 

are shown in Figure 16(b) and (c). It is seen that the fundamental frequency for the Mercury case is 

much smaller than for air as expected. We want to optimize the topology of the rectangular domain 

above the T-shape structure in order to minimize the work (or minimize displacement amplitude for 

fixed force amplitude) of the external force at the bottom of the structure. The optimization problem is 

formulated as  

 

Minimize
γ

  
o

dφ
Γ

= ⋅ Γ∫ n u  (where the objective boundary is defined by oΓ .)  (29) 

   Subject to 0  
o

d V
Ω

Ω ≤∫ γ  

 

Design domain

(Steel)
3 m

6 m

0.05 m

1.4 m

0.5 m

Acoustic  domain

(Mercury or Air)

0.2 m

121.0 10yσ = ×

  
o

dφ
Γ

= ⋅ Γ∫ n u

Design domain

(Steel)
3 m

6 m

0.05 m

1.4 m

0.5 m

Acoustic  domain

(Mercury or Air)

0.2 m

121.0 10yσ = ×

  
o

dφ
Γ

= ⋅ Γ∫ n u  
o

dφ
Γ

= ⋅ Γ∫ n u

 

(a) 
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(b) Steel and air  
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(c)  Steel and Mercury 
Figure 16. Optimization problem definition for harmonic loading. (a) Problem definition (bulk modulus 
of steel: 200 GPa , mass density of steel: 7700 3/Kg m , bulk modulus of air: 61.01325 10 Pa× , mass 
density of air: 1.293 3/Kg m , bulk modulus of Mercury: 25.3 GPa , mass density of Mercury: 
13600 3/Kg m , mass percentage: 50%), (b) frequency response for steel and air, and (c)  frequency 
response for steel and Mercury.  
 

For the numerical tests, we consider the excitation frequencies f = 100
2π

(Hz) and 700
2π

(Hz). When Air is 
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used as fluid medium, its influence on the T-shape structure is negligible compared to Mercury and both 

excitation frequencies are located on the left side of the fundamental frequency. Therefore, the first 

eigenfrequency is maximized for the resulting topologies as seen in Figure 17b and c. It is also observed 

that the optimized topologies are very similar to the one obtained for minimizing the compliance 

(Figure 17a).  
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 (b) optimizedφ =  4.038 m (f = 100
2π

Hz) 
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(c) optimizedφ =  6.453 m  (f = 700
2π

Hz) 

Figure 17. Results for steel and air. (a) Optimized topology for compliance minimization, (b) optimized 

topology for f = 100
2π

Hz, and (c) optimized topology for f = 700
2π

Hz. 
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When the room is filled with Mercury, the T-shape structure has a left shifted frequency response 

compared to the air filled room. The first excitation frequency (f = 100
2π

Hz) is located to the left of the 

first eigenfrequency. However, the second excitation frequency (f = 700
2π

Hz) is located to the right of 

the first eigenfrequency and the antinode. Therefore, we get different resulting topologies for the two 

excitation frequencies as seen in Figure 18a and b. In the latter case it is interesting to see how the 

optimized topology has two dome like structures indicating the pressure nature of the loading. The 

dome like designs are not seen for the former cases since here the loading is dominated by the external 

force at the lower edge of the design domain and less by the fluid resistance.  

 

Initial design

Optimized design

0 20 40 60 80 100 120 140 160 180

0.01

0.1

1

10

100

1000

Fr
eq

ue
nc

y 
R

es
po

ns
e 

(m
2 )

Frequency (Hz)

Initial design

Optimized design

0 20 40 60 80 100 120 140 160 180

0.01

0.1

1

10

100

1000

Fr
eq

ue
nc

y 
R

es
po

ns
e 

(m
2 )

Frequency (Hz)

 

 (a) optimizedφ =  4.460 m ( 100
2π

Hz) 
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(b) optimizedφ = 0.736 m ( 700
2π

Hz) 

Figure 18. Results for steel and Mercury. (a) Optimized topology for 100
2π

Hz, (b) optimized topology 

for 700
2π

Hz. 

 
5. CONCLUSION 
 
In this paper we have proposed a new formulation for topology optimization of acoustic-structural 

problems. The method is based on a mixed pressure-displacement finite element formulation that 

circumvents explicit formulation of the boundary conditions between fluid and structure. The 

interpolation between fluid and structure is modeled using the RAMP scheme that preserves a finite 

stiffness to mass ratio when the design variables (structural densities) approach zero. 

 

The efficiency of the method is demonstrated by several examples. The optimized designs may 

converge to different local minima depending on initial material distribution and excitation frequencies. 

Also depending on the material properties of the fluid medium and the excitation frequency, the 

optimized topologies may contain features such as dome like shapes known from pressure loaded 

structural design problems. 

 

In future work we will address issues like fluctuating responses due to local modes, optimization over 

wider frequency intervals, extensions to 3d and the modeling of the non-structural domains by pure 

(pressure) Helmholtz formulation in order to save CPU-time.  
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