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Abstract

In this paper, a grid simulator based on a back-to-back inverter topology with resonant controllers is presented.

The simulator is able to generate three-phase voltages for arange of amplitudes and frequencies with different types

of perturbations, such as voltage sags, steady state unbalanced voltages, low order harmonics and flicker. The aim of

this equipment is to test the performance of a given system under such distorted voltages. A prototype of the simulator,

consisting of two inverters connected back-to-back to a 380V three-phase grid and feeding a micro-grid composed of

two inverter interfaced distributed generators and a critical load was built and tested. A set of experimental results for

linear purely resistive loads, non-linear loads and current controlled inverters is presented to prove the capabilities of the

simulator. Finally, a case study is presented by testing a micro-grid.

Index Terms

Grid Simulator, Power Quality, harmonics, unbalance, voltage sag, micro-grid, self-healing.

I. I NTRODUCTION

In recent years, micro-grids (MGs) have attracted a lot of attention from researchers in multiple disciplines, as

they could be a starting point for future Smart Grids [1], [2]. Topics like energy management [3], [4], policies and

regulations [5], economics [6], stability [7], protections [8], communications [9] and so on, are being investigated.Like

many other power electronics-based systems, MGs are likelyto be subjected to power quality (PQ) issues like Low

Voltage Ride Through (LVRT), imbalances, harmonic compensation and flicker among others [10], [11], [12]. The

origin for such voltage disturbances in real distribution systems is usually quite heterogeneous and hardly predictable.

In this scenario, a grid simulator capable of generating such distorted voltages in a fully controlled way becomes

an essential tool to test MG performance regarding power quality [13], [14], [15], [16]. A voltage sag, swell and

flicker generator is presented in [13], based on an H-bridge inverter and a series transformer for high voltage custom
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power devices, thus being a different topology and application than the one presented here. In addition, unbalanced

and harmonic voltages are not generated. A similar topologyto the one presented here was proposed in [14]. In that

case, line side converter had a simple L filter and the DC link capacitor was bulky, which reduces DC link voltage

transients, and the state-space control with pole placement was used. The results were presented for a resistive load

only. In [15], a single-phase grid simulator based on an H-bridge was used with PI controllers in ad − q reference

frame. Only voltage amplitude and frequency variations were tested. Two back-to-back connected inverters are used as

a micro-grid interface in [16], providing the frequency andpower quality isolation between the utility and the micro-

grid. In this case, the back-to-back inverters are used to facilitate the control of the power flow between the utility and

the micro-grid and to protect the micro-grid in case of faults, by disconnection from the utility and the consequent

transition to islanded mode of operation. For the micro-grid, a topology with two distributed generators and a load

at the point of common coupling is used, like in the case studypresented here. Load sharing and transition between

grid-connected and islanded modes are investigated throughout the paper, but no power quality tests were made. Only

simulation results are presented. The same authors proposed a power quality enhanced operation mode in [17], by

virtue of compensating the local load current, thus eliminating the non-linearity and unbalance from the voltage at the

point of common coupling. Simulation results are presentedto show the performance. Similarly, reduction of voltage

harmonics is presented in [18], whereas negative sequence compensation for a stiff micro-grid is proposed in [19].

In [18], a selective harmonic elimination technique is proposed, but no information is provided about the source of the

voltage harmonics. In the case of [19], a slip ring inductiongenerator is feeding a load through a transformer and the

unbalance is obtained with a phase-to-neutral connection of a single-phase load at the secondary of the transformer.

In both cases, the focus is to propose a control algorithm to improve a certain power quality aspect of the micro-grid.

By using the proposed grid simulator, these kinds of PQ testscan be performed in a fully controlled way at any

voltages and frequencies within the required range, thus increasing the repeatability and effectiveness of the tests.

Moreover, the voltage disturbances can be set to meet different requirements depending on the standards and grid

codes to be fulfilled. The previous experience in wind or photovoltaic energy integration, with the adaptation of their

grid codes in many countries, like Spain [20], Germany [21],Italy [22] and USA [23] and coming countries like the

United Kingdom [24], France [25] or China [26], makes it likely to occur in micro-grids as well, specially considering

the MG as a whole, which is composed by a number of inverter interfaced generators and loads, such as wind farms,

PV plants, energy storage systems, back-up energy systems and electronic loads. There are some requirements in [27],

applicable to distributed resource island systems and covering some of the mentioned PQ aspects. So far, however,

there are no specific grid codes dealing with this matter for micro-grids.

In this paper, a whole set of tests with linear and non-linearloads and inverters as distributed generators is shown

to validate the proposed resonant controller approach. In addition to these general tests, a case study of unbalanced

voltage compensation in a micro-grid is also presented in section V.

The paper was divided into six parts. The first part is this brief introduction to the problem. After that, in section II,

both grid side and MG side inverter controllers are briefly explained, with more emphasis on the micro-grid side
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inverter control, which is the inverter generating distorted voltages to the micro-grid. Section III gives a description of

the hardware used for the grid simulator prototype and its main characteristics. The results of the experimental tests

are shown in section IV, while section V includes the above mentioned case study for cooperative unbalanced voltage

compensation in a micro-grid. Finally, the main conclusions are presented in section VI.

Fig. 1. One-line circuit of the grid simulator prototype with the system under test.

II. GRID SIMULATOR CONTROL

The proposed grid simulator and the tested system are shown in Fig. 1. It consists of a back-to-back connection of

two inverters with LCL and LC filters. The parameters of the inverters are presented in Table I. It was used to generate

distorted voltages to both passive loads and inverter loads, as a way of testing the performance of grid-connected

systems and components during such perturbations. The inverter loads represent different distributed generators in the

tested system, such as a small PV plant and a wind farm in a micro-grid. In addition, also linear and non-linear loads

were tested. In this section, a brief description of the controllers of the inverters is presented.

Fig. 2. Control diagram of the grid side inverter.

A. Grid side inverter control

The control diagram of the grid side inverter is shown in Fig.2, where, together with all physical components

(inverter, LCL filter, switch and grid transformer), all control loops have been depicted: 1) current and AC voltage

inner control loops; 2) power control loops; 3) DC voltage control loop.
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Description Symbol Value

Inverter inductor Li 1.8 mH

Output inductor Lo 1.8 mH

Filter capacitor Cf 27 µF

DC link capacitor Cdc 1100µF

Switching frequency fsw 10 kHz

TABLE I
PARAMETERS OF THE INVERTERS.

1) Inner control loops:Ideal proportional-resonant (P-Res) controllers were used for currents and AC voltages, as

the use of damping factors is not recommended, since there isno benefit to be gained, as they reduce the gain of the

resonant term but do not reduce the sensitivity of the systemto variations in the fundamental frequency [28], [29].

The equations of the resonant voltage and current controllers are

Gv(s) = Kpv

s2 + Kiv

Kpv
s+ ω2

s2 + ω2
(1)

Gi(s) = Kpi

s2 + Kii

Kpi
s+ ω2

s2 + ω2
, (2)

whereKpv, Kiv, Kpi andKii are proportional and integral gains for voltage and currentcontrollers respectively, and

ω is the resonant frequency. For harmonics, pure resonant controllers were used and, similarly,Kivh andKiih are the

gains for thehth voltage and current harmonics

Gvh(s) = Kivh

s

s2 + (hω)2
(3)

Gih(s) = Kiih

s

s2 + (hω)2
. (4)

2) Power control loops:The controllers for active and reactive powers are based on the power flow principle, by

regulatingw andE

ω = ω∗ + ωsync +

(

KpP +
KiP

s

)

(P − P ∗) (5)

E = E∗ +

(

KpQ +
KiQ

s

)

(Q−Q∗), (6)

whereω∗ is the reference frequency, i.e. the fundamental frequencyof the grid,ωsync is the synchronization frequency

from the PLL,E∗ is the amplitude of the voltage reference, i.e. the grid voltage amplitude, andKpP , KiP , KpQ

andKiQ are proportional and integral gains for active and reactivepower PI controllers respectively. Their values are

shown in Table II. The reference for active powerP ref is obtained from the DC link voltage controller, as is shown

in the next section.
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Description Symbol Value

Voltage controller proportional Kpv 2

fundamental Kiv 8.88

5th harmonic Kiv5 50

7th harmonic Kiv7 100

11th harmonic Kiv11 50

Current controller proportional Kpi 2.1

fundamental Kii 500

5th harmonic Kii5 500

7th harmonic Kii7 1000

Power controllers P - proportional KpP 0.0005

P - integral KiP 0.0015

Q - proportional KpQ 0.01

Q - integral KiQ 0.05

DC link controller proportional Kpdc 10

integral Kidc 40

TABLE II
PARAMETERS OF THE CONTROLLERS FO THE GRID SIDE INVERTER.

3) DC link control loop: As well as for power controllers, the DC link voltage is controlled by a Proportional-

Integral controller (PI). Its output, as a balance of the energy in the capacitor, is the reference for active powerP ref ,

as shown in Fig. 2. In this case, the dynamic response of this controller must be slower than that of the active power

controller for stability reasons, but at the same time, fastenough to deal with the power coming from the test side

inverter. The values for the gains of this controller are also shown in Table II.

B. Test side inverter control

The control structure for the test side inverter is basically the same as the previous one, but without the power

control loop and the DC link voltage control. The controllerparameters are given in Table III. Thus, only the voltage

reference generation block, Fig. 3, is explained in this section. The voltage reference for the grid simulator is obtained

by the addition of three components:

1) Voltage sag generator:This block is able to generate balanced and unbalanced voltage sags for a given set of

inputs, such as sag depth, sag duration and type. For unbalanced sags, setting the sag duration to infinite causes a

permanent imbalance in voltage.

In the case of a three-phase sag, all voltages are simultaneously reduced to a valuep|V ref |, p times smaller, where

p is defined as the per unit remaining voltage during the sag, directly related to the sag depth. In this case, the angles

between the three phases do not change. Nevertheless, when an unbalanced voltage sag takes place, not only the voltage

amplitude but also the phase angles are affected, as is the case of a phase-to-phase voltage sag between phases A and

B, shown in Fig. 4. This corresponds to a voltage sag typeC [30]. In this case, phase-to-neutral voltageVc remains
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Fig. 3. Scheme of the voltage reference generator.

Description Symbol Value

Voltage controller proportional Kpv 0.5

resonant Kiv 200

5th harmonic Kiv5 30

7th harmonic Kiv7 8

11th harmonic Kiv11 200

Current controller proportional Kpi 1

resonant Kii 50

5th harmonic Kii5 30

7th harmonic Kii7 30

TABLE III
PARAMETERS OF THE CONTROLLERS OF THE MICRO-GRID SIDE INVERTER.

unchanged in both amplitude and phase. AsVab changes topV , Vbc andVca change toqV in order to keep neutral point

voltage, beingV =
√
3|V ref | the phase-to-phase voltage reference. Letθ be phase-to-phase voltage supplementary

angle andγ and x the angle and the magnitude of phase-to-neutral voltagesVa and Vb, as depicted in Fig. 4. The

following equations can be deduced using their phasor relationships:

2qV cos θ = pV (7)

qV sin θ = x cos γ +
V√
3

(8)

2x sin γ = pV (9)

2x cos γ =
V√
3
. (10)

Solving for θ andq as a function ofp yields

θ = atan(

√
3

p
) (11)

q =
p

2 cos
(

atan
(√

3

p

)) . (12)

In Fig. 3, for a three-phase sag, the signaltype is set tobalanced, and all three phase voltage amplitudes are multiplied
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pVab

qVcaqVbc

Vc

g
q

x

Fig. 4. Voltage phasor representation of a phase-to-phase voltage sag, typeCc.

by p during the time set asduration. The angles are not changed. For unbalanced sags,type is set tounbalancedand

θ and q are calculated following equations (11) and (12) respectively. Givenθ and q, a three-phase voltage system

is created with the following equationsVab(t) =
√

2/3pV sin(2πft), Vbc(t) =
√

2/3qV sin(2πft − π + θ) and

Vca(t) =
√

2/3qV sin(2πft+ π − θ).

2) Harmonic voltage generator:The harmonic voltage components are obtained from

vhα = Ah sin (h (2πft− θh)) (13)

vhβ = Ah sin
(

h (2πft− θh) +
π

2

)

, (14)

whereAh is the amplitude of the harmonic component,h is the harmonic order andθhis the angle of the harmonic

component. Therefore, by adjustingh, Ah andθh, the desired harmonic components are obtained, which can beadded

to the main voltage reference in order to obtain the distorted voltages. Equations (13) and (14) were implemented

independently for5th, 7th and11th harmonics so that they could be added simultaneously, as shown in Fig. 3.

3) Flicker generator: The flicker generator is a simple voltage amplitude modulation. It can either be sinusoidal

or squared, with defined amplitudeAf and frequencyff . In the present case, amplitude variation is limited to 10%

and frequency to 20 Hz. These values were estimated from thePst curves taken from [31], [32], which are used as

means for quantifying the borderline of irritation for flicker. The application of thePst value of flicker is known to be

complex, and these estimations were made to clarify this function of the grid simulator.

As shown in Fig. 3, it is implemented by multiplying the voltage amplitude reference|V ref | by the modulation

signal, a squared or sinusoidal wave with unity average value, oscillating between 1.1 and 0.9 at the desired frequency.

III. H ARDWARE DESCRIPTION

The topology of the test bench with the grid simulator was shown in Fig. 1. All inverters are Danfoss VLT FC302,

2.2 kW three-phase IGBT inverters. DC link has two series 385V 2200 µF RIFA capacitors. Output filters for both

inverters are LC+L, with valuesLi = Lo = 1.8mH andCf = 27µF (delta connected3×9µF Electronicon capacitors).

The control was programmed in MATLAB/Simulink and was carried out in real-time by a ds1103 at 10 kHz. Voltage

probes are 1500 V LEM LV 25-P. For currents, 50 A LEM LA 55-P probes were used. The whole set-up is shown in

Fig. 5. On the left side is the grid simulator and on the right side the micro grid, with the inverter interfaced distributed
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generators and the critical load. Filters and measurement boxes are also indicated in the picture. In all experiments

presented in next section,VDC is always 650 V.

IV. EXPERIMENTAL TESTS

Fig. 5. The grid simulator.

The grid simulator was used to test the afore mentioned voltage disturbances on several loads:i) a linear purely

resistive load (R=230Ω); ii ) a linear inductive-resistive load (R=230Ω, L=5 mH); iii ) a non-linear load (diode rectifier

with LC filter + R=230Ω) and iv) a grid-connected current-controlled inverter.

As the simulator can handle 100% bi-directional power flow, i.e. it can work in four quadrants, inverters can be

operated as generator interfaces like PV or wind turbine inverters, making the grid simulator suitable for testing systems

with loads and generators, such as a MG. The following results show the performance of the grid simulator under

different load conditions. Some examples in each case are given, as the objective is the performance of the grid

simulator, and not the behavior of the loads under such distorted voltages. In sub-section V, a case study is presented

in which the behavior of a two-inverter based micro-grid is analyzed.

A. Harmonic distortion

A 200 V 50 Hz three-phase system was set in the grid simulator.A 10% of 5th, 7th and 11th harmonic voltages

were added simultaneously, as shown in Fig. 6.

Fig. 6(a) shows the currents in the resistive load R when 20 V5th, 7th and 11th harmonics were added to the

three-phase system, shown in Fig. 6(b). The grid simulator was able to handle such distorted currents without affecting

its voltages, that keep the level of harmonic distortion desired.

The response of a current controlled PV inverter, shown in Fig. 7, connected to the grid simulator with a 20 V5th

harmonic is shown in Fig. 8. Figs. 8(a) and 8(b) show current and voltage respectively. Inverter current is highly distorted

due to the harmonic distortion in the voltages. Nevertheless, when harmonic compensation is activated in the inverter,

currents are free of harmonics despite the voltages, proving the good performance of the compensation algorithm of

the tested grid-connected current-controlled inverter (Fig. 8(c)). This test clearly shows one of the applications ofthe
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(a)

(b)

Fig. 6. Current and voltage in a resistive load when 10% 5th, 7th and 11th harmonic are included: (a) Current and (b) Voltage.

grid simulator, such as to test power quality issues in a grid-connected inverter. This application of the grid simulator

will be reinforced below in the case study of section V.

Fig. 7. Current controlled PV inverter with harmonic current compensation connected to the grid simulator.

B. Unbalanced voltages

The grid simulator is also able to generate unbalanced voltages, according to the types described in [30]. Figs. 9(a)

and 9(b) show currents and voltages in the non-linear load. It is a type C unbalance with a 20% remaining voltage

in phase-to-phase voltageVab. As a consequence of the reduced voltage inVab, only two braches of the rectifier are

working, while the current in phase A is always zero.

Similarly, results for an inverter under unbalanced voltages are shown in Figs. 9(c) and 9(d). Again, it is a type

C imbalance. The remaining voltage is now 70%. In this case, the current controlled inverter does not have separate

positive and negative sequence current controllers, causing highly distorted currents. In all of the cases, the grid

simulator is able to cope with the distorted currents without affecting its generated voltage waveforms.
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(a)

(b)

(c)

Fig. 8. Current and voltage in an inverter when 10% 5th harmonic is included: (a) Current, (b) Voltage and (c) Compensated current.

(a) (b)

(c) (d)

Fig. 9. Scope snapshots for unbalanced voltage tests: (a) current in a non-linear load; (b) voltage in a non-linear load;(c) current in an inverter;
and, (d) voltage in an inverter
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(a) (b)

(c) (d)

Fig. 10. Scope snapshots for voltage sags and flicker tests: (a) current in an inverter under a voltage sag; (b) voltage in an inverter under a voltage
sag; (c) current in a RL load under flicker; and, (d) voltage ina RL load under flicker

C. Voltage sags

Figs. 10(a) and 10(b) show the response of a current controlled inverter under a three-phase voltage sag. The sag

depth is 20% and its duration 550 ms, as defined by the German BDEW grid code [21]. This grid code was used

as an example, but the grid simulator is able to generate different sag profiles from different grid codes, which, as

discussed in the introduction, makes the grid simulator a very flexible and useful test bed. Although a voltage sag is

a very abrupt change, the grid simulator showed a very good performance.

D. Flicker

The grid simulator can also generate low frequency oscillations in voltage amplitude, causing flicker. The response

of an RL load,R = 230Ω, L = 5mH , to flicker is shown in Figs. 10(c) and 10(d). In this case, it is a sinusoidal

flicker with an amplitude of 5% of the voltage amplitude and a frequency is 8 Hz. A slight imbalance can be noticed

in Fig. 10(c), which is caused by slight differences in the three-phase RL load and not by the voltages generated by

the grid simulator, which do not show imbalance at all (Fig. 10(d)).

E. Multiple disturbances

Finally, in this section, results of combined disturbancesare shown. A combination of harmonics and unbalance is

shown in Fig. 11. In this case, 20 V of an11th harmonic component is added to an unbalanced voltage, being20% the

remaining voltage of phase-to-phase voltageVab. This voltage is applied to a non-linear load. Once more, thevoltage

reference was tracked despite the currents drawn by the load.
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(a)

(b)

Fig. 11. Current and voltage in a non-linear load under harmonic and unblanced voltages: (a) Current and (b) Voltage

V. A CASE STUDY: COOPERATIVE UNBALANCED VOLTAGE COMPENSATION IN A MICRO-GRID

The grid simulator was also used to test a micro-grid with twoinverters and a three-phase resistive load, as shown

in Fig. 12. The inverters can be taken as distributed generators, while the load is considered to be the critical load in

the micro-grid. All the components correspond to those presented in section III. In this case study, the grid simulator

is used to generate a permanent imbalance at the point of common coupling of the micro-grid. The main idea is to

maintain the quality of the voltage in the critical load, thus providing the micro-grid with a self-healing capability,

being able to increase the quality of the voltage for the critical load and at the same time stay connected to the main

grid, maximizing energy production even under distorted voltages.

In order to achieve this objective, the inverters of the distributed generators include unbalanced voltage compensation

algorithms. Each of the distributed generators use part of their available current to compensate for the imbalance.

Depending on the tuning of the imbalance compensation algorithm for each distributed generator a steady state is

reached, where they share the total amount of compensation.For different generated powers, this can yield a situation

in which one of the DGs is overloaded and the others still havecapacity left to either generate or compensate. In

this case, it is useful to limit the amount of compensation indifferent DGs following a certain optimization criterion

mainly depending on the costs associated with the compensation.

The unbalanced voltage compensation algorithm is shown in Fig. 13. It is based on an algorithm presented in [33] for

islanded micro-grids. The compensation takes into accountthe measured negative sequence voltagev̄−αβ and negative

sequence reactive powerQ−. In that work, the compensation gainC was fixed in order to share the amount ofQ−

accordingly. Here, a modification for limiting its action was included. This limitation allows us to control the amount

of compensation provided by each distributed unit in the micro-grid.
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Fig. 12. Topology of the micro-grid connected to the grid simulator in the case study.

This way, different aspects in the micro-grid status can be considered for compensation purposes, such as costs

of production loss, start-up time and so on. For example, if the wind is blowing, then MPPT for the wind energy

distributed generator seems the best solution, but if compensation in the critical load is mandatory, then a decision

must be taken, like decreasing the generated wind energy andusing part of the current for compensation, or keeping

MPPT for wind energy and decreasing PV generation (if any) orany other options, as many as different resources in

the micro-grid.

Fig. 13. Block diagram of the unbalance compensation algorithm with current limitation.

In unbalanced voltage compensation, in grid-connected case, the compensation gainC is dynamically changed as a

function of the limitation of output current̄ıαβ , to obtain

C
′

= C × g, (15)

where

g =































Cu for I > Lupper

I for I ∈ [Llower, Lupper ]

Cl for I < Llower,

(16)

is the saturation function for the compensation gain, withCu andCl being the upper and lower limits of the saturation,

Lupper andLlower the limits of the integral and



14

I = K

∫

h× |̄ıαβ |
L

dt, (17)

is the integral of the error in the current limitation, whereK is the integral gain,L is the current limit and

h =































1 for e> ε

0 for e∈ [−ε, ε]

−1 for e< −ε,

(18)

is a hysteresis comparator which outputs the sign of the error with a small dead band to filter out the ripple. In (18),

e = L − |̄ıαβ | and ε is the dead band for the current limit error. The variation ofthe modified gainC
′

is limited to

avoid excessive transient over- or under-compensation. The dead bandε used in the limitation error acts as a filter for

the ripple in current modulus. The resulting compensating voltagev̄comp
αβ is then subtracted from the voltage reference

v̄refαβ coming from the droop controllers. This new reference is controlled by inner voltage and current control loops.

In the present case, DG1 is generating 350 W and DG2 60 W. Unbalanced three-phase voltages are set by the grid

simulator, with a 91% remainig voltage in the faulty lines. At instant t=0 s, compensation is activated for DG2. The

imbalance is consequently reduced, as shown in Fig. 14(a). At around t=2.1 s, compensation is also activated for DG1.

The imbalanced is further reduced until, at t=4.5 s, a current limitation of 3 A is set in DG1. The compensation effect

is now limited and the unbalance factor increases again to anintermediate level.

Fig. 14(b) shows DG1d and q current components for positive and negative sequence currents. Apart from the

transients, positive sequence components do not change their values. Negative sequence component appear uncontrolled

until the compensation is activated. When the current limitation is activated, current modulus stays at 3 A, as required.

The same analysis can be done by observing Fig. 14(c), where RMS values ofα components of compensating voltage

vcomp
α , positive sequence currenti+α and negative sequence currenti−α are plotted together with phase R output current

ioR for both distributed generators, DG1 and DG2. Positive sequence currents are only transiently affected, when either

the compensation or the limitation are activated. When DG1 starts compensating, the amount of compensation in DG2

decreases, and when the limitation is activated for DG1, it increases again. A different dynamic response can also be

observed as a consequence of purposely setting different compensating gain values.

Finally, the compensation effect can also be observed in Fig. 15, where the voltage at the critical load is shown

before compensation (Fig. 15(a)) and after compensation (Fig. 15(b)).

This way, distributed generators in a micro-grid can act as self-healing agents, increasing voltage quality in the point

of common connection and thus avoiding potential problems to critical loads. This self-healing action is done at the

expense of reducing the production and dedicating part of the available current for compensation purposes, instead of

generation.



15

0 2 4 6 8
1

2

3

4

5

6

7

8

9

10

t (s)
U

nb
al

an
ce

 fa
ct

or
 

 

U
f1

U
f2

(a)

0 2 4 6 8
−4

−2

0

2

4

6

8

t (s)

C
ur

re
nt

 (
A

)

 

 

i
d
+

i
q
+

i
d
−

i
q
−

|i
dq

|

(b)

0 2 4 6 8
0

20

40

v αco
m

p  (
V

)

 

 

DG1
DG2

0 2 4 6 8
0
2
4

i α+
 (

A
)

0 2 4 6 8
0
2
4

i α−
 (

A
)

0 2 4 6 8
0
2
4

i oR
 (

A
)

t (s)

(c)

Fig. 14. Results of the case study: (a) unbalance factors forboth distributed generators, (b) positive and negative sequence currents and current
modulus for distributed generator 1 indq axis, and (c) RMS values of compensating voltage,α-component positive sequence current,α-component
negative sequence current and phase R output current for both distributed generators.

VI. CONCLUSIONS

In this paper, a grid simulator was designed and built. It is based on two inverters connected back-to-back, both with

resonant controllers for currents and voltages. The performance of the grid simulator was tested on different kinds of

loads, including linear and non-linear loads and inverters. The grid simulator had a very good performance, being able

to track its reference even in the presence of very distortedcurrents. In addition, a case study was also presented, in

which cooperative unbalanced voltage compensation was investigated in a micro-grid with two distributed generators

and a critical load. The grid simulator allowed to test the compensation algorithm of the DG units in the micro-grid,

proving the self-healing capability of this micro-grid as an example of possible compensation algorithm. Therefore,

the grid simulator was successfully used to test power quality issues of multi-component systems such as micro-grids,

where issues like Low Voltage Ride Through are likely to be mandatory in the near future, as happened with wind or

PV energies, or unbalanced voltage compensation, requiring an unbalance factor of less than 3%, according to [27].
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(a)

(b)

Fig. 15. Voltages at the critical load: (a) Before compensation and (b) After compensation
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