
 

  

 

Aalborg Universitet

Fast LCMV-based Methods for Fundamental Frequency Estimation

Jensen, Jesper Rindom; Glentis, George-Othon; Christensen, Mads Græsbøll; Jakobsson,
Andreas; Jensen, Søren Holdt
Published in:
I E E E Transactions on Signal Processing

DOI (link to publication from Publisher):
10.1109/TSP.2013.2258341

Publication date:
2013

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Jensen, J. R., Glentis, G-O., Christensen, M. G., Jakobsson, A., & Jensen, S. H. (2013). Fast LCMV-based
Methods for Fundamental Frequency Estimation. I E E E Transactions on Signal Processing, 61(12), 3159-3172.
https://doi.org/10.1109/TSP.2013.2258341

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 09, 2024

https://doi.org/10.1109/TSP.2013.2258341
https://vbn.aau.dk/en/publications/32256304-083c-4782-b917-77eba8346e83
https://doi.org/10.1109/TSP.2013.2258341


1

Fast LCMV-based Methods for Fundamental
Frequency Estimation

Jesper Rindom Jensen†, George-Othon Glentis∗, Mads Græsbøll Christensen†,
Andreas Jakobsson∗∗, and Søren Holdt Jensen‡

Abstract—Recently, optimal linearly constrained minimum
variance (LCMV) filtering methods have been applied to funda-
mental frequency estimation. Such estimators often yield prefer-
able performance but suffer from being computationally cumber-
some as the resulting cost functions are multimodal with narrow
peaks, as well as requiring matrix inversions for each point in
the search grid. In this paper, we therefore consider fast imple-
mentations of LCMV-based fundamental frequency estimators,
exploiting the estimators’ inherently low displacement rank of the
used Toeplitz-like data covariance matrices, using as such either
the classic time domain averaging covariance matrix estimator,
or, if aiming for an increased spectral resolution, the covariance
matrix resulting from the application of the recent iterative
adaptive approach (IAA). The proposed, exact implementations
reduce the required computational complexity with several orders
of magnitude, but, as we show, further computational savings
can be obtained by the adoption of an approximative IAA-based
data covariance matrix estimator, reminiscent to the recently
proposed Quasi-Newton IAA technique. Furthermore, it is shown
how the considered pitch estimators can be efficiently updated
when new observations become available. The resulting time-
recursive updating can reduce the computational complexity even
further. The experimental results show that the performances of
the proposed methods are comparable or better than that of
other competing methods in terms of spectral resolution. Finally,
it is shown that the time-recursive implementations are able to
track pitch fluctuations of synthetic as well as real-life signals.

Index Terms—Fundamental frequency estimation, optimal fil-
tering, data adaptive estimators, efficient algorithms.

I. INTRODUCTION

There exists a multitude of signal processing applications
in which the fundamental frequency is an essential parameter,
including, for instance, parametric coding of audio and speech,
automatic music transcription, musical genre classification,
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tuning of musical instruments, separation and enhancement
of audio and speech sources, and hearing aids. Due to the
importance of knowing the fundamental frequency, numerous
approaches and methods have been proposed for estimating
this parameter, see, e.g., [1]–[7] and the references therein.
Typically, such estimators rely on an estimate of the sample
covariance matrix, or its inverse, both commonly being formed
by partitioning the available measurement into sub-vectors
and forming the outer-product covariance matrix estimate.
As is well-known, this approach will adversely affect the
achievable spectral resolution due to the necessarily limited
length of the used sub-vectors. In an effort to circumvent
this limitation, recent work have explored methods allowing
for a higher spectral resolution. One example of such a
method is the linearly constrained minimum variance (LCMV)
filtering method proposed in [6], which, like the MUSIC
and expectation-maximization-based methods also proposed
therein, is shown to offer high-resolution estimates of the
fundamental frequency of closely spaced sources. The LCMV
method holds this property at a much lower complexity com-
pared to the other methods, though. Regrettably, the LCMV
method still suffers from being computationally cumbersome
due to its cost function being multimodal with narrow peaks
and requiring matrix inversion for each point in the search
grid.

In this work, we examine both efficient implementations of
the LCMV method as well as of novel high-resolution versions
based on the covariance matrix obtained via the iterative
adaptive approach (IAA). Using the IAA-based covariance
estimate in connection with the LCMV method was originally
proposed in [8]. Here, this improvement is further explored
and improved upon. The IAA was originally presented in [9]
to provide sparse signal representation for passive sensing,
channel estimation, and single-antenna radar applications, but
have since found applications in areas as diverse as MIMO
radar [10], missing data recovery [11], non-uniformly sampled
spectral analysis [12], coherence and polyspectral estimation
[13], spectroscopy [14], and blood velocity estimation us-
ing ultrasound [15]. Notably, the IAA estimate is a non-
parametric data-dependent spectral estimate that does not re-
quire partitioning of the measurements. The estimate is instead
formed iteratively by estimating the spectral amplitudes of
the measurement as well as the covariance matrix formed
from this amplitude spectrum. Due to the lack of partitioning,
the LCMV estimate resulting from exploiting the IAA-based
covariance matrix estimate offers substantially higher spectral
resolution than what is normally achievable using the outer-
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product estimate, although the improvement comes at the price
of a considerable increase of the computational complexity. To
reduce this drawback, we here propose fast implementations of
the LCMV estimators, exploiting the inherently low displace-
ment rank of the necessary product of Toeplitz-like matrices,
proposing both exact and approximative implementations. The
exact implementations generalizes the results in [16], [17],
and have a significantly lower computational complexity than
our implementations recently introduced in [18] as the inverse
covariance matrix is not needed explicitly in the proposed
implementations. Moreover, we propose an even faster ap-
proximative implementation of the IAA-based LCMV method
using an approximative low order extension of the inverse
data covariance matrix, reminiscent to the one developed in
[19]. Finally, we show how the considered pitch estimators
can be updated efficiently when new observations become
available. By using such time-recursive implementations, the
computationally complexity can be reduced much further as
compared to batch processing, especially if time hopping is
allowed.

In the following section, we first briefly recall the LCMV-
based fundamental frequency estimate and the IAA-based
covariance matrix estimate. Then, in Sections III and IV,
we introduce the proposed efficient exact and approximative
implementations of the LCMV and the IAA-based LCMV
methods. Section V discusses time-recursive updating of the
estimates, followed, in Section VI, by extensive simulation
examples on synthetic data illustrating the performance of the
proposed implementations. Finally, Section VII concludes on
the presented work.

II. FUNDAMENTAL FREQUENCY ESTIMATION USING
OPTIMAL FILTERING

As audio and speech signals are quasi-periodic, one may
well model such signals as (see, e.g., [7])

x(n) =

L∑
l=1

αle
jlω0n + w(n), (1)

for n = 0, . . . , N − 1, where L is the number of harmonics,
αl = Ale

jφl , with Al > 0 and φl denoting the real-valued
amplitude and the phase of the lth harmonic, respectively.
Furthermore, ω0 ∈ [0; 2π/L] denotes the sought fundamental
frequency, and w(n) is complex-valued additive noise. For
simplicity, we will here assume that the model order, L,
is known, noting that this may otherwise be obtained using
a model order estimator [7], [20]–[22], or by forming the
model order and fundamental frequency estimation jointly,
reminiscent to the ideas presented in [7], [23], [24]. The
problem of interest is thus estimating ω0 from x(n) without
making any strong assumptions on the statistics of the noise
process.

A. Harmonic LCMV Method

Fundamental frequency estimation may, for instance, be
conducted using the optimal filtering method introduced in

TABLE I
HARMONIC LCMV METHOD

R̂M =
1

N −M + 1

N−1∑
n=M−1

xM (n)xH
M (n)

GGGcov
L (ω0) = ZH

M,L(ω0)R̂
−1
M ZM,L(ω0)

ω̂0 = arg max
ω0∈Ω0

1T
L [GGGcov

L (ω0)]
−1 1L

[25], being based on an optimal LCMV filter. Consider an
(M − 1)th order FIR filter of which the output is given by

y(n) =

M−1∑
m=0

h(m)x(n−m) = hHMxM (n), (2)

for n = M − 1, . . . , N − 1, where

hM =
[
h(0) · · · h(M − 1)

]H
, (3)

xM (n) =
[
x(n) · · · x(n−M + 1)

]T
, (4)

with (·)T and (·)H denoting the transpose and conjugate
transpose, respectively. The output power of the filter is

E{|y(n)|2} = hHMRMhM , (5)

where

RM = E{xM (n)xHM (n)}, (6)

with E{·} denoting the statistical expectation. The optimal
filter response is found using the LCMV principle, such that
the filter is designed to have a unit gain at the harmonic
frequencies while having maximum noise suppression. This
design procedure can also be formulated as

min
hM

hHMRMhM subj. to hHMzM (lω0) = 1 , (7)

for l = 1, . . . , L,

where

zM (ω0) =
[
1 e−jω0 · · · e−j(M−1)ω0

]T
. (8)

The solution to the quadratic optimization problem with mul-
tiple equality constraints in (7) is [7]

hLCMV
M (ω0) = R−1

M ZM,L(ω0) [GGGcov
L (ω0)]

−1
1L, (9)

with 1L ∈ RL denoting a vector of ones,

GGGcov
L (ω0) , ZHM,L(ω0)R−1

M ZM,L(ω0), (10)

and where

ZM,L(ω0) =
[
zM (ω0) · · · zM (Lω0)

]
. (11)

An estimate of the fundamental frequency may thus be found
by inserting (9) into (5) and maximize the output power,
yielding

ω̂0 = arg max
ω0∈Ω0

1TL [GGGcov
L (ω0)]

−1
1L, (12)

where Ω0 is a set of candidate fundamental frequencies.
Here, we term the estimator in (12) the LCMV fundamental
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TABLE II
IAA-BASED HARMONIC LCMV METHOD

Iterate until convergence

α̂k =
zHN (ωk)R̃

−1
N xN

zHN (ωk)R̃
−1
N zN (ωk)

R̃N =

K−1∑
k=0

|α̂k|2 zN (ωk)z
H
N (ωk)

End

GGGIAA
L (ω0) = ZH

N,L(ω0)R̃
−1
N ZN,L(ω0)

ω̂0 = arg max
ω0∈Ω0

1T
L

[
GGGIAA
L (ω0)

]−1
1L

frequency estimator1. The covariance matrix RM is generally
unknown, and is commonly replaced by the sample covariance
matrix

R̂M =
1

N −M + 1

N−1∑
n=M−1

xM (n)xHM (n). (13)

The resulting fundamental frequency estimation algorithm is
summarized in Tab. I. To ensure that R̂M is invertible, the
length of the sub-vectors, xM (n), are restricted to M < N/2+
1, thereby limiting the resolution to being on the order of 1/M
[21]. A direct implementation of the estimator requires roughly

Ccov ≈M3 +M2N̄ + F̄
(
ML2 + LM2 + L3

)
(14)

operations, where N̄ , N −M + 1 and F̄ , F/L, with F =
|Ω0| being the size of the uniformly spaced grid of frequencies
where the search for the optimum ω0 is conducted. Typically,
F � N , and due to the nature of the problem, the search is
limited to frequencies up to F̄ .

B. IAA-based Harmonic LCMV Method

We proceed to recall the IAA-based covariance matrix
estimate, which is then used in conjunction with the LCMV
method for fundamental frequency estimation. However, it
should be stressed that this covariance matrix estimate could
similarly be used in conjunction with other covariance based
fundamental frequency estimators, thereby offering a similar
improved spectral resolution. Following the usual IAA nota-
tion, let

xN =
[
x(0) x(1) · · · x(N − 1)

]T
. (15)

Then, the IAA estimate is formed by iteratively estimating
the complex spectral amplitudes, α(ωk) , αk, and the corre-
sponding covariance matrix, R̃L, until practical convergence,
as (see [9], [11] for further details)

α̂k = [zHN (ωk)R̃−1
N zN (ωk)]−1zHN (ωk)R̃−1

N xN , (16)

R̃N =

K−1∑
k=0

|α̂k|2 zN (ωk)zHN (ωk), (17)

1Note that similar estimators are also referred to as MVDR or Capon
methods in the literature.

for k = 0, 1, . . . ,K − 1, with K denoting the size of the
grid of frequencies utilized in the IAA implementation, and
R̃N being initialized to the identity matrix, IN . This implies
that the complex amplitudes are initialized using the FFT of
the entire measurement vector. Typically, in practice, 10-15
iterations are sufficient for convergence [9]. The expression in
(16) can also be interpreted as a filtering operation, i.e.,

α̂k =
[
hIAA
N (ωk)

]H
xN , (18)

where the IAA filter, hIAA
N (ωk), is defined as

hIAA
N (ωk) = [zHN (ωk)R̃−1

N zN (ωk)]−1R̃−1
N zN (ωk), (19)

from which it may be noted that the IAA filter resembles
the optimal filter used in the traditional Capon method for
spectrum estimation [21]. In [8], we instead proposed the IAA-
based optimal LCMV (IAA-LCMV) filter, formed as

hIAA-LCMV
N (ω0) = R̃−1

N ZN,L(ω0)
[
GGGIAA
L (ω0)

]−1
1L, (20)

where
GGGIAA
L (ω0) , ZHN,L(ω0)R̃−1

N ZN,L(ω0). (21)

That is, we use the filter design in (9) together with the
IAA covariance matrix estimate obtained after convergence
has been achieved. Combining (18) and (20), one obtains an
estimate of the output power of the IAA-LCMV filter as

P̂IAA-LCMV(ω0) =1TL
[
GGGIAA
L (ω0)

]−1
ZHN,L(ω0)R̃−1

N XN

× R̃−1
N ZN,L(ω0)

[
GGGIAA
L (ω0)

]−1
1L, (22)

with XN = xNxHN . By taking the expected value of the output
power, we get

E
{
P̂IAA-LCMV(ω0)

}
= 1TL

[
GGGIAA
L (ω0)

]−1
1L, (23)

from which the expectation-based fundamental frequency es-
timate is obtained as

ω̂0 = arg max
ω0∈Ω0

E
{
P̂IAA-LCMV(ω0)

}
. (24)

A summary of the algorithm is found in Tab. II. A direct
implementation of (24) requires roughly

CIAA ≈ m(N3 + 3N2K) + F̄
(
NL2 + LN2 + L3

)
(25)

operations, where m is the number of IAA iterations and,
usually, K ≤ F .

III. EXACT EFFICIENT IMPLEMENTATIONS

Efficient and exact implementations of (12) and (24) may
alternatively be formed by exploiting the inherent displace-
ment structure of the estimator, forming the implementation
using Gohberg-Semencul (GS) factorizations of the involved
inverse covariance matrices. Consider a Hermitian matrix
PM ∈ CM×M , and define the lower shifting matrix

DM =

[
0T 0

IM−1 0

]
. (26)

Clearly, (DM )M = 0. Then, the displacement of PM , denoted
as ∇DM ,DT

M
PM , with respect to DM and DT

M is defined as

∇DM ,DT
M

PM , PM −DMPMDT
M . (27)
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Suppose that there exist integers ρ and σi ∈ {−1, 1}, for
i = 1, 2, . . . , ρ, such that (see also [26]–[28])

∇DM ,DT
M

PM =

ρ∑
i=1

σit
(i)
M t

(i)H
M = TM,ρΣρT

H
M,ρ, (28)

where

TM,ρ =
[
t
(1)
M · · · t

(ρ)
M

]
, (29)

Σρ = diag
{[
σ1 · · · σρ

]T}
, (30)

with diag(x) denoting the diagonal matrix formed with the
vector x along its diagonal, and with t

(i)
M being the ith so-

called generator vector. Then, the GS factorization of PM may
be expressed as

PM =

ρ∑
i=1

σiL
(
DM , t

(i)
M

)
LH

(
DM , t

(i)
M

)
, (31)

where L(DM ,bM ) denotes a Krylov matrix of the form
L(DM ,bM ) = [bM DMbM D2

MbM · · · DM−1
M bM ]. Given

the GS factorization of PM , the coefficients of the trigono-
metric polynomial

ψ(ω) , zHM (ω)PMzM (ω) =

M−1∑
κ=−M+1

cκe
−jκω (32)

can then be formed at a cost of O(ρM log2(2M)) using
the method detailed in [29]. Extending the results presented
therein, we proceed on proposing a fast method for the esti-
mation of the coefficients of the matrix valued trigonometric
polynomials associated with the inverse covariance matrices
for the here considered LCMV and IAA-LCMV fundamental
frequency estimators, (10) and (21), respectively. We thus con-
sider the matrix valued trigonometric polynomial associated to
PM , defined as

ΨΨΨL(ω) , ZHM,L(ω)PMZM,L(ω), (33)

where

[ΨΨΨL(ω)]l1,l2 , ψl1,l2(ω) = zHM (l1ω)PMzM (l2ω). (34)

Notice that when l1 = l2 = 1, ψ1,1(ω) coincides with (32) and
thus can be handled using [29]. As it has been recently shown
in [18], the coefficients of the remaining polynomials (34)
can be computed by summing up the diagonals of matrices
constructed by proper expansion of PM , where the matrix PM

itself was reconstructed from the displacement representation
(28) at hand, at a cost of (ρ + 0.5L2)N2 operations. The
computed polynomial coefficients were subsequently utilized
for the evaluation of (34) on the unit circle at a cost of
0.25L2F log2 F . In the following, we proceed by presenting a
novel method for the evaluation of the matrix valued trigono-
metric polynomial in (33) directly from the displacement
representation of the associated inverse covariance matrix
and the displacement representation of its increased order
matrix expansion, circumventing the need for reconstructing
the inverse covariance matrix from its given displacement
representation. This results in an even faster scheme than the
one proposed in [18].

TABLE III
FAST HARMONIC LCMV METHOD

1) Estimate the displacement vectors t
(i)
M , i = 1, 2, 3, 4 of R̂−1

M using
the generalized Levinson algorithm [29] at a complexity of 4.5M2 +
1.5N log2N .

2) Compute {t(1)
M , t

(2)
M , t

(3)
M , t

(4)
M } → {t

(1)
M+1, t

(2)
M+1, t

(3)
M+1, t

(4)
M+1}

using single step generalized Levinson recursions at a cost of 8M
.

3) Compute the coefficients of ψcov
1,1(ω) = zHM (ω)R̂−1

M zM (ω) and
evaluate ψcov

1,1(ω) on a set of F frequencies, equally spaced on the
unit circle as [29] at a cost of 9M log2(2M) + 0.5F log2 F .

4) Evaluate ϕ(i)
1 (ω) = zHM+1(ω)t

(i)
M+1, i = 1, 2, 3, 4 on a set of F

frequencies, equally spaced on the unit circle at a cost of 2F log2 F .

5) Compute ψcov
l1,l1

(ω) and ψcov
l1,l2

(ω), for l1 = 1, 2 . . . L and l2 =
l1, . . . L as dictated by (40)-(45) for equally spaced frequencies in
the range ]0; 2π/L] at a cost of 2.5FL.

6) Compute 1T
L

[
GGGcov
L (ω)

]−1
1L for equally spaced frequencies in the

range ]0; 2π/L] at a cost of FL2.

A. Fast Harmonic LCMV Method

Restricting the set of candidate fundamental frequencies,
Ω0, to the frequencies uniformly spanned on the unit circle,
the maximization of (12) may be performed indirectly by
exhaustive searching. This results in the evaluation of the
trigonometric matrices in (10), and the computation of their
inverses over the set of uniformly spaced frequencies of inter-
est, which enables the use of the Fast Fourier Transform (FFT)
for computational speed-up. First, the generalized Levinson
algorithm is employed for the computation of a displacement
representation,

TM,4 = [t
(1)
M , t

(2)
M , t

(3)
M , t

(4)
M ], (35)

Σ4 = diag{1,−1, 1,−1}, (36)

of R̂M in (13), as detailed in [29]. The computation of the
displacement representation requires about

CFCOV(M,N) ≈ 4.5M2 + 1.5N log2N. (37)

Using R̂−1
M in place of PM in (33) results in (10), which

component wise is expressed as

[GGGcov
L (ω)]l1,l2 , ψcov

l1,l2(ω) = zHM (l1ω)R̂−1
M zM (l2ω). (38)

When l1 = l2 = 1, (38) implies that

ψcov
1,1(ω) , zHM (ω)R̂−1

M zM (ω). (39)

The coefficients of ψcov
1,1(ω) can be computed directly from (35)

and (36) at a cost of 9M log2(2M) using the method detailed
in [29] and ψcov

1,1(ω) can be subsequently evaluated on the unit
circle using an FFT at a cost of 0.5F log2 F , where F is
the number of frequencies uniformly spanning the unit circle.
As the search in (12) is restricted to a set of equally spaced
frequencies on the unit circle for frequencies ω up to 2π/L,
we are able to evaluate the remaining polynomials across the
main diagonal of (38) at no extra cost, by downsampling (39)
in the frequency domain as

ψcov
l1,l1(ω) = ψcov

1,1(l1ω), (40)
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TABLE IV
FAST IAA-BASED HARMONIC LCMV METHOD

1) Estimate the displacement vectors t
(i)
N , i = 1, 2 of R−1

N and the co-
efficients of ψIAA

1,1 (ω) = zHN (ω)R̃−1
N zN (ω) using the fast IAA algo-

rithm [16], [17] at a cost of m[N2+12N log2(2N)+1.5K log2 K].

2) Compute {t(1)
N } → {t

(1)
N+1} using single step Levinson recursion at

a cost of 2N .

3) Evaluate ψIAA
1,1 (ω) on a set of F frequencies, equally spaced on the

unit circle as at a cost of 0.5F log2 F .

4) Evaluate ϕ(i)(ω) = zHN+1(ω)t
(i)
N+1, i = 1, 2 on a set of F

frequencies, equally spaced on the unit circle at a cost of F log2 F .

5) Compute ψIAA
l1,l1

(ω) and ψIAA
l1,l2

(ω), for l1 = 1, 2 . . . L and l2 =
l1, . . . L as dictated by (40)-(45) for equally spaced frequencies in
the range ]0; 2π/L] at a cost of 1.5FL.

6) Compute 1T
[
GGGIAA
L (ω)

]−1
1 for equally spaced frequencies in the

range ]0; 2π/L] at a cost of FL2.

for l1 = l2 and l1 = 2, . . . , L. The off diagonal polynomials
in (38) can be efficiently computed from the displacement
representation of an increased order matrix defined as

ˆ̄RM+1 ,

[
R̂−1
M 0

0T 0

]
, (41)

which, as is shown in the Appendix, can be expressed as

∇DM+1,DT
M+1

ˆ̄RM+1 ,

[
R̂−1
M 0

0T 0

]
−
[

0 0T

0 R̂−1
M

]
=

4∑
i=1

σit
(i)
M+1t

(i)H
M+1, (42)

where the displacement vectors t
(i)
M+1 are be computed from

those already available in (35) using single step generalized
Levinson recursions. Finally, by using (38) and (42) for l1 6=
l2, one may write

ψcov
l1,l2(ω)

[
1− ej(l1−l2)ω

]
=

4∑
i=1

σiϕ
(i)
l1

(ω)ϕ
(i)∗
l2

(ω), (43)

where
ϕ

(i)
l1

(ω) , zHM+1(l1ω)t
(i)
M+1. (44)

This implies that

ψcov
l1,l2(ω) =

1

1− ej(l1−l2)ω

4∑
i=1

σiϕ
(i)
1 (l1ω)ϕ

(i)∗
1 (l2ω), (45)

for the set of frequencies of interest up to 2π/L with
ψcov
l1,l2

(0) = ψcoc
1,1(0). Note that ϕ(i)

1 (l1ω) can be obtained by
downsampling ϕ(i)

1 (ω) in the frequency domain. The algorithm
constituting the fast harmonic LCMV method is summarized
in Tab. III. Its computational complexity is dominated by the
complexity of computing 4 FFT’s of size F and the inversion
of F/L, L×L linear systems of equations, yielding an overall
complexity

CFLCMV ≈ CFCOV(M,N) + 9M log2(2M)

+ 2.5F log2 F + 2.5FL+ FL2. (46)

Compared to [18], the new approach provides a faster way for
the computation of the pertinent variables, circumventing the
need for estimating R̂−1

M explicitly.

B. Fast IAA-based LCMV Method

Estimation of the fundamental frequency using the IAA-
LMCV method is performed by maximizing (24). Restricting
the search to an equally spaced set of frequencies on the unit
circle, this task can be efficiently tackled by means of the FFT
as in the LCMV approach discussed before. First, though, the
covariance matrix R̃N is estimated using the IAA as described
by (16) and (17), which can efficiently implemented without
the need of direct estimation of the covariance matrix and
its inverse. This can be accomplished using the celebrated
Levinson-Durbin (LD) algorithm and some fast techniques
for the evaluation of trigonometric polynomials related to
structured matrices as detailed in [16], [17]. In this way, given
the available data set xN , the displacement representation
of the Toeplitz matrix in (17), as well as the displacement
representation of its inverse, R̃−1

N , are iteratively estimated at
a cost of

CFIAA(N,m) ≈ m[N2 + 12N log2(2N)

+ 1.5K log2K] (47)

operations. With the displacement representation of R̃−1
N at

hand, denoted as t
(1)
N and t

(2)
N , the displacement representation

of the increased order matrix

ˆ̃RN+1 ,

[
R̃−1
N 0

0T 0

]
is found as[

R̃−1
N 0

0T 0

]
−
[

0 0T

0 R̃−1
N

]
=

2∑
i=1

σit
(i)
N+1t

(i)
N+1 (48)

as shown in the Appendix, where

t
(1)
N+1 = AN+1, σ1 = 1, (49)

t
(2)
N+1 = JN+1A

∗
N+1, σ2 = −1, (50)

with the matrices AN+1 and JN+1 defined in the Appendix.
By combining (48)–(50) with a scheme similar to (38)–(39)
and (43)–(45), one obtains an efficient way of computing
diagonal and off-diagonal elements of the matrix valued
trigonometric polynomial in (21). This algorithm is detailed
in Tab. IV, and it has a computational complexity of

CFIAA-LCMV ≈ CFIAA(N,m) + F log2 F + 1.5FL+ FL2.
(51)

IV. FAST APPROXIMATIVE IAA-BASED LCMV METHOD

Substantial computational savings can be achieved by using
the approximative IAA algorithm recently proposed in [19]
for the estimation of the covariance matrix and its inverse
required in (24). In [19], a superfast implementation of the
IAA algorithm, using the preconditioned conjugates gradient
method and a Quasi Newton (QN) approach, was proposed
for the formulation of an appropriate preconditioning. The
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QN approach was also used for the implementation of an
approximative IAA spectral estimation algorithm, where the
inverse of the data covariance matrix was computed in terms
of a lower order counterpart. Building on these results, we
here present a novel, approximative, fundamental frequency
estimation method. The proposed approach is motivated by
the QN algorithms formulated in [19], [30], where the inverse
of Toeplitz-like matrices is approximated by extrapolating the
inverse of a lower size matrix. The lower size matrix is treated
as if it has been associated with an autoregressive (AR) model
of lower order q ≤ N . Thus, instead of computing R̃−1, a
lower order extrapolated estimate is adopted. This results in an
approximate IAA algorithm, where α(ωk) and R̃ are estimated
iteratively as

α̂k = [zHN (ωk)Q−1
N zN (ωk)]−1zHN (ωk)Q−1

N xN , (52)

R̃q =

K−1∑
k=0

|α̂k|2 zq(ωk)zHq (ωk), (53)

for k = 0, 1, . . . ,K − 1, until practical convergence. The qth
order autocorrelation matrix R̄q is initialized to the identity
matrix, Iq , and

Q−1
N =

[
0 0T

0 R̃−1
q

]
+ AN,N−q+1A

H
N,N−q+1, (54)

with

AN,N−q+1 ,
[
āN DāN . . . DN−qāN

]
, (55)

āN = [âq 0TN−q]
T , (56)

where âq is the displacement generator associated with the
power-normalized forward predictor of R̃q , as detailed in [19].
Then, the resulting approximative QN-IAA-based harmonic
LCMV (QN-IAA-LCMV) method is formed by considering
the cost function related to the estimate of QN as

E{P̂QN-IAA-LCMV(ω0)} = 1TL

[
GGGQN-IAA
L (ω0)

]−1

1L, (57)

where

GGGQN-IAA
L (ω0) , ZHN,L(ω0)Q−1

N ZN,L(ω0). (58)

The fundamental frequency is then estimated by maximizing
the output power using

ω̂0 = arg max
ω0∈Ω0

E
{
P̂QN-IAA-LCMV(ω0)

}
. (59)

Choosing q � N , a significant computation reduction can be
achieved at the expense of a possible degradation in the quality
of the spectrum estimate. The displacement representation of
the approximate inverse covariance matrix Q−1

N is estimated
from the available data xN using the QN-IAA algorithm
detailed in [19], where the LD algorithm is employed for the
computation of the displacement representation of R̃−1

q . This
representation is subsequently utilized in (54), at a cost of

CQN-IAA(m,N, q) ≈ m
[
q2 + 12q log2(2q)+

N log2(N) + 1.5K log2(K)] (60)

operations. Evaluation of (58) on the frequency grid of interest
can be performed efficiently as in the IAA-based LCMV case

detailed in the previous subsection, using the displacement
representation of an extended matrix as[

Q−1
N 0

0T 0

]
−
[

0 0T

0 Q−1
N

]
=

2∑
i=1

σit̄
(i)
N+1t̄

(i)
N+1, (61)

where

t̄
(1)
N+1 =

[
āTN 0

]T
, σ1 = 1, (62)

t̄
(2)
N+1 = JN+1

(
t̄
(1)
N+1

)∗
, σ2 = −1. (63)

This can be exploited to obtain a fast scheme similar to that
described in Table IV, with the fast QN-IAA algorithm being
used instead of the fast IAA algorithm for the estimation of
the displacement representation of the data covariance matrix
and the associated trigonometric polynomial in Step 1, and
with t̄

(1)
N+1 and t̄

(2)
N+1 being used instead of t

(1)
N+1 and t

(2)
N+1

in Step 2. Thus, the overall computational complexity of the
proposed QN-IAA-LCMV method is given by

CQN-IAA-LCMV ≈ CQN-IAA(N,m,q) + F log2(F ) + FL+ FL2.
(64)

V. TIME-RECURSIVE IMPLEMENTATIONS

We proceed to examine how the discussed methods may
be efficiently updated as additional measurements becomes
available.

A. Fast Harmonic LCMV

To allow for such an updating, the required covariance
matrices should be replaced by suitable time-recursive esti-
mates. Ta achieve this, an exponentially forgetting window
approximation may be formed in place of (6) as

R̂M (n) =

n∑
m=0

λn−mxM (m)xHM (m) (65)

= λR̂M (n− 1) + xM (n)xHM (n), (66)

where λ ∈ (0, 1) is the forgetting factor controlling the
memory fading of the recursive estimator, with R̂M (−1)
initialized by the scaled identity matrix σIM , for σ > 0 (see
also [31]). Exponentially forgetting updating is here selected in
favor of a rectangular sliding window updating as the former
allows for a computationally simpler algorithm as well as
that the associated spectral variables are then updated in a
more stable manner [32]. As shown in [32], R̂−1

M (n) obeys a
particularly interesting identity of the form[

R̂−1
M (n) 0
0T 0

]
=

[
0 0T

0 λR̂−1
M (n)

]
+ t

(1)
M (n)t

(1)H
M (n)−

t
(2)
M (n)t

(2)H
M (n) + t

(3)
M (n)t

(3)H
M (n), (67)

where the vectors t
(1)
M (n), t

(2)
M (n), and t

(3)
M (n) are defined

in terms of the power-normalized forward and backward
predictors as well as the Kalman gain vector (often denoted
aM (n), bM (n), and wM (n) in the adaptive signal processing
nomenclature) associated with the sample covariance matrix
R̂M (n) at time instant n. Using (67) in conjunction with (10)
results in an efficient way for the component-wise estimation
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of the matrix GGGcov
L (n, ω) at time instant n, required in (12).

The (l1, l2)th component of this matrix can also be written as

[GGGcov
L (n, ω0)]l1,l2 = ψcov

l1,l2(n, ω0) (68)

where ψcov
l1,l2

(n, ω0) , zHM (l1ω0)R̂−1
M (n)zM (l2ω0), which,

using (67), takes the form

ψcov
l1,l2(n, ω0) =

1

1− λe−j(l1−l2)ω0

[
ϕ

(1)
l1

(n, ω0)ϕ
(1)∗
l2

(n, ω0)

− ϕ(2)
l1

(n, ω0)ϕ
(2)∗
l2

(n, ω0) + ϕ
(3)
l1

(n, ω0)ϕ
(3)∗
l2

(n, ω0)
]
,

(69)

with
ϕ

(i)
l (n, ω0) , zHM (lω0)t

(i)
M (n). (70)

As the resulting search is restricted on a set of equally spaced
frequencies on the unit circle for frequencies ω up to 2π/L,
one may write

ϕ
(i)
l (n, ω) = ϕ

(i)
1 (n, lω). (71)

The time-varying generator vectors of R̂−1
M (n), namely

t
(i)
M (n), for i = 1, 2, 3, are computed using a standard recursive

least squares (RLS) algorithm at a cost of approximately
2M2 operations. Alternatively, a stabilized fast RLS (FRLS)
algorithm can be employed at a reduced cost of 7M (see
also [31] and references therein). Summarizing, the proposed
time-recursive fast harmonic LCMV method consists of the
following steps:

1) computation of the time varying generator vectors
t
(i)
M (n), for i = 1, 2, 3, using the standard RLS or FRLS

algorithm, or any other well behaved method,
2) element-wise computation of (69) using three FFTs as

implied by (69) and (70), and
3) the search for the optimal fundamental frequency using

(12).
It is worth noting that step 1) only needs to be updated at
each time instant in a time-recursive way. The computations
involved in the remaining steps 2) and 3), albeit their time-
varying formulation, are not truly time-recursive in nature,
since these depend on variables at the current time instant n
only. This feature enables the development of time-recursive
fundamental frequency algorithms with time hopping, in cases
when the estimation of the fundamental frequency is not re-
quired at each time instant n, but only at every Khop time units
instead. The computational complexity per processed sample
of the proposed time recursive harmonic LCMV method is
therefore

CFLCMV
TR ≈ 2M2 +

[
1.5F log2F + (2L+ L2)F

]
/Khop (72)

operations, when the RLS is used at step 1), or

CFLCMV
TR-F ≈ 7M +

[
1.5F log2F + (2L+ L2)F

]
/Khop (73)

operations, when the FRLS is employed instead.

B. Fast IAA-based LCMV

Regrettably, the time frequency interleaving imposed by the
iterative scheme in (16) and (17) of the IAA-based approach
does not allow for a pure time-recursive estimation of the IAA-
based covariance matrix and its subsequent use for a time-
recursive computation of (21), required by the IAA-based cost
function in (24). However, the development of a time-recursive
scheme for the IAA-based fundamental frequency estimation is
still feasible. As recently proposed in [33], the estimate of the
covariance matrix at time instant n should be approximately
equal to the estimate of the covariance matrix at time instant
n−1 upon convergence. Thus, an approximative time-recursive
update of the covariance matrix in (17) may be constructed as

α̂k(n) =
zHN (ωk)R̃−1

N (n− 1)xN (n)

zHN (ωk)R̃−1
N (n− 1)zN (ωk)

, (74)

R̃N (n) =

K−1∑
k=0

|α̂k(n)|2 zN (ωk)zHN (ωk), (75)

where xN (n) = [x(n − N + 1) x(n − N + 2) . . . x(n)]T

is the data vector at time instant n. Although GGGIAA
L (n, ω0),

resulting from (21) and (75), is time-dependent, the required
computations are not time-recursive in nature. This enables
time hopping in the IAA-based fundamental frequency esti-
mation case as well if desired. The computational complexity
of the proposed time-recursive, IAA-based, harmonic LCMV
scheme is therefore approximately given by

CFIAA-LCMV
TR ≈ CFIAA(N, 1) + F

[
log2 F + 1.5L+ L2

]
/Khop

(76)

The time-recursive, QN-, and IAA-based, harmonic LCMV
methods are organized in a similar way.

VI. EXPERIMENTAL RESULTS

The experimental results obtained during the evaluation
of the proposed methods are divided into three parts. First,
we evaluate the computational complexities of the implemen-
tations considered herein. Then, we evaluate the statistical
performance of the pitch estimators proposed for batch pro-
cessing, and, finally, we evaluate the tracking performance of
the proposed time-recursive pitch estimators.

A. Computational Complexities

In Fig. 1, we have depicted the computational complex-
ities as a function of the number of samples, N , for the
different implementations described in the previous sections.
The computational complexities are obtained using the herein
presented theoretical expressions. First, we considered the
computational complexities for batch processing as shown
in Figs. 1a and 1b. From these figures, we can see that
the fast implementations indeed have lower complexities than
the direct implementations of the LCMV and IAA-LCMV
methods. Furthermore, we observe that the implementations
of the IAA-LCMV method generally have higher complexities
than the corresponding implementations of the LCMV method,
and that the fast implementations proposed herein reduce
the computational complexity significantly compared to the
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Fig. 1. Computational complexities of the different harmonic LCMV fundamental frequency estimation algorithms for (a)–(b) batch processing and (c)–(d)
time-recursive processing. In all cases, M = N/2 + 1, m = 10, K = 4N , F = 10N , L = 5 Li = 0. Time hopping with Khop = 1 and Khop = 10 are
considered in (c) and (d), respectively. The complexities for the fast exact implementations proposed herein is denoted by (New) in the superscript, while the
corresponding fast implementations proposed in [18] has no extra superscript.

implementations proposed in [18]. Finally, we note that the
QN-based approximative implementation of the IAA-LCMV
methods can have computational complexity comparable to
that of the fast implementation of the LCMV method if q
is allowed to be small, although it should be noted that this
may have a negative impact on the fundamental frequency
estimation accuracy. The above observations imply the fol-
lowing relationship in the considered scenarios: CIAA-LCMV >
CLCMV > CFIAA-LCMV > CQN-IAA-LCMV > CFLCMV. Then, we
considered the computational complexities for the proposed
time-recursive fundamental frequency estimators in Figs. 1c–
1d. When time hopping with Khop = 1 is used, we ob-
serve the following relationship between the complexities:
CFIAA-LCMV

TR > CLCMV
TR > CQN-IAA-LCMV

TR > CLCMV
TR-F . In other

words, the implementations of the IAA-LCMV method have
the highest computational complexity, but by using the QN-
based approximative implementation, the complexity gets
close to that of the fast exact implementation of the LCMV
method. When using time hopping with Khop = 10, the
computational complexities of the IAA-based methods are
somewhat higher in relation to the sample covariance based
methods, i.e., CFIAA-LCMV

TR > CQN-IAA-LCMV
TR > CLCMV

TR > CLCMV
TR-F .

B. Batch Processing Implementations

We proceed to evaluate the estimation accuracy of the fun-
damental frequency estimators considered herein, investigating

the influence of K, N , the expected fundamental frequency,
and the spacing between fundamental frequencies (the last in
a two source scenario). For these experiments, the number of
candidate fundamental frequencies was |Ω0| = 216. Initially,
we consider a noisy, harmonic signal as in the previous
investigation. Fig. 2a shows the measured mean squared error
(MSE) of the IAA-LCMV and QN-IAA-LCMV estimators
as a function of K, with the fundamental frequency being
samples from U(0.3, 0.4). For this and all the following
experiments in this subsection, all MSEs were obtained from
500 simulations with different noise realizations. The results
in Fig. 2a show the performance of the estimators for two
different sample lengths, i.e., N = 40 and N = 80. As is clear
from the figure, one needs more frequency points when N is
increased to achieve the maximum possible performance for
both the IAA-LCMV and the QN-IAA-LCMV methods. Note
that, from this figure, it seems that the QN-IAA-LCMV has
the best performance. This is only the case for low Ks where
IAA-LCMV suffers from line splitting, whereas, for high Ks,
the IAA-LCMV method shows the best, general performance
as expected. For N = 40, K ≈ 400 seems to be sufficient,
whereas at least K ≈ 1200 frequency points are needed for
N = 80. In this and all the following experiments, the order
of the autocorrelation matrix was lowered to q = bN/2c in the
QN-IAA-LCMV implementation. Then, in Fig. 2b, the MSE
of the LCMV-based filtering methods is shown as function of
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Fig. 2. Mean squared errors of different fundamental frequency estimators as a function of (a) the number of frequency grid points used for the IAA-based
covariance matrix estimate, (b) the number of available samples, (c) the expected fundamental frequency, and (d) the spacing between fundamental frequencies
in a two source scenario. Moreover, the Cramér-Rao lower bound (CRLB) is depicted in (b) and (c).

N , for K = 1000 frequency grid points, and it is compared
with a WLS method [1], [7], an approximate NLS (ANLS)
method [7], and a MUSIC-based method [7]. For comparison,
the computational complexities of the MUSIC, ANLS, and
WLS methods are

CMUSIC ≈M2N̄ +M3 + F̄ (LM + L)(M − L− Li), (77)

CANLS ≈ F̄ (LN + L), (78)

CWLS ≈M2N̄ +M3 + F̄ (M2 +M) + 6L, (79)

where Li is the number of interfering sinusoids, and for
the MUSIC and WLS methods, M denotes the subvector
length. It is not straightforward to compare this complexity
with those of the LCMV methods, though, since the MUSIC
method requires not only the model order of the desired
signal, but also the model order of all interfering signals
to be known. In practice, it would require a search across
all possible model orders, for every source to obtain all
these model order estimates, which does not appear directly
from the computational complexity expressions above for the
known model order scenario. Also, the MUSIC method will
be vulnerable against erroneous model order estimates for the
interfering sources, which is not a problem for the LCMV
methods. The provided complexity for the WLS method,
assumes that the unconstrained frequency estimates is found
using the MUSIC method. In Fig. 1a, the complexities of the
MUSIC, ANLS, and WLS methods are compared to those of
the implementations considered in this paper. In all simulations

considered in this section, the filter length used in the LCMV
method was bN/4c, and the subvector length used in the
MUSIC-based method was bN/2c. One may note from Fig. 2b
that the IAA-based estimators outperform all but the MUSIC
method for data lengths in the interval, say, 30 < N < 35.
For larger data lengths, the IAA estimators outperform the
ANLS and LCMV methods, while their performance is similar
to that of the WLS and MUSIC method. Examining the
influence of the fundamental frequency, Fig. 2c shows the
MSE as a function of the expected fundamental frequencies,
E[ω0], where, in each simulation, the fundamental frequency
was sampled from E[ω0] + U(−0.001, 0.001), using N = 35
and K = 1000. As is clear from the results, the IAA
estimators outperforms the LCMV and ANLS methods for
E[ω0] > 0.28, while their performances are comparable to
those of the MUSIC and WLS methods for E[ω0] > 0.3.
Finally, we compared the discussed methods in a scenario with
two harmonic sources, examining two sources with L = 3
unit amplitude harmonics. The ratio between each of the
sources and a white Gaussian noise source was 40 dB. In each
simulation, the fundamental frequency ω1

0 of first source was
sampled from U(0.299, 0.301) and the fundamental frequency
of the second source was ω2

0 = ω1
0 + ∆ω0, where ∆ω0 is

the spacing, using N = 60, and K = 1, 000. As seen in
Fig. 2d, the performances of the IAA methods are generally
better than those of the LCMV and ANLS methods, while
the MUSIC method shows the best performance (although it
should be recalled that the MUSIC estimate assumes perfect a
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Fig. 3. Plot of (top) the true pitch and pitch estimates obtained using M1-M5,
and (bottom) the MSE associated with the pitch estimates.

priori knowledge of all model orders). In summary and maybe
most importantly, all the results obtained from the statistical
evaluation show that the IAA can be used to improve the
spectral resolution of the LCMV method that uses the sample
covariance matrix estimate as we claimed in the introduction.

C. Time-Recursive Implementations

We proceed to evaluate the performance of the time-
recursive implementations. These implementations are eval-
uated qualitatively on synthetic and real-life signals. In the
evaluation, we consider
M1 the LCMV method implemented by applying (12) on

rectangular sliding windowed data,
M2 the LCMV method implemented by (67)-(71),
M3 the IAA-LCMV method implemented by (74)-(75),
M4 the IAA-LCMV method implemented by (74)-(75) with

an exponential forgetting factor on the IAA amplitude
spectrum estimate,

M5 the NLS pitch tracker proposed in [34] without Kalman
filtering.

The NLS pitch tracker (M5) is included in the evaluation for
benchmarking purposes. In all methods, observed data vectors
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Fig. 4. Plots of (top) the true pitch and pitch estimates obtained using M1-
M5, and (bottom) the MSE associated with the pitch estimates.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
385

390

395

400

t [s]

f̂
0
[H
z]

 

 

M1 M2 M3 M4 M5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
0   

1000

2000

3000

4000

t [s]

f
[H
z]

Fig. 5. Plots of (top) the spectrogram of a real-life violin signal with vibrato,
and (bottom) pitch estimates obtained using M1-M5 when applied on the
violin signal.

of length N = 128 were considered. In M1–M2, a filter length
of M = 50 were used, and the forgetting factor λ in the RLS
algorithm of M2 was set to 0.98. The IAA-based methods
(M3–M4) were set up with K = 2000 and 10 iterations
for initialization. The forgetting factor in M4 was also set to
λ = 0.98. In all methods, only pitch candidates in the interval
2π[0.004, 0.1] were considered, with |Ω0| = 40000 for M1–
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M4 and |Ω0| = 214 for M5. Using the above setup, we first
applied the methods under evaluation on a synthetic signal
constituted by a harmonic signal with L = 5 with an abrupt
pitch change and white Gaussian noise; the SNR was 20 dB.
A total of 2000 samples of the signal was observed. For the
first 1000 samples, the true pitch was ω0 = 0.24, after which
it changed to ω0 = 0.24 + δ. In Fig. 3a and 3b, we show
simulation results for δ = 0.01 and δ = 0.03, respectively.
For δ = 0.01, all methods show similar tracking performance.
The NLS tracker (M5) obtains the lowest MSEs, which is
explained by the fact that it obtains the pitch estimate using
a gradient search rather than using a grid search as in the
methods M1–M4. For a larger change in pitch (δ = 0.03),
the NLS tracker (M5) fails to track the pitch compared to the
proposed methods. This can also be explained by the gradient
search. We also evaluated the methods on a synthetic signal
with smooth pitch changes. Again, the number of harmonics
was L = 5, the noise was white Gaussian, and the SNR was
20 dB. Using frequency modulation, we obtained a harmonic
signal with a pitch of ω0,FM(n) = ω0 + δ cos (2πfFMn/Ntotal)
at time instance n, where ω0 = 0.225, fFM = 2 samples−1

is the modulation frequency, and Ntotal = 10000 is the total
number observed samples. Simulation results for δ = 0.025
and δ = 0.125 are depicted in 4a and 4b, respectively. For
δ = 0.025, the performance in terms of MSE is similar for
the methods M1–M4, whereas that MSE is generally larger
for M5. The conclusions are the same for δ = 0.125, except
that the LCMV method with a sliding rectangular window
(M1) has problems with pitch halving. Finally, we applied
the methods on a real-life violin signal with vibrato. The
spectrogram of the signal and the estimation results are shown
in Fig. 5. As it appears from these results, all methods were
able to track the pitch fluctuations of this real-life signal.

VII. CONCLUSIONS

In this paper, we consider fast implementations of two
recently proposed pitch estimators. The estimators consid-
ered are both based on optimal filtering using the linearly
constrained minimum variance (LCMV) principle, but uses
different estimates of the data covariance matrix; in one
of the estimators, the sample covariance matrix estimate is
used, whereas an iterative adaptive approach (IAA) estimate
is used in the other. We propose fast implementations for
both of the pitch estimators, exploiting the low displacement
rank of the necessary products of Toeplitz-like matrices. As
shown, this reduces the computational complexity by sev-
eral orders of magnitude. We also propose an approximative
fast implementation, using covariance matrices of lower size
and extrapolation. This implementation has an even lower
computational complexity. Finally, we propose time-recursive
implementations of both estimators. These provide yet another
mean for reducing the complexity. Our quantitative evaluation
show that the considered IAA-based estimator outperforms
other state-of-the-art pitch estimators in terms of mean squared
error in many scenarios. Moreover, the qualitative evaluations
show that the proposed time-recursive implementations can
be used for tracking abrupt as well as smooth pitch changes

of both synthetic and real-life signals. Obvious and relevant,
future extensions of the methods proposed herein are, e.g., to
also incorporate model order estimation, and to generalize the
IAA-based methods to support estimation of the covariance
matrix of the observed signal from more than one snapshot.
Both extensions are likely to increase the robustness of the
presented methods.

APPENDIX

DISPLACEMENT REPRESENTATION OF ˆ̄RM+1

Consider the unscaled sampled covariance matrix (13) cor-
responding to an increased order filter as

R̄M+1 ,
N−1∑
n=M

xM+1(n)xM+1(n), (80)

where scaling by the factor 1/(N −M) is omitted for reasons
of notation simplicity. (80) is partitioned in an upper and a
lower form as [

R̄up
M rb

M

rbH
M rbo

M

]
=

[
rfo
M rfH

M

rf
M R̄dn

M

]
, (81)

and where

R̄up
M = R̄M − xM (M − 1)xHM (M − 1), (82)

R̄dn
M = R̄M − xM (N)xHM (N), (83)

noting that R̄M that appears above corresponds to the unscaled
version of R̂M defined by (13). Application of the matrix
inversion lemma for partitioned matrices and for low rank
modified matrices, [21] results in[(

R̄up
M

)−1
0

0T 0

]
+BM+1B

H
M+1 =

[
0 0T

0
(
R̄dn
M

)−1

]
+AM+1A

H
M+1

(84)
where

BM+1 =

[
−
(
R̄up
M

)−1
rb
M

1

]
/
√
αb
M , (85)

αb
M = rbo

M − rbH
M

(
R̄up
M

)−1
rb
M , (86)

AM+1 =

[
1

−
(
R̄dn
M

)−1
rf
M

]
/
√
αf
M , (87)

αf
M = rfo

M − rfH
M

(
R̄dn
M

)−1
rf
M , (88)

and (R̄up
M )−1 = R̄−1

M + vMvHM/α
v
M , (R̄dn

M )−1 = R̄−1
M +

wMwH
M/α

w
M , with

wM = −R̄−1
M xM (N), (89)

αwM = 1− xHM (N)R̄−1
M xM (N), (90)

vM = −R̄−1
M xM (M − 1), (91)

αvM = 1− xHM (M − 1)R̄−1
M xM (M − 1). (92)

Combining (84)-(92), one obtains[
R̄−1
M 0

0T 0

]
−
[

0 0T

0 R̄−1
M

]
= AM+1A

H
M+1

−BM+1B
H
M+1 + WM+1W

H
M+1 −VM+1V

H
M+1. (93)
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where WM+1 =
[
0 wM

]T
and VM+1 =

[
vM 0

]T
.

Finally, proper scaling yields[
R̂−1
M 0

0T 0

]
−
[

0 0T

0 R̂−1
M

]
=

4∑
i=1

σit
(i)
M+1t

(i)
M+1, (94)

where

t
(1)
M+1 = AM+1

√
L, σ1 = 1, (95)

t
(2)
M+1 = BM+1

√
L, σ2 = −1, (96)

t
(3)
M+1 = WM+1

√
L, σ1 = 1, (97)

t
(4)
M+1 = VM+1

√
L, σ2 = −1, (98)

where L = N − M + 1, noting that variables (85)–(88)
and (89)–(92) can all be computed once the displacement
representation of R−1

M is available [29] at a cost of O(M).

DISPLACEMENT REPRESENTATION OF
ˆ̃RN+1

Consider the increased order covariance matrix associated
with the IAA-based LCMV fundamental frequency estimator
(17) and introduce the upper and lower partitions of the form

R̃N+1 =

[
r0 rfH

N

rf
N R̃N

]
=

[
R̃N JNrf∗

N

rfT
N JN r0

]
, (99)

where JN is the exchange matrix. Application of the matrix
inversion lemma for partitioned matrices (see, e.g., [21])
results in

R̃−1
N+1 =

[
0 0T

0 R̃−1
N

]
+ AN+1A

H
N+1 (100)

=

[
R̃−1
N 0

0T 0

]
+ JN+1AN+1A

T
N+1JN+1, (101)

where AN+1 = [1 − R̃−1
N rf

N ]T /(αf
N )0.5 and αf

N = r0 −
rfH
N R̃−1

N rf
N . Subtracting (100) from (101) yields[

R̃−1
N 0

0T 0

]
−
[

0 0T

0 R̃−1
N

]
=

2∑
i=1

σit
(i)
N+1t

(i)
N+1, (102)

where

t
(1)
N+1 = AM+1, σ1 = 1, (103)

t
(2)
N+1 = JN+1A

∗
N+1, σ2 = −1. (104)
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