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ABSTRACT 
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Close approximations to the first passage probability of failure in random vibration 

can be obtained by integral equation methods. A simple relation exists between the 

first passage probability density function and the distribution function for the time 

interval spent below a barrier before outcrossing. An integral equation for the prob

ability density function of the time interval is formulated, and adequate approxi

mations for the kernel are suggested. The kernel approximation results in approxi

mate solutions for the probability density function of the time interval, and hence 

for the first passage probability density. The results of the theory agree well with 

simulation results for narrow banded processes dominated by a single frequency, as 

well as for bimodal processes with 2 dominating frequencies in the structural re

sponse. 

Keywords: Random Vibration, Stochastic Processes, First Passage Failure, 

Bimodal Processes, Integral Equations. 
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INTRODUCI'ION 
The main theme of the present paper is the calculation of the first-passage time 

probability density function based on the integration of a second order Volterra 

integral equation with various approximations to the kernel or the inhomogenity. 

The formulation of integral equations for the first passage probability density 

can be traced back to Siegert [ 1 ]. Later, this work was extended by Shipley and 

Bernard [2 ], [3] where certain kernel approximations were suggested. The cited 

authors all assumed the considered process to be Markovian and deduced the rel

evant integral equation from the Chapman-Kolmogorov equation. Nielsen (4] . 

demonstrated the nature of the integral equation as a fundamental identity, not 

restricted to Markov processes and derived a formal expansion of the kernel in 

terms of inclusion-exclusion series. Madsen and Krenk [5] used the kernel approxi

mation of refs. [2], [3], [ 4 ], but adjusted the inhomogenity of the integral equa
tion to provide the exact value for the first-passage density function at time t = 0. 

The starting point of the present paper is a relationship between the first-passage 

time probability density fT and the distribution function F L for the length of the 

time interval L spent in the safe domain before out-crossing from the safe domain 
at the time t, which for stationary processes with time-constant safe domain may 

be written 

(1) 

(1) was discovered independently by Rice [6], [7] and Cook [8], [9]. 

Initially an integral equation for fL(t) is derived. Further, the Cook-Rice ident

ity (1) is generalized to non-stationary processes or time-varying safe domains. 

Formal inclusion-exclusion series for fL(t) , fT(t) and the kernel of the integral 

equation are then derived. It is remarkable that the first-passage density function 

for non-deterministic start in this representation is expressed by unconditional 

joint crossing rates. The facilitation of this formulation in relation to another 

exact representation for the first-passage density function expressed by condi

tional joint crossing rates is stressed in the paper. 
When the kernel in the integral equation for fL(t) is approximated, approximate 

solutions for fL(t) and hence fT(t) are obtained. In the paper 2 such kernel approxi

mations are suggested, one involving 3rd order joint unconditional crossing rates and 

another only involving 2nd order crossing statistics. 
The 3rd order approximation results in highly accurate results as is demonstrated 

in the numerical example. 
The 2nd order approximation requires computational efforts comparable to 

that involved in applying the integral equation for fT(t) with the kernel approxi

mations of refs. [2 ], [3], [ 4], [5 ]. The present approximation provides results at the 

same level of accuracy, but fits the first-passage density curve much better in the 
earlier stages of first-passages. 



The theory has been compared with simulation studies for narrow banded pro

cesses dominated by a single frequency as well as for bimodal processes with 2 

dominating frequencies in the structural response. The considered first-passage 

problem was Gaussian processes with a single barrier at the normalized level b = 2 

and stationary start at t = 0. From th~ numerical studies it is concluded that the 

kernel approximation with 3rd order crossing rates provides the best known 

approximations to the first-passage probability problem at low and moderate 
barrier levels. 

AN INTEGRAL EQUATION FOR THE TIME INTERVALS SPENT IN THE 
SAFE DOMAIN BEFORE AN OUTCROSSING 

The safe domain at timet is denoted St. The event that a sample curve crosses 

out of the safe domain at time t is denoted Et . 

The rate of incrossings to St-Q• £ > 0 on condition of an outcrossing at timet 
becomes 

r-+ct - £, t) £ > o 
2 ' fliE/£)= q(t) 

Similarly, the joint rate of incrossings to St-£
1

, St-£
2 

. . . , St-~ , 0 < ~ < .. 
< £2 < £1 on condition of Et becomes 

f~Et . . - (£1' ... , £n) = f;+y. -+et- Ql , .. . ' t -£n, t) 

rt<o 

(2) 

(3) 

f;;:-+·t' .-+ (t- £1, . . . , t- £n , t) signifies the unconditional joint rate of in crossings 

5 

to St-£
1

, ... , St-Qn and outcrossing from S1. This can be calculated from S.O. Rice's 

c ~ limit state 

s, l 
0 t-Q t -Ql t 

Figure 1. 
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formula and its multidimensional generalization [ 1 0], [ 11 ]. For one-dimensional 

processes in the single barrier problem the relevant formulas have been given in the 

appendix. In the applied notation - means incrossing into and + means outcrossings 

from the safe domain at times specified explicitly in the argument list. 

fL(Q, t) is the rate of incrossing to St-Q on condition of an outcrossing from 

Stand on condition that no incrossings take place in the interval ]t - Q, t[ . Hence, 

the following identity may be formulated 

(4) 

AIEt (QIQ1 ), 0 < Q1 < Q, signifies the rate of incrossings to St-Q on condition of Et 

and on condition that the last incrossing in the open interval ] t - Q, t [ took place 

at the time t - Q 1. 

The last term in ( 4) withdraws from fijE (Q) all Et -samples with one or more 
t 

incrossings in ]t - Q, t [,e.g. samples of type 2 in figure 1 which exactly specifies 

the rate of samples included in fL (Q , t) corresponding to samples of type I in fig

ure 1. 

A lEt (QIQl )fL (Q1, t) specifies the joint rate of in crossings to St- !Z and St-Ql of 

Et -samples on condition of no in crossings in ] t - Qi , t [. For this quantity the 

following integral equation is obtained 

~ Ql 
AlE (QIQl)fL(Ql , t) = f2jE-(Q, Ql) - \' BIE (Q, QliQ2 )fL(Q2 , t)dQ2 (5) 

t t J 0 t 

BIEt (Q, QliQ2), 0 < Q2 < Q1 < Q, signifies the joint rate of incrossings to St- Q• St-Q
1 

on condition of Et and on condition that the last in crossing in the interval ] t - Q1, t [ 

took place at the time t - Q2 . 

The last term in (5) withdraws from f21Et (Q, Q1) every Et-sample with one or 

more incrossings in ] t - Q1, t [ which exactly specifies the joint crossing rate on 

the left hand side. 

Inserting ( 5) in ( 4) results in 

The integrals on the right hand sides of ( 4) and ( 6) are non-negative. Hence, the 

following bounds are obtained 

( 7) 

(8) 



For the integrand in ( 6) an expression similar to (5) can be formulated. Con

tinuation of this process leads to the formal series for f1 (Q, t) 

7 

· ~Q rQrQ1 
fL(Q, t) =filE (Q)- fiJi(Q, Ql)dQl + \ _, fJIE-(Q, Ql, Q2)dQ2dQl- · · · · 

t 0 t •· O"O t 

Truncated with N terms (9) provides upper bounds when N is unequal imd 

lower bounds when N is equal. 

(9) 

Similarly, a formal series for AIEt (Q1, Q)f1 (Q1, t) is obtained during the process. 

The result becomes 

"Ql 
AlE (QIQl )fL (Ql' t) = fiJE (Q, Ql) - \ f]j£- (Q, Ql' Q2)dQ2 

t t j 0 t 

,,Ql ~Q2 
+ \ f.4ji - - (Q, Ql' ~. Q3)dQ3dQ2 - .. . 

j 0 0 t 
(10) 

Truncated with N terms, ( 1 0) also provides upper bounds, when N is unequal 

and lower bounds when N is equal. 
(9) in combination with ( 1 0) provides a formal representation of the kernel in ( 4) 

AlE (QIQl) = o 
t ~,~1 

fljE (Ql) - fiJE (Ql , Q2)dQ2 + · · · 
t 0 t 

,.. Ql 
fiJi(Q, Ql) - \ f3ji- (Q, Ql' Q2)dQ2 + . .. 

t ., 0 t 
(11) 

When the kernel is replaced by an approximation A'ffit (Ql iQ), an approximate 

solution f!c£, t) to (4) is obtained. 

Especially the following approximations are considered, retaining only the first 

term in the counter and the denominator 

f2i&(Q, Ql) f3-+(t-Q, t-Ql, t) 

AjE/£1£1) = filEt (Ql) = f2+ (t - Ql' t) 
(12) 

The approximation ( 12) is reasonable, because both counter and denominator 

are upper bounds and hence they counterbalance each other to same extent. More

over, the approximation is asymptotically correct at high barrier levels with in

dependent crossing rates. 

If the joint crossing rates in (12) are assumed to be independent of Et' the fol

lowing approximation is obtained, only involving second order unconditional 

crossing rates. 
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(13) 

For both approximations (12) and (13) the inhomogenity f11Et(t) , given by eq. 

(2) , is applied in the integral equation. 

INCLUSION EXCLUSION SERIES FOR THE FIRST PASSAGE DENSITY 
The generalization of eq. ( 1) to non-stationary processes or time-varying safe do

mains becomes 

,.t 
P(X(O) E S0)fT(t) = qCt)(l- ~O fL(u, t)du) (14) 

In order to prove ( 14), consider N = N0 + N 1 realizations at time t = 0. No of 

these are in the safe domain s0 at time t = 0, whereas the remaining N 1 realizations 

are in the unsafe domain. 

In the time interval J t, t + ~t] totally ~N = ~No + ~N 1 out crossings take place. 

~No is the number of first passages, i.e. the number of N0-realizations, which have 

not left the safe domain in J 0, t ]. ~N 1 represents outcrossings of N 1 realizations 

and N0-realizations with one or more preceding incrossings in ] 0, t ]. 

By definition we now have 

(15) 

L 

Figure 2. 



ftCt)~t= ~N 
N 

No 
P(X(O) E So) = N 

~No 
P(L > t) = AN 

(16) 

(17) 

(18) 

Inserting (15) - (18) in (14) proofs the identity. In the stationary case with 

time constant safe domain ft ( t) becomes constant. Integrating both sides of (14) 

from 0 to + oo then provides 

P(X(O) E S0) = ft(t)E[L] (19) 

from which eq. (1) is derived. 

9 

From (2), (3), (9), (14), the following series is obtained for f1 (Q, t) expressed in 

unconditional crossing rates 

f1 (Q, t) = --:f- (fi+(t- Q, t)- \Q f)-+(t- Q, t- £1, t)dQ1 + . .. ) (20) 
f 1 (t) Jo 

Finally, from (14) and (20) the following series for fT( t) is obtained. 

t 
P(X(O)ES0)fT(t)=ft(t)- \ f2+(t-Q,t)dQ 

•. 0 

~· t ~ Q + _, _f)-+Ct- Q, t- Q1 , t)dQ1 dQ- . .. 

"0 0 

Truncation of (21) provides succeeding upper and lower bounds for fT( t). 

(21) 

Alternatively, the following bounding techniques suggested in reference [ 4] may 

be applied. 

Initially it is seen that if A~t (QIQ1) ~ AIEt (Ql£1) for all £1 E ] 0, Q [,then . 

ft(Q, t) ~ f1 (Q, t). Lower-bound kernels can be constructed by truncating the 

denominator in ( 11) with an unequal number of terms, and the counter with an 

equal number of terms. When the upper bound ft(Q, t) is inserted in (14), a lower 

bound is obtained for fT(t). 

Similarly, if Aret (QIQ1) ~ AIEt (QIQ1) for all Q1 E] 0, Q [,upper bounds for fT(t) 

result. Upper bound kernels can be constructed by truncating the denominator 

in ( 11) with an equal number of terms and the counter with an unequal number 

of terms. 
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The series representation (21) is remarkable because it expresses the first-passage 

density function for non-deterministic start in terms of unconditional joint crossing 

rates. 
Let F = {X(O) E s0 }, i.e. the event that all samples are in the safe domain at 

timet= 0. Then the following integral equations can be formulated for fT(t) 

(22) 

fijp(t) is the rate of outcrossing from St on condition that the samples are in 

the safe domain at time t = 0. 

The kernel K(tlt1) specifies the rate of outcrossing from St on condition that 

the first outcrossing ofF-samples took place at time 0 < t 1 < t. The argument 

leading to (22) is identical to the argument leading to ( 4). 

By a derivation identical to the one leading to the results (9) and ( 11) the fol

lowing series are obtained for fT(t) and K(tit 1) expressed in conditional joint out

crossing rates 

(24) was derived by Nielsen [4]. 

The series (21) and (23) are alternative exact representations offT(t). Clearly, 

(21) is most suitable because the calculation of cumbersome conditional joint 

crossing rates is omitted. Formulas for these in the one-dimensional case for the 

single barrier problem have been given in the appendix. 

Consider the following kernel approximation, applied in refs. [2], [3], [ 4], [5] , 

obtained by retaining only the first term in the counter and denominator of (24) 

and omitting the condition on F 

(25) 

Notice the symmetry in the argumentation, leading to the kernel approximations 

(13) and (25). 

(25) and ( 13) are both expressed in unconditional joint crossing rates of the 

2nd order. The computational effort involved in applying these approximations 

is then at the same level. 



In order to compare the 2 formulations, (22) will be solved with the kernel 

approximation (25) and the inhomogenity 
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+ f+( 
f1IF(t) "'~ ·---~- t) (26) 

(26) which was used by Madsen and Krenk [5] will give the correct value at t = 0, 

where fT(O) = f~p(O) = ft (0)/P(F). 

NUMERICAL RESULTS 

In this section the approximations (12), (13 ), and (25) will be compared with 

simulation results and approximate results from refs. [12] and [13]. The process 

{X(t)} is assumed to be a stationary Gaussian process with zero mean and unit 

standard deviation. The safe areaS is assumed to be time-invariant and given by 

S = ] - oo, b [, where b = 2 is chosen. 

First , we consider a slightly damped single-degree-of-freedom (SDF) system 

subjected to stationary excitation of white noise. Then the autocorrelation co

efficient function p is given by 

0.200 

0.175 

0.150 

0.125 

0.100 

0.075 

0 .050 

0.025 

p(t) = exp(- ~woltl)(coswo.;r::-r t + r sinwo.;r::-r ltl) (27) 
.;r::-r 

fT(t) 

simulation, (12), (13) 

(13~ 

(25) 

simulation, ( 12) 

0.000 +---+--+---+---+----+---1----t-----if----+----+--
0 1 2 3 4 5 6 7 8 9 10 

Figure 3. First passage densities for SDF system,~= 0.01 , w0 = 21T, and b = 2. 
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In this example we use w0 = 2rr and t = 0.0 1. In figure 3 approximations to 

fT based on eqs. (12), ( 13), and (25) are shown. For comparison simulation results 

based on eq. (1) are also shown. 

From figure 3 it is seen that the approximation ( 12) based on third order un

conditional crossing rates gives very accurate results compared with the simulation 

results. The approximation ( 13) based on second order unconditional crossing 

rates compares reasonably with the simulation results. The approximation (25) 

which is also based on second order unconditional crossing rates is seen to give the 

same »stair levels» as ( 13) but deviates considerably from the simulation result at 

the first downfall of the first passage curve. In table 1 the first 5 »stair levels» of 

the three approximations and the simulation are shown. 

t simulation eq. (12) eq. (13) eq. (25) 

0- 1 0.13849 0.13849 0.13849 0.13849 

·1 - 2 0.03881 0.03821 0.03822 0.03822 
2-3 0.03141 0.03040 0.02507 0.02507 
3-4 0.02800 0.02715 0 .02124 0.02124 
4-5 0.02589 0.02527 0.01938 0.0 1938 

Table 1. »Stair levels» of fT . 

, Next, we consider a slightly damped two-degrees-of-freedom (2DF) system sub

jected to stationary excitation of white noise. The autocorrelation coefficient 

function p is assumed to be given by 

(28) 

where 

The correlation function (28) for {X(t)} corresponds to a spectrum with two 

dominating frequencies . In the example we· use ay = ai = 0.5, t 1 = t 2 = 0 .0 1, 
w 1 = 2rr, and w 2 = 2.5rr. This corresponds to Vanmarcke's band width parameter 

equal to 0.11, cf. ref. [ 13 ]. In figure 4 approximations to the first-passage density 

fT based on eqs. ( 12), ( 13), and (25) are compar~d with simulation results. 
From figure 4 it is seen that also in this case the 3rd order approximation ( 12) 

gives very good results compared with simulation. The 2nd order approximations 

(13) and (25) fluctuate somewhat about the simulation result but reasonable re

sults for the cumulative distribution function FT (the probability of failure) can 



fT(t) 

t 
0.200 

0.175 

0.150 

0.125 

0.100 

0.075 

0.050 

0.025 

0.000 
0 2 3 4 

simulation, (12) 
(13) 

(25) 

5 6 

13 

simulation 

7 8 9 10 

Figure 4 . First passage densities for SDF system, ~ 1 = ~ 2 = 0.01, w1 = 2rr, w2 = 2.51T, 

oi =a~= 0.5, and b = 2. 

be expected. Also shown in figure 4 are approximate results from refs. [ 12] and 

[ 13 ]. The estimate from ref. [ 12] is seen to overestimate the first-passage density 

in the whole interval [0, 10], whereas the estimate from ref. [ 13] underestimates 

the first-passage density considerably in the interval [0, 4 ]. 

CONCLUSIONS 

An integral equation has been derived for the time lengths spent in the safe do

main before an outcrossing takes place. 

The Cook-Rice identity is then generalized to non-stationary processes and a 

new formal series expansion of the first-passage probability density for non-deter

ministic start is derived expressed solely in unconditional joint crossing rates. 

Two relevant approximations to the kernel are suggested based on third and 

second order unconditional crossing rates. In a numerical study the results from 

these approximations have been compared with simulation results and results ob

tained from other methods, for Gaussian one-dimensional processes in the single

barrier problem. The normalized barrier level was b = 2. Both a narrow banded 

process and a bimodal process were considered. From the examples it is concluded 

that the 3rd order kernel approximations provide highly accurate results even at 

moderate and low barrier levels. The 2nd order kernel approximation gives less 

accurate results, but still very good results are obtained in the earlier stages of the 

first passage density function. 
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APPENDIX 
For one-dimensional Gaussian processes in the single-barrier problem with constant 

barrier level, the unconditional joint crossing rate f~ i .+ (t1, .. . , tn, t) and the 

conditional crossing rate f~F · · +(t1 , . . . , tn), F = {X(O) E S0 } can be calculated 

by the following expressions 

(Al) 

where ~P2n + 2 (b, x ; Ji, p ) is the 2.!!_ + 2 dimensional normal density function of 

X= (X(t_l ), .. :_: X(tn), X(t)) and X= (X(t 1~ .. . , X(tn), X(t)) evaluated at~= b 
and x = b and x. ii is the e~ected value of X and X and p is the correlation eo- . 

efficient matrix for X and X . If p(t) is the autocorre1ation coefficient of the station

ary Gaussian process {X(t)}, p is given by 

p = [~!!-l!!_~] 
= T I = 
P12 I P22 

where 

.On= p( t2 - t 1 ) . . . . . .. .. .. p( t - t 1 ) 

1 
·. 

symm. ·. 1 

·. ·. 
· 0 p'(t-tn) 

-p'(t-t1) ........ .. .... .. -p'(t-tn) 0 

(A2) 



P22 = I p"(O) 

symm. 

p"(t2 -t1) .. . .. . .. .. . .. p"(t-t1) 

p"(O) 

.. 
p"(O) p"(t- tn) 

p"(O) 

15 

~
b ,oo loo 

f~f' .. +(t1, ... ,tn) = <I>lb) ~ ... _, x1 ... xn¥'2n+ 1 (x, b, i; 6, p )dxdx1 . .. dxn 
- 00 • 0 •· 0 

(A3) 

where ¥'2n+ 1 (x, b, x; ~. p ) is the 2n + 1 dimensional normal density function of 

X(O~ X= iX(t1 ), ... , X(tn)) and X= CX(t1 ), ... , X(tn)) evaluated at x(O) = x, 

x = b and x . p is 

I - I -
p = I 1 I Pt2 I p 13 

--+---r----

where 

Pf2 : p22 I P23 
-- +-- -+----r - -
P 13 1 P 23 l P 33 

P 12 = [p( t 1 ) · · · p( tn)] 

P 13 = [p'(t1) · · · p'(tn)] 

P22 = 

symm. 

p(t2 -t1) 

1 

p(tn - tl) 

p(tn -tn-1) 

1 

(A4) 
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jj23 = 1 p'(t2-t1} . .. .... .. . . .. ... p'(tn-t1) 

-p'(t2-t1) 0 ·. 
·. , . 

0 P ( tn-tn -1 ) 

-p'(tn -t1) ....... . . . .... -p'(tn -tn-1) 0 

- p"(O) P33 = p"(t2-t1) ··· ·· · ····· ···· p"(tn-t1) 

p"(O) 

··. ·. ·· .. 
symm. p"(O) p"(tn -tn-1) 

p"(O) 

LIST OF SYMBOLS 
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fi(t) 

st 
Et 
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F1(Q, t) 

f1 (Q, t) 
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K(tit 1) 

ft(£, t) 
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~ 

wo 
[a, b 1 
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first passage probability density function 

unconditional rate of outcrossings from St 

safe domain at the time t 

the event that an outcrossing takes place from St 

stochastic process 

distribution function of L 

probability density function of L 

length of time interval spent in the safe domain before outcrossing 

from st 
normalized barrier level 

unconditional joint rate of incrossings to s tl' ... , st2 

and outcrossing from st 

kernel in integral equation for f 1 (Q, t) 

kernel in integral equation 

kernel in integral equation for fr(t) 

approximate solution to f1 (Q, t) 

the event that the samples are in the safe domain at time t = 0 

expectation operator 

damping ratio 

circular eigenfreq uency 

closed interval from a to b 

open interval from a to b 
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