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Non-parametric Bayesian inference for

inhomogeneous Markov point processes

Kasper K. Berthelsen Jesper Møller

March 2, 2007

Abstract

With reference to a specific data set, we consider how to perform a
flexible non-parametric Bayesian analysis of an inhomogeneous point pat-
tern modelled by a Markov point process, with a location dependent first
order term and pairwise interaction only. A priori we assume that the
first order term is a shot noise process, and the interaction function for a
pair of points depends only on the distance between the two points and is
a piecewise linear function modelled by a marked Poisson process. Simu-
lation of the resulting posterior using a Metropolis-Hastings algorithm in
the “conventional” way involves evaluating ratios of unknown normalising
constants. We avoid this problem by applying a new auxiliary variable
technique introduced by Møller, Pettitt, Reeves & Berthelsen (2006). In
the present setting the auxiliary variable used is an example of a partially
ordered Markov point process model.

Key words: Auxiliary variable method; Bayesian inference; hard core; Markov
chain Monte Carlo; Markov point process; Non-parametric inference; Pairwise
interaction point process; Partially ordered Markov point process; Perfect sim-
ulation; Shot noise process.

1 Introduction

Observed spatial point patterns often show signs of both inhomogeneity in the
distribution of points and interaction between the points. Classical statistical
models for inhomogeneous point patterns usually ignore or at least do not di-
rectly model the interaction. The focus has been on Poisson process models,
where the intensity function may be random (i.e. a Cox process), or on Poisson
cluster process models (Cox & Isham 1980, Ripley 1981, Cressie 1993, Stoyan,
Kendall & Mecke 1995, Diggle 2003, Møller & Waagepetersen 2003). Usually
the dimension of unknown parameters is low and moment or likelihood methods
are used. A flexible non-parametric Bayesian model for the intensity function
of a Poisson process is considered in Heikkinen & Arjas (1998).

In recent years, there has been an increasing interest in modelling both inho-
mogeneity and interaction, using likelihood methods for Markov point processes
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or transformations of Markov point processes, still with a low-dimensional un-
known parameter (Baddeley, Møller & Waagepetersen 2000, Jensen & Nielsen
2000, Nielsen 2000, Hahn, Jensen, van Lieshout & Nielsen 2003, Møller &
Waagepetersen 2003). The objective in the present paper is to introduce and
demonstrate the feasibility of a non-parametric Bayesian approach for inhomo-
geneous Markov point processes, using a new flexible model and a recent MCMC
(Markov chain Monte Carlo) technique (Møller et al. 2006) for posterior simula-
tion when the normalising constant of the observation model is not expressible
on closed form and infeasible to calculate. Briefly, this MCMC technique is an
auxiliary variable method based on perfect simulation in such a way that no
calculation of normalising constants is required.

Specifically, our likelihood is the density of an inhomogeneous pairwise in-
teraction point process Y with points in a bounded region W ⊂ R

2. Thus a
realisation of Y is a finite subset of W (a “point pattern”), and the density of
Y with respect to the unit rate Poisson process on W is of the form

π(y|β, ϕ) =
1

Z(β,ϕ)

∏

i

β(yi)
∏

i<j

ϕ(‖yi − yj‖). (1)

Here y = {y1, . . . , yn} ⊂ W is an arbitrary point pattern, n ∈ {0, 1, . . .} is the
number of points, Z(β,ϕ) is a normalising constant, β : W 7→ [0,∞) is called
the first order term, ϕ : [0,∞) 7→ [0,∞) the interaction function, and ‖ · ‖
denotes usual distance. Usually in applications,

∫

W
β(ξ) dξ < ∞ and ϕ is a

repulsive interaction function, i.e. ϕ ≤ 1 and ϕ is non-decreasing, in which case
(1) is a well-defined density. In general, unless ϕ = 1, no closed form expression
of Z(β,ϕ) is available which results in some difficulties considered in Section 4.
Section 6 discusses the condition that ϕ ≤ 1 and the possibility of analysing
more general Markov point processes than (1).

Our non-parametric Bayesian approach specifies a prior for β by a shot noise
process and a prior for ϕ by a piecewise linear function modelled by a marked
Poisson process. Thus the model for Y could be called a shot noise Markov
point process (in the special case ϕ = 1, Y is a shot noise Cox process (Møller
2003)). This is an extension of our previous approach in Berthelsen & Møller
(2003), where a priori β(·) is assumed to be constant (the homogeneous case),
but where we were not aware of the existence of the auxiliary variable method.
This method was used in Berthelsen & Møller (2006), but a priori both β and ϕ
were assumed to be of a simple parametric form. Though in the present paper
we consider a much more complex Bayesian model, we manage to demonstrate
the feasibility of our approach based on the auxiliary variable method. As in
Berthelsen & Møller (2006), we let the auxiliary variable in the auxiliary variable
method be a partially ordered Markov model point process approximating (1).
It turns out that depending whether or not we include a hard core parameter
h in the model (i.e. ϕ(r) = 0 for r < h), we need different kinds of partially
ordered Markov model point processes.

The remainder of this paper is organised as follows. Section 2 presents a data
set which is used throughout the paper for specificity and illustrative purposes.
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Section 3.1 specifies the prior for β, and Section 3.2 the prior for ϕ. Section 4
considers the posterior and discusses the auxiliary variable method for posterior
sampling in our first setting, where ϕ does not involve a hard core parameter.
Results for the Bayesian analysis of the data are presented in Section 5, where
mainly the case where ϕ involves a hard core parameter is considered. Section 6
contains concluding remarks.

2 Data example

The left panel of Figure 1 shows an inhomogeneous point pattern y = {y1, . . . , yn}
consisting of n = 617 points observed within a rectangular window. The points
specify the location of cells in a section of the mocous membrane of the stomach
of a healthy rat, and the observation window is of size W = [0, 1]× [0, 0.893] (af-
ter some rescaling). The left hand side of the observation window corresponds
to where the stomach cavity begins and the right hand side to where the mus-
cle tissue begins. In the sequel we consider mainly the data y for illustrative
purposes.

To asses if this point pattern can be satisfactory modelled by an inhomo-
geneous Poisson process, we have simulated a number of realisations of an in-
homogeneous Poisson processes, with the intensity estimated from the data by
a non-parametric method (Diggle 1985). For these simulations and the cell
data we compared estimated inhomogeneous K-functions and estimated pair
correlation functions; these statistics summarise the second order properties of
a spatial point process, see Baddeley et al. (2000) and the references therein.
This comparison clearly showed that a Poisson process is an inadequate model
for the data. For instance, the centre panel of Figure 1 shows a non-parametric
estimate ĝ(r), r > 0, of the pair correlation function for the data and simulated
95%-envelopes (for details, see Sections 3.4.3-3.4.4 in Møller & Waagepetersen
(2003)). Under the Poisson model the theoretical pair correlation function is
constant 1. The low values of ĝ(r) for distances r < 0.01 indicates repulsion
between the points.

The cell data was originally analysed by Nielsen (2000) who modelled the
data by transforming the first coordinates of the points of a Strauss point process
(compared to Nielsen (2000) our data in Figure 1 are rotated 90 degrees, so
Nielsen was actually transforming the second coordinates). Specifically, each
data point yi = (yi1, yi2) corresponds to a point zi = (zi1, zi2) of the Strauss
process, where zi1 = (eθyi1 − 1)/(eθ − 1) and yi2 = zi2. Thus z = {z1, . . . , zn} is
considered to be a realisation of a Strauss point process onW , with density of the
form (1) (with y replaced by z) where β(ξ) ≡ β is constant and ϕ(r) = γ [r≤R],
with 0 < γ ≤ 1, R > 0, and [·] being the indicator function. Nielsen (2000)
found that the transformed Strauss point process with estimates θ = 1.3043,
β = 760, γ = 0.09, and R = 0.007 fit the data well. The right panel of
Figure 1 shows a non-parametric estimate of the pair correlation function for the
data, with simulated 95%-envelopes under the fitted transformed Strauss point
process. The estimated pair correlation is almost within the 95% evelopes for
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Figure 1: Left panel: Locations of 617 cells in a 2D section of the mocous
membrane of the stomach of a healthy rat. Centre panel: Non-parametric
estimate of the pair correlation function for the cell data (full line) and 95%-
envelopes calculated from 200 simulations of a fitted inhomogeneous Poisson
process. Right panel: Non-parametric estimate of the pair correlation function
for the cell data (full line) and 95%-envelopes calculated from 200 simulations
of the model fitted by Nielsen (2000).

small values of the distance r, suggesting that the transformed Strauss model
captures the small scale inhibition in the data. Overall, the estimated pair
correlation function follows the trend of the 95%-envelopes, but it falls outside
the envelopes for some values. As the comparison with the envelopes can be
considered as a multiple test problem, this is not necessarily reason to reject the
transformed Strauss model.

3 Prior assumptions

This section specifies our prior model for β and ϕ when analysing the cell data.
We assume a priori that all underlying random quantities in Section 3.1 spec-
ifying β are independent of all underlying random quantities in Section 3.2
specifying ϕ. We let W = [0, a] × [0, b] denote the observation window (a =
1, b = 0.893).

3.1 Prior for the first order term

A priori it is expected that the cell intensity only changes in the direction from
the stomach cavity to the surrounding muscles tissue, so we assume that β
only depends on its first coordinate (this assumption is also satisfied by the
transformed Strauss process used in Nielsen (2000)). As a flexible prior for β
we choose below a shot noise process, specified by a scale parameter γ > 0 and
an infinite point process ψ = {c1, c2, . . .} ⊂ R so that β becomes stationary
(extending the definition of β to R

2). For Bayesian inference we need a finite
version {cj ∈ [−∆, a + ∆]} obtained by restricting the process to the interval
[−∆, a+∆]; we also denote this finite point process by ψ. Below we discuss how
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to choose ∆ > 0 such that β on W is effectively the same for the two versions
of ψ.

For either of the two versions of ψ, the shot noise process is assumed to be
of the form

β(ξ) ≡ β(ξ;ψ, γ) = γ
∑

j

φ((ξ1 − cj)/σ1)/σ1, ξ = (ξ1, ξ2) ∈ R
2, (2)

where φ is a kernel, here chosen to be the density of the standard normal dis-
tribution, σ1 > 0 is the kernel width, and ψ is independent of γ. The marginal
distributions of ψ and γ are specified later, but these distributions play no
important role in Section 3.1.1.

3.1.1 A useful result

The following proposition is useful when determining ∆ in Section 3.1.2.
Recall that conditional on (β, ϕ), the Papangelou conditional intensity cor-

responding to the pairwise interaction point process density (1) is defined for
points ξ ∈W \ y by

λ(y, ξ|β, ϕ) =

{

β(ξ)
∏

i ϕ(‖ξ − yi‖) if π(y|β, ϕ) > 0

0 otherwise
(3)

and the intensity ρ(ξ|β, ϕ) of the point process is given by the mean of the
conditional intensity,

ρ(ξ|β, ϕ) =

∫

λ(y, ξ|β, ϕ)π(y|β, ϕ) νW (dy) (4)

where νW denotes the unit rate Poisson process on W, see Møller & Waagepetersen
(2003). Note that λ(y, ξ|β, ϕ) ≤ β(ξ) and

∫

W
ρ(ξ|β, ϕ) dξ is the mean number of

points in the pairwise interaction point process (when we condition on (β, ϕ)).
Therefore, conditional on (ψ, γ),

B =

∫

W

β(ξ;ψ, γ) dξ

is an upper bound on the expected number of points.
Now, consider the infinite version of ψ and assume that it is a stationary

point process on R (i.e. its distribution is invariant under arbitrary translations)
with an intensity, κ1 say, which is positive and finite. Then

M = γ

∫

W

∑

j: cj 6∈[−∆,a+∆]

φ((ξ1 − cj)/σ1) dξ

is the reduction of B when approximating the infinite version of ψ by its finite
version. Finally, assume that the mean Eγ exists, i.e. 0 < Eγ < ∞, and let Φ
denote the distribution function of the standard normal distribution.
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Proposition 1: We have

EM/EB =
2

a

∫ a

0

Φ((−s−∆)/σ1) ds. (5)

Proof: Using first Fubini’s theorem and the independence between γ and ψ,
and second Campbell’s theorem (see e.g. Møller & Waagepetersen (2003)), we
obtain

EB = Eγ

∫

W

E

∞
∑

j=1

φ((ξ1 − cj)/σ1)σ1 dξ

= κ1Eγ

∫

W

∫ ∞

−∞

φ((ξ1 − c)/σ1)/σ1 dcdξ

= abκ1Eγ.

Similarly,

EM = κ1Eγ

∫

W

∫

R\[−∆,a+∆]

φ((ξ1 − c)/σ1)/σ1 dcdξ

= bκ1Eγ

∫ a

0

[Φ((−∆− ξ1)/σ1) + Φ((−a−∆ + ξ1)/σ1)] dξ1.

Combining the two results, we obtain (5).

3.1.2 Prior specification of β using the finite version of ψ

Henceforth we consider only the finite version of ψ, and assume that it is a
homogeneous Poisson process on the interval I = [−∆, a + ∆] with intensity
κ1. Furthermore, γ is assumed to be gamma-distributed with shape parameter
α1 > 0 and scale parameter α2 > 0. If νI denotes the unit rate Poisson process
on I, then the joint distribution of ψ and γ has density

π(ψ, γ) ∝ κ
n(ψ)
1 γα1−1e−γ/α2 (6)

with respect to the product measure of νI and Lebesgue measure on (0,∞),
where n(ψ) denotes the number of points in ψ.

The remaining parameters σ1, κ1, α1, α2,∆ are specified by fixed values so
that a satisfactory degree of flexibility for β is obtained, using practical consid-
erations and simulation experiments as follows.

The kernel intensity κ1 and the kernel width σ1 determine how flexible the
shape of β is. The higher κ1 is, the more kernels, which in turn implies more
flexibility. From a practical point of view a high value of κ1 may lead to slow
mixing in our MCMC algorithm for posterior simulations (Section 4). As a
compromise, after some experimentation, we choose κ1 = 30 and σ1 = 0.1.

The parameter γ is scaling β and determined by the choice of α1 and α2.
With the small scale inhibition in the data we expect the “true” value of EB

6



0.0 0.2 0.4 0.6 0.8 1.0

0

500

1000

1500

0.0 0.005 0.01 0.015 0.02

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Left panel: Five independent realisations of β under its prior distribu-
tion. Right panel: Ten independent realisations of ϕ under its prior distribution.

to be slightly larger than 617 (the observed number of points). Hence, with the
prior mean EB = abκ1Eγ in mind, we choose α1 = 10 and α2 = 2.5 so that
Eγ = 25.

Finally, we choose ∆ so that EM/EB = 0.001, where the integral in (5) is
evaluated by numerical methods. Thereby we obtain ∆ = 0.126. The left panel
in Figure 2 shows five independent realisations of β under its prior distribution,
and ten independent realisations of ϕ under its prior distribution (specified in
the next section). We find these realisations displaying a satisfactory degree of
flexibility for both β and ϕ.

3.2 Prior for the interaction function

We consider first a similar approximation of ϕ as in Berthelsen & Møller (2003)
but using an increasing, continuous, piecewise linear function:

ϕ(r) ≡ ϕ(r;χ) = [r > rp] +

p
∑

i=1

[ri−1 < r ≤ ri]

(

r − ri−1

ri − ri−1
(γi+1 − γi) + γi

)

(7)
where χ = {(r1, γ1), . . . , (rp, γp)} is a finite point process, assuming r0 = 0 <
r1 < . . . < rp < ∞ and 0 < γ1 < . . . < γp < γp+1 = 1. We refer to
r1, . . . , rp as the change-points of ϕ and rp as the range of interaction, since
rp = inf{r > 0 : ϕ(s;χ) = 1 for all s > r}. Note that for i = 1, . . . , p,
{(r, ϕ(r;χ)) : ri−1 < r ≤ ri} is the line segment with endpoints (ri−1, γi) and
(ri, γi+1), while in Berthelsen & Møller (2003), ϕ is the step function given by
ϕ(r;χ) = γi if ri−1 < r ≤ ri. We find it a priori more natural to approximate ϕ
by the continuous function (7) than by the step function in Berthelsen & Møller
(2003), but expect that the difference in posterior results obtained using the two
interaction functions will be minor. In Section 5, we consider a modification of
(7) involving a hard core parameter, but for now we restrict attention to the
interaction function in (7).
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Along similar lines as in Berthelsen & Møller (2003), we make the fol-
lowing prior assumptions. Set γ0 = 0, δi = γi − γi−1, and (ζ1, . . . , ζp) =
(ln(δ2/δ1), . . . , ln(δp+1/δp)). Then r1 < . . . < rp are the events of a homoge-
neous Poisson process on [0, rmax] of rate κ2; and conditionally on (r1, . . . , rp),
we have that ζp, . . . , ζ1 is a Markov chain with ζp ∼ N(0, σ2

2) and ζi|ζi+1 ∼
N(ζi+1, σ

2
2), i = p − 1, . . . , 1. If µ denotes the unit rate Poisson process on

[0, rmax]× [0, 1], then χ = {(r1, γ1), . . . , (rp, γp)} with r1 < . . . < rp has density

π(χ) ∝ κp2 [0 < γ1 < . . . < γp < 1]/(δ1 × · · · × δp+1)

×
(

2πσ2
2

)−p/2
exp

(

−
p
∑

i=1

(

ζi − ζi+1

)2
/
(

2σ2
2

)

)

(8)

with respect to µ, where we set ζp+1 = 0.
As in the case of β, the remaining parameters are given fixed values chosen

so that ϕ is satisfactory flexible. The parameter rmax specifies the largest in-
teraction range allowed by the model. The estimated pair correlation function
displayed in Figure 1 indicates that there is little interaction beyond an inter-
point distance of 0.01. To be on the safe side, we let rmax = 0.02. Further,
Ep = κ2rmax specifies the “resolution”. As in Berthelsen & Møller (2003), we
let σ2 = 1 and rmaxκ2 = 5, whereby κ2 = 250 is obtained.

4 Sampling from the posterior

Combining (1), (6), and (8), we obtain the posterior density for θ = (ψ, γ, χ)
with respect to the product measure of νI , Lebesgue measure on (0,∞), and µ:

π(θ|y) ∝ κ
n(ψ)
1 γα1−1e−γ/α2κp2 [0 < γ1 < . . . < γp < 1]/(δ1 × · · · × δp+1)

×
(

2πσ2
2

)−p/2
exp

(

−
p
∑

i=1

(

ζi − ζi+1

)2
/
(

2σ2
2

)

)

× 1

Zθ

∏

i

β(yi;ψ, γ)
∏

i<j

ϕ(‖yi − yj‖;χ) (9)

where β and ϕ are given by (2) and (7). Clearly, this is intractable; in particular,
the normalising constant Zθ is not computable.

Inference will be based on Monte Carlo estimates obtained from simula-
tions of the posterior distribution (9) using the Metropolis-Hastings algorithm.
The main difficulty is that the Hastings ratio in a “conventional” Metropolis-
Hastings algorithm involves a ratio Zθ/Zθ′ of normalising constants which we
cannot compute. In this section we restrict attention to how to deal with this
major problem. It is possible to approximate the ratio of unknown normalising
constants in a number of ways, using e.g. path sampling (Gelman & Meng 1998),
with recent examples of Green & Richardson (2002) and Berthelsen & Møller
(2003). Instead we use the auxiliary variable method introduced in Møller et al.
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(2006) which avoids such approximations. The idea is briefly explained below;
the remaining details of the algorithm are given in Appendix A.

Let x be an auxiliary random variable which conditional on (θ, y) follows a
density f(·|θ, y) defined on the same space as the likelihood π(·|θ) = π(·|β, ϕ),
i.e.

f(x|θ, y) = 0 whenever π(x|θ) = 0. (10)

This condition is automatically satisfied in the present setting where π(·|θ) > 0,
but some care is needed in the case of the modified likelihood considered in Sec-
tion 5. We sample (x, θ) from the joint density π(x, θ|y) ∝ f(x|θ, y)π(y|θ)π(θ),
whereby the marginal distribution of θ is given by π(θ|y) in (9). This is
done by the following Metropolis-Hastings algorithm. Suppose that (x, θ) is
the current state. First, generate a proposal θ′ from some proposal density
p(θ′|θ, y) from which we can easily make simulations (like in a “conventional”
Metropolis-Hastings algorithm for sampling from (9)). Second, conditional on
θ′ generate a proposal x′ from π(x′|θ′) (the likelihood (1) evaluated for the pro-
posed value θ′). The joint proposal (x′, θ′) is then accepted with probability
min{1,H(x′, θ′|x, θ, y)}, and otherwise we retain (x, θ). Here

H(x′, θ′|x, θ, y) =
f(x′|θ′, y)π(y|θ′)π(θ′)π(x|θ)p(θ|θ′, y)
f(x|θ, y)π(y|θ)π(θ)π(x′|θ′)p(θ′|θ, y) (11)

is the Hastings ratio in which the unknown normalising constants cancel. As-
suming that p(θ′|θ, y) has been chosen well (if a “conventional” Metropolis-
Hastings algorithm was used), the success of this method relies on how well the
auxiliary density f(·|θ, y) approximates π(·|θ), cf. Møller et al. (2006).

In the present point process setting we use a partially ordered Markov model
(POMM) point process x onW as the auxiliary point process. The POMM point
process is best described by how to simulate x (see also Berthelsen & Møller
(2006) and the references therein): Initially, W is partitioned into N disjoint
subsets Ci, i = 1, . . . , N . Sequentially, for i = 1, . . . , N , conditional on (θ, y)
and x∩C1, . . . , x∩Ci−1 (if i > 1), let x∩Ci be a realisation of a homogeneous
Poisson process on Ci with intensity λi(y, θ, x ∩ C1, . . . , x ∩ Ci−1) (which we
read as λ1(y, θ) if i = 1). This construction allows the POMM point process to
incorporate some interaction while still having a normalised density as shown
below.

Berthelsen & Møller (2006) conclude that the POMM point process is a good
approximation of a pairwise interaction point process with finite interaction
range, when the side lengths of rectangular subsets Ci are less than one 10th of
the interaction range. In the present setting, where we expect the interaction
range to be larger than 0.01, cf. Figure 1, we divide W into N = 1000 × 1000
rectangular subsets of equal size and shape. For computational reasons we
choose to index the subsets systematically row-wise. For i = 1, . . . , N , let ξi be
the centroid of Ci and let

λi(y, θ, x ∩ C1, . . . , x ∩ Ci−1) = ωβ(ξi;ψ, γ)Φi(x;χ) (12)
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where
Φi(x;χ) =

∏

j<i

∏

η∈x∩Cj

ϕ(‖η − ξi‖;χ) (13)

(setting Φ1(x;χ) = 1) and ω = ω(θ, y) > 0. Then the POMM point process has
density

f(x|θ, y) = exp

[

|W | −
N
∑

i=1

|Ci|λi(y, θ, x ∩ C1, . . . , x ∩ Ci−1)

]

×
N
∏

i=1

λi(y, θ, x ∩ C1, . . . , x ∩ Ci−1)
ni(x) (14)

with respect to νW , where | · | denotes area and ni(x) denotes the cardinality of
x∩Ci. Note that compared to Berthelsen & Møller (2006) distances in Φi(x;χ)
are between the reference point ξi associated with Ci and points in x∩Cj , j < i,
and not between pairs of reference points. We expect this refinement to slightly
improve how well the pairwise interaction point process can be approximated
by the POMM point process.

The parameter ω in (12) is introduced because results in Berthelsen & Møller
(2006) indicate that a POMM process equivalent to setting ω = 1 is not the best
choice. In Berthelsen & Møller (2006), instead of introducing the ω term, β in
(12) and ϕ in equation (13) are essentially replaced by “optimised” choices that
are functions of β and ϕ. These functions are estimated by MCMC methods
prior to posterior simulations. This scheme is only feasible because Berthelsen
& Møller (2006) consider the much simpler Strauss point process. In the present
paper, we opt for the simpler solution of introducing the ω term, which we let
be given by the maximum likelihood estimate when y given θ is assumed to
follow (14), i.e.

ω(θ, y) = n(y)/

N
∑

i=1

|Ci|β(ξi;ψ, γ)Φi(y;χ).

The auxiliary variable method requires exact samples from the point process
specified by (1). Under the present assumption of repulsion this is possible using
the dominated coupling from the past (dominated CFTP) algorithm in Kendall
& Møller (2000).

5 Analysis

All posterior results in this section are Monte Carlo estimates based on the
MCMC algorithm given in Section 4 and Appendix A.

5.1 Including a hard core parameter in the model

We first carried out a Bayesian analysis of the cell data in Figure 1, using the
data model and prior specified in Sections 1 and 3. The results of this analysis
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(not shown here) indicated the need for an explicit hard core assumption in the
model. With the biological origin of the data in mind, this appears to be a
reasonable assumption. Accordingly, we next modify the data distribution by
replacing ϕ(r;χ) throughout by

ϕ̃(r;h, χ) =











0 if r < h

ϕ
( (r−h)rmax

rmax−h
;χ
)

if h ≤ r ≤ rmax

1 if h > rmax

where the hard core distance h is assumed to be smaller than rmax and a pri-
ori uniformly distributed on the interval [0, rmax]. Notice that ϕ̃(·;h, χ) has a
discontinuity at r = h, but is otherwise continuous. Furthermore, we redefine
θ = (ψ, γ, χ, h).

The auxiliary variable method described in Section 4 remains unchanged
apart from an modification of the POMM point process due to the hard core and
the condition (10). Let ϕ̄(r;h, χ) = ϕ̃(r;h+ ǫ, χ), where ǫ is the largest possible
distance from ξi to any point in Ci. Conditional on (θ, y) and x∩C1, . . . , x∩Ci−1,
let λi(θ, y, x ∩ C1, . . . , x ∩ Ci−1) be given by (12) when we replace Φi(x;χ) by
Φ1(x;h, χ) = [n1(x) ≤ 1] if i = 1 and

Φi(x;h, χ) =
∏

j<i

∏

η∈x∩Cj

ϕ̄(‖η − ξi‖;h, χ)

if i > 1. Then, conditional on (θ, y) and x ∩ C1, . . . , x ∩ Ci−1 (if i > 1), we let

x ∩ Ci = ∅ with probability (1 + |Ci|λi(y, θ, x ∩ C1, . . . , x ∩ Ci−1))
−1

, and else
we let x ∩ Ci consists of a single point which is uniformly distributed on Ci.
Thus the density with respect to νW is given by

f̃(x|θ, y) = e|W |
N
∏

i=1

[ni(x) ≤ 1]
λi(y, θ, x ∩ C1, . . . , x ∩ Ci−1)

ni(x)

1 + |Ci|λi(y, θ, x ∩ C1, . . . , x ∩ Ci−1)
(15)

and it follows from the triangle inequality that (10) is satisfied. Finally, we let
ω = ω(θ, y) be given by the maximum likelihood estimate (MLE) when y given
θ is assumed to follow (15). The MLE can easily be determined, since it is
computationally equivalent to finding the MLE of a logistic regression, where
the ni = ni(y) are independent Bernoulli variables and ni = 0 with probability

(1 + ω|Ci|β(ξi, ψ, γ)Φi(y;h, χ))
−1

, i = 1, . . . , N .
Since the hard core of the POMM point process is slightly larger than that of

the likelihood, it is expected that some proposals will be rejected simply because
they do not fulfil the hard core condition of the POMM point process. On one
hand we can reduce the differences in hard core conditions by increasing N ,
on the other hand this comes at a computational price as evaluating (15) has
complexity linear in N . As a compromise we use N = 2000× 2000 rectangular
subsets in which case ǫ =

√
a2 + b2/4000.

Using the sampling scheme described in Appendix A we have generated a
Markov chain of length 250,000 which has the posterior (9) as its equilibrium
distribution. In the following we ignore the initial 5000 iterations of the Markov
chain as burn-in.
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5.2 Posterior results

The left panel of Figure 3 shows the posterior mean of β, E(β|y), together
with pointwise 95% central posterior intervals. Also the smooth estimate of the
first order term obtained by Nielsen (2000) is shown, where the main difference
compared with E(β|y) is the abrupt change of E(β|y) in the interval [0.2, 0.4].
For locations near the edges of W , E(β|y) is “pulled” towards its prior mean as
a consequence of the smoothing prior.

Apart from boundary effects, since β(ξ1, ξ2) only depends on ξ1, we may
expect that the intensity (4) only slightly depends on ξ2, i.e. ρ((ξ1, ξ2)|β, ϕ) ≈
ρ(ξ1|β, ϕ), where

ρ(ξ1|β, ϕ) =
1

b

∫ b

0

ρ((ξ1, ξ2)|β, ϕ) dξ2.

We therefore refer to ρ(ξ1|β, ϕ) as the cell intensity, though it is more precisely
the average cell intensity in W at ξ1 ∈ [0, a]. A non-parametric estimate of
ρ(ξ1|β, ϕ) is given by

ρ̂(ξ1) =





n(y)
∑

i=1

φ((ξ1 − yi1)/σk)/σk)





/

[b× (Φ((1− ξ1)/σk)− Φ(ξ1/σk))]

which is basically the 1-dimensional edge-corrected kernel estimator of Diggle
(1985) with bandwidth σk = 0.075. The left panel of Figure 3 also shows
this estimate. The posterior mean of β(ξ1) is not unlike ρ̂(ξ1) except that
E(β(ξ1)|y) is higher as would be expected due to the repulsion in the likelihood,
cf. Section 3.1.1.

The posterior mean of ϕ̃ is shown in the right panel of Figure 3 together
with pointwise 95% central posterior intervals. The figure shows a distinct hard
core on the interval from zero to the observed minimum inter-point distance
d = mini6=j ‖yi − yj‖ (which is a little less than 0.006, see the left panel in
Figure 5), and an effective interaction range which is no more than 0.015 (the
posterior distribution of ϕ̃(r) is concentrated close to one for r > 0.015). This
further confirms that rmax was chosen sufficiently large. The corner at r = d
of the curve showing the posterior mean of ϕ̃(r) is caused by that ϕ̃(r) is often
zero for r < d (since the hard core is concentrated close to d), while ϕ̃(r) > 0
for r > d.

The prior and posterior distributions of the hard core distance h, the number
of kernels n(ψ), number of change points n(χ), and the parameter γ are shown
in Figure 4. Moreover, the posterior distributions differ in various ways from
the priors: The posterior distribution of the hard core distance is less than but
concentrated close to the smallest inter-point distance in the data. The low
number of change points suggests that a relatively simple interaction function
suffices. Compared to the prior, the posterior distribution of n(ψ) is shifted
to the right, which could be interpreted as the data requires a more flexible
first order term than a priori assumed. Furthermore, γ is a posteriori more
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Figure 3: Posterior mean (solid line) and pointwise 95% central posterior in-
tervals (dotted lines) for β (left panel) and ϕ̃ (right panel). The left panel also
shows the first order term (dashed line) estimated by Nielsen (2000) and an
estimate of the cell intensity (dot-dashed line).

concentrated around its mean than the prior, where the posterior and prior
means are 25 and 20, respectively. This shift to the left for γ, as compared to
the shift to the right for n(ψ), is caused by a strong negative correlation between
n(ψ) and γ a posteriori (while they were assumed to be a priori independent).
This is in accordance with the rather narrow 95% central posterior intervals in
the left panel of Figure 3.

5.3 Posterior predictive results

Following Gelman, Meng & Stern (1996) we also performed a model check
based on 246 samples from the posterior predictive distribution, where for
i = 5, . . . , 250, the ith sample y(i) was simulated from the pairwise interac-
tion point process using the parameter values (β(i), ϕ(i)) after update number
1000× i from the posterior distribution.

Figure 5 shows that both the observed minimum inter-point distance and
observed number of points fall well within the support of the corresponding
posterior predictive distributions.

The left and centre panels in Figure 6 compare the non-parametric sum-
maries ρ̂(ξ1) and ĝ(r) based on the data y and the y(i), i = 5, . . . , 250. The
first order properties as represented by the intensity estimate ρ̂(ξ1) from Fig-
ure 3 seem to be in good accordance with the posterior predictive distribution.
For the second order properties as represented by the pair correlation estimate
ĝ(r), there seems to be some improvement as compared to the right panel in
Figure 1. The observed pair correlation function is still for more than 5% of
the considered r-values outside the simulated 95% envelopes, but less so than
in Figure 1. This is partly due to wider 95% envelopes in Figure 6, which are
a natural consequence of the fact that they are based on posterior predictive
simulations (unlike Figure 1 which is based on simulations from a model with
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Figure 4: Row wise from top left panel, prior (solid line) and posterior (grey)
distributions for h, n(χ), n(ψ), and γ, respectively. For comparability only a
selected range of each prior distribution is shown.

14



0.003 0.004 0.005 0.006 0.007

0

200

400

600

800

500 550 600 650 700

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Figure 5: Observed value (dashed line) and posterior predictive distribution of
minimum inter-point distance (left panel) and number of points (right panel).
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Figure 6: Left and centre panels: Observed (solid lines) ρ̂(ξ1) (left panel) and
ĝ(r) (middle panel) together with pointwise 95% central posterior predictive
intervals (dashed lines). Right panel: Pointwise 95% central posterior predictive
intervals for the si(ξ1), i = 5, . . . , 250.

fixed parameters).
Apart from boundary effects, we may expect that the Papangelou condi-

tional intensity (3) approximately only depends on ξ = (ξ1, ξ2) through the first
coordinate, λ(y, (ξ1, ξ2)|β, ϕ) ≈ λ(y, ξ1|β, ϕ). Let y(0) = y be the data, and for
i = 0 and i = 5, . . . , 250, consider qi(ξ1) =

∑

ξ2
λ(y(i), (ξ1, ξ2)|β(i), ϕ(i))/1000 as

an estimate of λ(y(i), ξ1|β(i), ϕ(i)), using a 1000×1000 grid of ξ = (ξ1, ξ2) values
in W . The right panel in Figure 5 shows for each ξ1-value the central 95% pos-
terior predictive interval obtained from si(ξ1) = qi(ξ1)− q0(ξ1), i = 5, . . . , 250.
There seems again to be a good accordance between the data and the posterior
predictive distribution, since the horizontal line at zero is within the pointwise
95% envelopes for nearly all ξ1-values.
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6 Concluding remarks

In this paper we have considered how to perform Bayesian inference for pairwise
interaction point processes using a flexible prior for both the first order term
and the interaction function. The data has mainly been used for illustrative
purposes, where the focus has been on demonstrating the feasibility and appli-
cability of a non-parametric Bayesian MCMC approach based on the auxiliary
variable method and a POMM point process.

Our approach can easily be extended to the case where the first order term
β(ξ) is believed to depend on both the first and second coordinates in ξ =
(ξ1, ξ2). This could be achieved by extending ψ to a point process on R

2 and
replacing the one dimensional normal kernels with bivariate normal kernels.
Extending Proposition 1 to this case and estimating what corresponds to ∆ are
then straightforward. For some applications it may also be of interest to consider
the case of a location dependent covariate z(ξ) so that e.g. an exponential term
exp(z(ξ) · α) is multiplied to the right hand expression in (2), where α is a
parameter of the same dimension as the covariate, · is the usual inner product,
and a prior is imposed on α. In such a setup it may be much more complicated
to extend Proposition 1.

The non-parametric Bayesian approach for the estimation of the first order
term may also be interesting as a tool for a Bayesian analysis of a location
dependent interaction function. This would then be a Bayesian analysis of one
of the models considered by Hahn et al. (2003) as approximations of a point
process with local scaling.

Overall our model captures many of the main features of the data considered,
albeit one may question whether a pairwise interaction point process of the kind
considered is appropriate for describing the second order properties. Further,
we have obtained a somewhat better fit than in Nielsen (2000). It could be of
interest to see if other kinds of pairwise interaction point process models would
provide an even better fit. For example, we imposed the condition that ϕ ≤ 1,
but would it help to relax this condition and thereby allow for attraction between
points at certain distances apart? Indeed there exist a few parametric models
for such pairwise interaction point processes, e.g. the Lennard-Jones process
(see e.g. Ruelle (1969)), but we are not aware of any flexible non-parametric
Bayesian model similar to that in the present paper unless ϕ ≤ 1. Furthermore,
one could easily imagine many kind of generalisations. For example, models
where the interaction is not isotropic, i.e. where the interaction function ϕ in
(1) not only depends on the distance between pairs of points, and perhaps
also is very inhomogeneous. Markov point process models with third or higher
order interaction terms (see e.g. Møller & Waagepetersen (2003)) could be yet
another generalisation, but a flexible non-parametric Bayesian model might be
very complicated and hard to analyse even by MCMC methods.
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Appendix A

This appendix provides the details of the Metropolis-Hastings algorithm used
for the simulation of the posterior when ϕ in (9) is replaced by ϕ̃ in Section 5.

The algorithm is more precisely a hybrid Metropolis-Hastings algorithm (also
known as Metropolis within Gibbs), where at each iteration we choose at random
one of eight possible types of Metropolis-Hastings updates, where the ith type
of update is applied with probability pi, say, where pi > 0 and

∑8
i=1 pi = 1.

Each update follows the procedure outlined in Section 4: Suppose that (x, θ)
is the current state of the algorithm. First, generate a proposal θ′ from a
proposal distribution specific to the given type of update. Next, conditional
on θ′, generate x′ from π(x′|θ′) using dominated CFTP. Finally, accept the
proposal (x′, θ′) with probability min{1,H(x′, θ′|x, θ, y)}, and otherwise retain
the current state, where H is the Hastings ratio given by (11).

The eight types of updates can be divided into three groups: Kernel updates,
change point updates, and parameter updates. Details are given as follows, when
θ = (ψ, γ, χ, h).

1. The proposal is to add a kernel c′ which is uniformly distributed on
[−∆, a + ∆]. Then θ′ = (ψ ∪ {c′}, γ, χ, h), p(θ′|θ, y) = 1/(a + 2∆), and
p(θ|θ′, y) = 1/(1 + n(ψ)).

2. The proposal is to remove a kernel c′ which is uniformly randomly se-
lected from ψ (if ψ is empty we do nothing). Then θ′ = (ψ\{c′}, γ, χ, h),
p(θ′|θ, y) = 1/n(ψ), and p(θ|θ′, y) = 1/(a+ 2∆).

3. The proposal is to replace a uniformly randomly selected kernel c ∈ ψ
using a symmetric random walk Metropolis (RWM) update (if ψ is empty
we do nothing). Specifically, the proposed replacement c′ is distributed
according to a normal distribution with mean c and variance 10−4. Then
θ′ = ((ψ\{c})∪ {c′}, γ, χ, h), noticing that H = 0 if c′ 6∈ [−∆, a+ ∆], and
the proposal density terms cancel in (11).

4. The proposal is to add (r′, γ′) to χ, where r′ is uniform on [0, rmax] and γ′

given r′ is uniform on [γi, γi+1], where i is chosen so that ri ≤ r′ ≤ ri+1.
Then θ′ = (ψ, γ, χ ∪ {(r′, γ′)}, h), p(θ′|θ, y) = 1/((γi+1 − γi)rmax), and
p(θ|θ′, y) = 1/(n(χ) + 1).

5. The proposal is to remove a uniformly randomly chosen point (ri, γi)
from χ (if χ is empty we do nothing). Then θ′ = (ψ, γ, χ\{(ri, γi)}, h),
p(θ′|θ, y) = 1/n(χ), and p(θ|θ′, y) = 1/((γi+1 − γi−1)rmax).
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6. The proposal is to replace a uniformly randomly selected point (ri, γi) from
χ by a point (r′, γ′) uniformly distributed on [ri−1, ri+1]× [γi−1, γi+1] (if
χ is empty we do nothing). Then θ′ = (ψ, γ, χ\{(ri, γi)} ∪ {(r′, γ′)}, h),
and the proposal density terms cancel in (11).

7. The proposal is to replace γ by γ′ which is normal distributed with mean
γ and standard deviation 1. Then θ′ = (ψ, γ′, χ, h), noticing that H = 0
if γ′ ≤ 0, and the proposal density terms cancel in (11).

8. The proposal is to replace the hard core distance h by h′ which is uniformly
distributed on [h − 0.0005, h + 0.0005]. Then θ′ = (ψ, γ, χ, h′), noticing
that H = 0 if h′ 6∈ [0, rmax], and the proposal density terms cancel in (11).

The updates 1., 2., 4., and 5., involving adding or removing either a kernel
or a change point, are applications of the spatial birth-and-death algorithm
given by Geyer & Møller (1994). To retain detail balance it is assumed that
the probability of proposing either a birth or a death are equal, i.e. p1 = p2

and p4 = p5. The results in Section 5 are obtained using p1 = 0.15, p2 = 0.15,
p3 = 0.10, p4 = 0.15, p5 = 0.15, p6 = 0.10, p7 = 0.10, and p8 = 0.10, and the
mean acceptance probabilities for each of the eight updates are 0.076, 0.077,
0.098, 0.028, 0.028, 0.026, 0.066, and 0.076, respectively.
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