
Aalborg Universitet

Supervisory Control for Real Time Reactive Power Flow Optimization in Islanded
Microgrids

Milczarek, Adam; Vasquez, Juan Carlos; Malinowski, Mariusz; Guerrero, Josep M.; Graells,
Moises
Published in:
Proceedings of the 23rd European Symposium on Computer Aided Process Engineering, ESCAPE

DOI (link to publication from Publisher):
10.1016/B978-0-444-63234-0.50055-5
10.1016/B978-0-444-63234-0.50055-5

Publication date:
2013

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Milczarek, A., Vasquez, J. C., Malinowski, M., Guerrero, J. M., & Graells, M. (2013). Supervisory Control for Real
Time Reactive Power Flow Optimization in Islanded Microgrids. In A. Kraslawski, & I. Turunen (Eds.),
Proceedings of the 23rd European Symposium on Computer Aided Process Engineering, ESCAPE (2013 ed.,
Vol. 32, pp. 325-330). Elsevier. https://doi.org/10.1016/B978-0-444-63234-0.50055-5,
https://doi.org/10.1016/B978-0-444-63234-0.50055-5

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1016/B978-0-444-63234-0.50055-5
https://doi.org/10.1016/B978-0-444-63234-0.50055-5
https://vbn.aau.dk/en/publications/a5118b5a-c258-4cbc-a5dd-46b8806c37d7
https://doi.org/10.1016/B978-0-444-63234-0.50055-5
https://doi.org/10.1016/B978-0-444-63234-0.50055-5


Downloaded from vbn.aau.dk on: August 23, 2025



Andrzej Kraslawski and Ilkka Turunen (Editors) Proceedings of the 23rd European Symposium on 

Computer Aided Process Engineering – ESCAPE 23 June 9-12, 2013, Lappeenranta, Finland,  

© 2013 Elsevier B.V. All rights reserved. 

Supervisory Control for Real Time Reactive Power 

Flow Optimization in Islanded Microgrids 

Adam Milczarek,
a
 Juan C. Vasquez,

b
 Mariusz Malinowski,

a
 Josep M. Guerrero,

b
 

Moisès Graells
c
 

a
 Warsaw University of Technology, Institute of Control and Industrial Electronics 

Koszykowa 75, 00-662 Warsaw, Poland 
b
 Aalborg University, Institute of Energy Technology, Pontoppidanstraede 101,  

DK-9220 Aalborg East, Denmark 
c
 Universitat Politècnica de Catalunya Department of Chemical Engineering EUETIB, 

Comte d’Urgell, 187, 08036-Barcelona, Spain 

Abstract 

A microgrid (MG) is a local energy system consisting of a number of energy sources, 

energy storage units and loads that operate connected to the main electrical grid or 

autonomously. MGs include wind, solar or other renewable energy sources. MGs 

provide flexibility, reduce the main electricity grid dependence and contribute to change 

the large centralized production paradigm to local and distributed generation. However, 

such energy systems require complex management, advanced control and optimization. 

Interest on MGs hierarchical control has increased due to the availability of cheap on-

line measurements. Similarly to any process system, MG hierarchical control is divided 

into three levels. However, an additional control algorithm is required to manage power 

transmission between sources and loads, maximizing efficiency and minimizing 

transmission losses. This real-time optimization problem is addressed to locally readjust 

converters operation to attain global efficiency. 

An algorithm is presented by formulating and solving the power sharing optimization 

problem in a two-level approach. The objective function is the sum of the apparent 

power transferred, whose minimization reduces total power losses and energy costs. The 

performance of the approach proposed is validated on a simulated case study. Different 

scenarios are tested and the performance of the algorithm is compared and discussed. 

The power losses reduction obtained with the proposed approach are compared with 

those obtained by standard procedures (Equal Power Sharing - EPS), showing enhanced 

performance. 

 

Keywords: real time optimization, supervisory control, energy systems, microgrid. 

 

Symbols: k – converter number; P[K] – K-elements vector of active powers; Pk -  active 

power of k converter; P1,Q1, P2, Q2, PL2, QL2 – auxilary parameters to total active 

and reactive power calculations in otpimization algorithm; PL – total load active power; 

PLs – sum of acitve powers for limited converters; Psk, Qsk – auxilary parameters for 

real-time optimization algorithm; Sk – apparent power of k converter; SN[K] - K-

elements vector of apparent powers; SNk – nominal apparent power of k converter; Qk - 

reactive power of k converter; QL – total reactive power; QLine – total line reactive 

power losses; QLoad – total load reactive power; QLs – sum of reactive power for 

limited converters; QLnew – sum of calculated total reactive power in optimization 

algorithm; Qmaxk – maximum reactive power for converter; Qoptk – optimal reactive 

power for converter in unconstrained case; Qref[K] – K-elements vector of calculated 
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optimal reactive powers; Qrefk – calculated reactive power for k converter; Qk – 

difference between optimal reactive power in unconstrained case and optimal reactive 

power in constrained case for k converter. 

1. Introduction 

Currently, real-time optimization algorithms (RTO) for many industrial applications 

have become increasingly accepted. The basic limitation of traditional RTO is a steady-

state wait time, regardless of the degree of rigor used [1]. Unfortunately, shorter 

optimization times may be required. Control algorithms have to be fast, with high 

dynamic response. Thus, a global solution approach is using many control units in a 

distributed system, and executing many partial optimization runs at the same time 

within a hierarchical multilevel control system (e.g. according to ANSI/ISA-95 or ISA-

95 standard). In this solution each level provides supervisory control for lower-level 

systems [2]. The optimization algorithm can be split into two, three or more levels, in 

order to speed up online calculations.  

This work proposes a new on-line optimization approach, divided between primary and 

secondary control levels. It has been applied for reactive power flow optimization in 

distributed generation systems such as islanded microgrids (MG), which require fast 

solution for the dynamic changes of the system parameters. 

1.1. Islanded microgrid – reactive power sharing  

MGs are becoming more important since they can manage energy generation, storage 

and demand as well as reduce dependence on the main grid for local customers. 

Islanded MG is a distributed generation (DG) system working autonomously at low 

voltage (< 1kV), independently of the main electricity grid. MGs performance is 

specified according to IEEE 1547.4. Islanded MGs are complex systems requiring 

advanced control and optimization strategies to manage power transmission between 

source and loads, and efficiently minimize transmission losses. The most popular 

solution is a hierarchical control, which is usually divided into three levels [3]: 

 primary control (level 1): droop control and virtual impedances,  

 secondary control (level 2): adjustment of frequency and amplitudes as well as 

improvement of power quality in the microgrid, 

 tertiary control (level 3): adjustment of power flow between the MG and the main 

electricity grid.  

The primary control is autonomous, allowing DG units to work independently. On the 

other hand, secondary and tertiary controls are placed in the MG central controller and 

needs communications infrastructure. Depending on the energy source and converter 

type, active power is fixed by the maximum power point, so active power sharing is not 

so interesting for that kind of applications. The main problem is reactive power injected 

or absorbed by the DG, which is limited and depends on nominal apparent power and 

the active power delivered by each DG unit. Energy converters are interfaces between 

energy sources and the local or main grid. They allow to set voltage and current 

parameters, indirect cause of active and reactive power flow control. For each converter 

k (power supply), active (Pk), reactive (Qk) and apparent power (Sk) are related by: 

  
    

    
  (1) 

The problem is voltage drop and power losses in the transmission local line. Energy 

sources may be 2-5 km away from local loads and transmission losses cannot be 

neglected [4]. 
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2. Supervisory control - real-time optimization algorithm 

For the optimal reactive power sharing, the objective function to be minimized is 

established as the sum of apparent power Sk, transferred from all supplies to loads: 

   ∑   
 
    ∑ √  

    
  

    (3) 

Given the set of Pk to be met, the set of control variables Qrefk have to be obtained (set-

points). The constraints are total reactive power produced, which has to be equal to total 

load reactive power, including line impedances: 

∑                     
 
    (4) 

and apparent power Sk cannot exceed its nominal apparent power SNk : 

             (5) 

The optimization problem this way formulated can be solved by the assignment 

algorithm proposed (fig. 1), whose graphical interpretation is given later on (section 3).  

 

Fig. 1. Block scheme of algorithm for optimal reactive power sharing. 

In first step the algorithm calculates a maximum value of reactive power for each 

converter Qmaxk (basic on eq. 1 and ineq. 5). After that as long as auxilary parameter 

Qlnew is smaller than QL the optimal solution for all converters is calculating as it is 

shown on fig. 1. The basic equation for optimal reactive power calculations is described 

as: 

        
  

  
 (6) 

Usual calculations in microcontroller have to be executed in less than 0.5 ms, depending 

on the switching frequency of the converters (microcontroller interruptions) and the 

applications. To use this algorithm on-line, its implementation is split between primary 

and secondary control levels (fig. 2). First, Qoptk is calculated (eq. 6) as the optimal 

solution for the unconstrained case (SNk → ∞,  k), as well as reactive power limit for 

converter Qmaxk  (eq. 7). Simultaneously, the secondary control module (common for 

all the MG) calculates four parameters (PL, QL, PLs, QLs), as a sum of input signals, 

ensuring the fulfillment of the first of constraint (4). The calculation process is very fast, 

even with transmission delay. In a second step, in the primary control module checks 

the second constraint (eq. 5), and calculates auxiliary parameters Psk and Qsk (eqns. 8-

9). Finally, the optimal values Qrefk (eq. 11) are given by the sum of unconstrained 

optimal values Qfk and Qk (eq.10), thus taking into account all constraints. 

      √   
    

  (7) 
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Fig. 2. Block scheme of real-time implementation of reactive power flow optimization algorithm 

3. Case study 

3.1. Preliminary analysis of optimization algorithm 

An illustrative example of twelve renewable sources is solved in MS Excel-VBA. Two 

cases are addressed. The first case is the unconstrained situation for which the optimal 

reactive power values Qrefk are straightforward (eq. 6), while the second includes active 

constraints for apparent power. The parameters of performed analysis are shown in 

Table I. Figure 3 plots the results for both cases with the graphical interpretation of the 

solution. The sum of active and reactive powers on P and Q axis shows the 

unconstrained optimal solution given by a straight line, while the optimal constrained 

solution is represented by the broken line made of the feasible segments, which shows 

the gap between both solutions. 

3.2. Simulation and validation 

3.2.1. Simulation model description 

The Equal Power Sharing (EPS) [5]- classical control method and the real-time 

optimization algorithm proposed were implemented in simulation model using 

Matlab/Simulink. The EPS control method assumes equal distribution of reactive power 

between converters in MG. Figure 4 shows the topology of MG, where all transmission 

lines are connected in parallel to common couple point (PCC) with energy loads. Both 

approaches were compared in five cases: three having different active power and the 

same nominal apparent power for unconstraint situation, a fourth having different Pk 

and SNk, and the fifth showing constraint case of MG optimization. The simulations 

were run for 4-km of low-voltage transmission with appropriate impedances (R=0.642 

/km, X=0.083 /km). 
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Table I Case study of optimal reactive power sharing in preliminary analysis of MG  

   Unconstrained case Constrained case 

k Pk Qfk SNk Qk Sk SNk Qk Sk 

1 1500 480 5000 480 1575 1800 837 1718 

2 800 256 2000 256 840 1000 447 916 

3 500 160 2000 160 525 1000 279 573 

4 2000 640 4000 640 2100 2100 640 2100 

5 1400 448 2000 448 1470 1500 539 1500 

6 4000 1280 10000 1280 4200 4100 900 4100 

7 1000 320 3000 320 1050 1100 458 1100 

8 6000 1920 10000 1920 6300 6200 1562 6200 

9 400 128 1000 128 420 1000 223 458 

10 2400 768 5000 768 2520 2500 700 2500 

11 1800 576 5000 576 1890 1900 608 1900 

12 3200 1024 6000 1024 3360 3300 806 3300 

PL: 25000  QL: 8000  QL: 8000  

 

 

Fig. 3. Reactive power sharing for the illustrative MG case – a) unconstrained b) constrained  

c) Graphical comparison of unconstrained and constrained cases. 

3.2.2. Simulation results 

The results of simulation for three converters and two different algorithms were 

compared, in order to show that the idea of real-time optimization algorithm split 

between different levels of control is working properly. Moreover, the simulation results 

show the reducing of transmission power losses, as it was founded behind. Table II 

shows transmission power losses for all converters and compare it. Notice that power 

losses are reduced even 16-17% for optimized algorithm. 
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Fig. 4. Block scheme of MG with parallel transmission lines 

Table II. Transmission power loses for and reduction of power losses. Results obtained with the 

proposed approach (OPT) are compared with the standard EPS approach.  

Case No. Case 1 Case 2 Case 3 Case 4 Case 5 

Total transmission 

power losses in MG 

[W] 

EPS 23,4 175,5 451,8 28,2 206,7 

OPT 23,1 164,7 428,4 23,4 174 

Reduction of losses 1% 6% 5% 17% 16% 

4. Conclusions 

Reactive power sharing in MG has been addressed in order to minimize energy losses in 

real-time. A novel real-time optimization scheme, split between primary and secondary 

control levels has been proposed. Using parallel calculations in the primary control units 

the execution time of the optimization process is reduced and only calculations of global 

parameters are executed at the secondary level. The validation in a simulated scenario of 

the approach presented demonstrated a clear reduction of the total power losses with 

respect standard approaches (EPS), which in turn decreases the cost of energy transfer. 

These promising results envisage good opportunities for real-time adaptation of energy 

systems to flexible scenarios 
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