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Abstract

In this paper we describe a genetic algorithm approach able to confection strong backgam-
mon automata players. We first prepared an initial vector of weights representing a set of
heuristic strategies suggested by expert human players. Then, employing a genetic algo-
rithm approach we were able to fine tune such initial vector of weights by repeatedly testing
it against Pubeval, a strong benchmark player program. The vector of weights was there-
fore used as an evaluation function for performing a genetic heuristic selection of the best
board positions during a game. Best GA-Gammon individuals so obtained were tested in
separated 5000-game tournaments against Pubeval itself, and Fuzzeval, a fuzzy controller-
based player. Our experimental results indicate that the best individuals generated by GA-
Gammon show similar performance than Pubeval. Furthermore, GA-Gammon consistently
outperforms Fuzzeval.

1 Introduction and Related Work

The study of algorithms and heuristics that could enable computers to play board games
at an expert human level has received considerable attention since 1950, when Claude E.
Shannon designed a computer program to play chess [10]. Unlike chess, where a combi-
nation of pruned brute force searching approaches along with opening/closing data books
has been applied successfully, backgammon requires the application of radically different
strategies. Backgammon is a board game that combines luck and strategy. The use of dice
in backgammon avoids applying brute force-based approaches that search for the optimal
moves. Moreover, different strategies must be employed in the two phases of the game i.e.
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the contact phase where player’s checkers are intermixed and the race phase where there is
no contact anymore.

During the last decade, researchers have proposed numerous approaches to create strong
player programs in the domain of backgammon. In 1995 G. Tesauro created TD-Gammon
[11] a backgammon program that has played at the master level with humans. This pro-
gram achieved a remarkable success by learning playing strategies during self playing. TD-
Gammon employs the temporal differences method to train an Artificial Neural Network
(ANN) that is used in an evaluation function. The temporal differences training strategy
basically adjusts the ANN’s weights according to the results obtained during a sequence
of games. TD-Gammon consists of two ANNs that were trained specifically for the two
phases of the game. Unfortunately, being a proprietary technology, TD-Gammon can not
be used to evaluate other approaches. However, there exists a publicly available evaluation
function called Pubeval, which was also created by G. Tesauro. The weights included in
Pubeval’s evaluation function, were obtained using ANNs. With Pubeval it is possible to
create a strong backgammon player program that plays at intermediate level. Pubeval has
become the de facto standard benchmark in backgammon.

Pollack et al. [6] published in 1997 a backgammon player program called HC-Gammon,
which uses a Hill-Climbing technique to train a feed-forward neural network used to cre-
ate an evaluation function. HC-Gammon starts with an initial champion program with
all weights set to zero and proceeds by playing the current champion network against a
slightly mutated challenger. When the challenger wins a game, the weights in the evalu-
ation function are changed. Using this technique Pollack et al. concluded that Tesauro’s
TD-Gammon success was mainly due to the co-evolutionary structure of the learning task
and the characteristics of the backgammon game itself, and in a minor degree to the so-
phisticated learning techniques employed. However, G. Tesauro refuted these observations
in a later paper [12].

Sanner et al.’s [9] proposal was to develop an algorithm that emulates closely the human
cognition process in the domain of backgammon. They argued that humans can not explore
thousands of possible moves as computer programs do. Hence, more efficient methods must
be used for learning. Based on the ACT-R theory of cognition, their program ACT-R-
Gammon analyzes general features of backgammon that may be encountered in a winning
or loosing game. Bayesian learning is employed to infer the likelihood that each of the
features resulting from a move would be present in a winning game. ACT-R-Gammon
achieved a winning rate of about 46% against Pubeval after playing 1,000 games.

Azaria and Sipper [1] proposed GP-Gammon, a backgammon player that is created
using Genetic Programming. GP-Gammon applies Genetic Programming to the evolution
of strategies for playing backgammon. After rolling the dice, the program generates all
possible next-move boards. Each individual LISP program generated receives the board
configuration and returns a real number that represents the score given to that board.
Then, the highest scoring board is selected for playing. GP-Gammon was reported as
obtaining a winning rate of 58% against Pubeval after playing 2,000,000 games.

Recently, a fuzzy controller-based backgammon program called Fuzzeval, was proposed in
[2]. Fuzzeval grades the perceived strength of all possible valid board positions it can play,
using a rule base obtained from an amateur human player. Fuzzeval adjusts automatically
the membership functions associated with the linguistic variables employed in the rule
base, by aligning them with the average values that were used in the past winning games.
Fuzzeval achieved a winning rate of 42% against Pubeval after playing 100 games.
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Another interesting approach is that of Qi and Sun [7]. Their work proposes to use a
hybrid approach were a genetic algorithm is applied to a team of agents whose learning
capabilities are based on neural networks. GA-based multi-agent reinforcement learning
bidding approach called GMARLB. Reinforcement learning performed by the multi agent
system is applied in the backgammon game domain. The general idea of this approach is
that individual agents within a team should be built using two decision modules: the Q
module and CQ module. A single controlling agent in the team is responsible for taking
the appropriate actions at any time during a game. Using the Q module, the controlling
agent selects the actions to be performed, whereas the CQ module determines whether the
agent should continue working as the controller or relinquish its control to other agents.
Once an agent relinquishes its control, a new agent is selected by bidding algorithms. Both,
the Q and the CQ modules learning capabilities are based on neural networks. In [7]. it is
reported that this approach achieved a winning rate of 56% against Pubeval after playing
400,000 games. Nevertheless, an independent test recently carried out in [1] showed that the
high performance reported in [7] was apparently due to measurements taken in too short
tournaments (50 games). According to [1], experimental results show that the winning
rate of GMARLB reduces to just 51.2% when confronted against Pubeval on 1000-game
tournaments.

In this paper we propose the usage of a pure genetic algorithm strategy as opposed to the
hybrid genetic algorithm /neural network approach essayed in [7]. Our algorithm produces
nearly the same winning rates as that of [7] with a structure much simpler and a smaller
number of training games. The genetic algorithm employed by our player, GA-Gammon,
optimize an initial vector of weights that is used as an evaluation criteria for selecting the
best possible valid move in a game. The weights are produced by the combination of di-
verse heuristic strategies proposed by expert human players. That initial vector is used as a
seed for generating a total of twelve slightly modified vectors (individuals), which are then
tested against Pubeval in 1000-game tournaments. A fraction of the best fitted individu-
als are selected for further processing in subsequent generations. As a result, individuals
are methodically refined generation after generation. Those individuals showing winning
performances above 48% are separated from the rest of the population. They are re-tested
in 5000-game tournaments against Pubeval. This last step is intended for confirming the
winning performance found during the evolutionary process as it has been found that this
figure shows a wide range of variability from tournament to tournament. After launching an
extensive search of best fitted individuals, our strategy was able to find individuals showing
a performance of up to 50.0% when confronted against Pubeval on 5000-game tournaments.

Individuals with winning performances of 50% start appearing after an average of 20
generations using a population size of 40 individuals. Recall that each individual undergoes
a 1000-game tournament against Pubeval. Therefore it is fair to say that our algorithm
needs an average of 40 x 20 x 1000 = 800, 000 games for finding the strong players reported
in Section 3.

The rest of this paper is organized as follows. Section 2 describes GA-Gammon in detail.
The comparative performance results of GA-Gammon while playing against Pubeval and
Fuzzeval are presented in Section 3. Finally, in Section 4 we describe future work and
present some conclusions.
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2 GA-Gammon an Intelligent Backgammon Player

In this work we use a Genetic Algorithm (GA) to evolve a set of weights associated
to the heuristic strategies employed by human experts while playing backgammon. The
vector of weights contains sixteen elements. The set of strategies employed was designed
following the recommendations listed in [3, 8] by a group of expert human players. The
general idea of GA-Gammon’s approach is to promote those board states that are evaluated
as beneficial for improving the performance of our player. The vector weights are evolved
by a simple Genetic Algorithm (GA) with the goal of maximizing the number of victories
achieved by GA-Gammon. The fitness function employed by the GA is obtained by setting
the GA-generated individuals to play against Pubeval.

2.1 Description of the Genetic Algorithm

This section describes the main features of the GA employed in GA-Gammon.

Genetic Algorithms (GA) were proposed by J. Holland in the mid 70’s [4, 5]. GAs are in-
spired by the Neo-Darwinian principles of adaptation and survival of the fittest individuals.
Although originally proposed for improving/optimizing machine learning techniques, GAs
have been more applied in the domain of optimization. GAs are population-based tech-
niques whose main characteristic is the evolution of several potential solutions (regarded as
individuals) at the same time. Algorithm 2.1 shows the basic skeleton of a GA 1.

From Algorithm 2.1 it can be seen that a crucial factor for achieving effectiveness when
using genetic algorithms is to accurately map the variables to be optimized to individuals,
a process known as problem representation. It is also important to come out with an evalu-
ation function that allows us to establish which individuals are better fitted. Furthermore
the single two main mechanisms that a genetic algorithm has for finding good solutions
are the crossover operator and the mutation operator. The crossover operator defines how
the parents’ characteristics are transmitted to the children population. The mutation op-
erator randomly modifies a small fraction of the children population with the purpose of
introducing better individuals to the evolutionary process.

Algorithm 1 Basic Skeleton of a Genetic Algorithm
Require: The population size PopulationSize, number of generations N.
Ensure: Finds the “best” individuals.
1: Create an initial population of individuals of size PopulationSize.
2: for i =0 to N do
3 Compute the fitness value to each individual in the population.
4:  Based on their fitness value, select the individuals to be reproduced (parents).
5
6

Apply the crossover operator to the parents population to create the children.
Apply the mutation operator to the children population. Children are the new pop-
ulation.
end for
7. Return(Best survival individuals)

Tt is noted that Algorithm 2.1 corresponds to the original version of a GA. Quite a few new operators
have been proposed in the literature aiming to improve the search and/or optimization capabilities of the
GAs.
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In the rest of this Section we explain how the general framework of Algorithm 2.1 was
applied to the problem in hand. We explain in detail the specific problem representation,
fitness function, crossover and mutation operators utilized by our algorithm.

2.1.1 Representation

An individual in the population is composed of sixteen elements, i. e. a chromosome is
composed of sixteen genes. Each gene represents a weight w.

Let us call each individual in the population as W, with W = w; , and j € [1..16]. Then
an individual or chromosome is composed of sixteen genes or weights w;.

The GA’s population is composed of a set of individuals.

The weights take integer values from 1 to 100, except wy, which is defined in the range
[0..36] and wyg in range [3..15]. In the beginning the vectors are created randomly, using
values defined within the range chosen for each weight.

The individuals are represented using binary numbers.

2.1.2 The Fitness Function

Each individual i, where ¢ € [1..PopulationSize], in the population plays 1,000 games
against GA-Gammon. The percentage of victories obtained is assigned as the fitness value
for the individual 1.

A game against GA-Gammon is played by an individual using its weight vector. After
the dice are rolled, all possible valid moves that an individual can make are calculated. Each
chromosome evaluates each board state assigning a score S to it. The score is calculated
according to the rules presented in Tables 1 and 2. The board receiving the highest score
is selected for playing.

Table 1 shows how the weights w; are used to calculate the score S for a board state
if the game is in the contact phase. The score computation in the race phase is shown in
Table 2.

The entire processing steps performed by an individual while playing against Pubeval is
illustrated in Figure 1.

The initial population is created following the indicated representation. Then, the GA
is executed in the conventional way: Assigning the fitness value to each individual in the
population (percentage of victories when playing 1000 games against pubeval). Based on
the fitness value, the selection operator is applied in order to obtain the individuals to be
reproduced, i.e. the parents. Parents are recombined by applying the crossover operator to
obtain the children. The mutation operator is applied to the children. The children will be
the new generation. These steps are repeated until a stop criterion is met. The complete
GA’s process is illustrated in Figure 2.

In our case, the GA is stopped if the best fitness value does not change through 5
generations. On average the algorithm executes 20 generations.

It was determined experimentally that better results are obtained when the elitism ? is
applied to the three best individuals, i. e. the best three individuals in the population are
allowed to survive.

2Elitism is a mechanism that allows the best individual to survive in the next generation.
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Table 1: Board score computation S for the contact phase.

Let Tk

be an integer variable, with k£ € [1..10] then

Ty = The number of pieces’ blocks that are consecutive is multiplied by w;.

Ty = The number of positions with two or more pieces multiplied by wq

T5 = The total number of captured pieces from the opponent multiplied by ws.
If the probability that opponent’s pieces may enter the board (normalized
between 0 and 36) is less than wy then T) = ws, otherwise T = 0.

Ts = The number of positions with 2 or more pieces in the home board multiplied by ws.

Ts = The number of pieces left behind multiplied by —ws.

T7 = The number of blots in the home board multiplied by —ws.

If the number of pieces in one position is bigger than wg then Ty = —wqy.
If the number of blots is bigger than 3, then Ty = —wy;.

Tiop = —wqo multiplied by the probability that a blot is captured.

The value for the board score S in the contact phase is obtained as S = T}

Table 2: Board score computation for the race phase.

Let S

and T}, be integer variables, with k € [1..4] then

T1 = The number of pieces in the own outer board multiplied by —ws3.

Ty = The number of pieces in the opponent’s outer board multiplied by —w14.

T35 = The number of pieces in the opponent’s home board multiplied by —w;s.

If there is a piece outside of the home board and it is possible to move it to position 6
in the home board, then Ty = —ws.

The value for the board score S in the race phase is obtained as S = T},
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Played_Games = 0

| Startanew game

If it is individual i turn:
Roll the dice

'

Obtain all the possible
next movements from the
Move Representation List module

'

Compute the score S

for each possible next
movement by following
indications in tables 1 and 2

'

Select the highest
score S and play it

Wait for Pubeval
movement

Return the individual i’s
percentage of victories

Played_Games > 1000

Figure 1: Processing steps performed by an individual ¢ from the GA’s population while playing
against Pubeval.
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Generate the initial
population randomly

For each individual i
play 1000 games
against Pubeval

(see Fig. 1)

¢

For each individual:
Assign its percentage of
victories as its fitness value

'

‘ Select the parents to be reproduced ‘

‘ Apply the crossover operator to generate the children ‘

‘ Apply the mutation operator to the children ‘

‘ Children will be the new population ‘

Apply elitism with the
best three individuals

Figure 2: Genetic Algorithm General Structure.

3 Experimental Results

To validate the performance achieved by GA-Gammon we conducted a set of experiments,
whose results are summarized in this Section. All our results were obtained by applying
the following parameter values in the GA:

e Population size: 40 individuals

e Representation: Binary.

e Type of Selection: Stochastic Remainder with Replacement using Sigma scaling.
e Crossover rate: 0.9

e Mutation rate: 0.14

In order to determine the number of games that an individual should play against Pubeval
we conducted a set of experiments. Thus, we observed that after 1000 games the variation
in the winning rate is equal to 3.6% on average, after 2000 games the variation is equal
to 1.2% and 0.2% after 3,000 games. Based on this information, we decided that a good
compromise between winning rate and processing time would be to play 1000 games.

After we obtained the best individual from the GA process, GA-Gammon was set to play
against Pubeval and Fuzzeval. The experiment consisted of playing against these players 5
sets of 1,000 games each.

Proceedings of the Fifth Mexican International ||v,|~'|-:

Conference on Attificial Intelligence (MICAI'06) COMPUTER
0-7695-2722-1/06 $20.00 © 2006 IEEE SOCIETY



Table 3: Performance comparison of GA-Gammon while playing against Pubeval.

Type of Victories

Normal | Gammon | Backgammon | Total | Percentage
GA-Gammon 418 83 5 506 50.0%
Pubeval 391 101 2 494 50.0%

Table 4: Performance of GA-Gammon playing against Fuzzeval.

Type of Victories

Normal | Gammon | Backgammon | Total | Percentage
GA-Gammon | 485 78 13 576 59.5%
Fuzzeval 387 36 1 424 40.5

The best winning rate obtained by GA-Gammon by playing against Pubeval was 50.0%.
The types of victories that were obtained during the tournament are shown in Table 3.

When GA-Gammon was set to play against Fuzzeval, the maximal winning rate obtained
was 59.5%. The type of victories obtained for the best results are shown in Table 4.

In Table 5 is shown the comparison of the proposed GA-Gammon and other Backgammon
players. GA-Gammon obtained very competitive results with a very simple schema.

4 Conclusions and Future Work

In this paper we have described GA-Gammon, a new approach to create strong backgam-
mon player programs based on the application of evolutionary algorithms. GA-Gammon,
employs some of the heuristic strategies that expert human players have used successfully.
GA-Gammon employs a set of weight vectors that is considered the GA’s population. Each
individual in the population is set to play against Pubeval to determine its fitness value.
The GA finds the best weight vector that maximizes the winning rate of our player.

GA-Gammon employs the information obtained from two sources of knowledge: 1) a set
of heuristic playing strategies suggested by expert human players, and 2) a board score that
is dependent on the percentage of victories obtained while playing against Pubeval.

Our experiments show that the selection of the different heuristic strategies plays an
important role in GA-Gammon’s performance.

Table 5: Comparing GA-Gammon against other Backgammon Players

Player %Wins vs Pubeval
Gp-Gammon]1] 56.8
GMARLB-Gammon [7] 51.2
GA-Gammon 50.0
ACT-R-Gammon [9] 45.94
Fuzzeval [2] 42.0
HC-Gammon [6] 40.00
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GA-Gammon was evaluated by setting it to playing against Pubeval and Fuzzeval. Our
experimental results indicate that GA-Gammon plays competitively with these players
using a simple genetic algorithm. GA-Gammon obtained a winning rate of 50.0% against
Pubeval, while clearly outperforming Fuzzeval with a winning rate of 59.5%.

It was shown that the proposed GA-Gammon player obtained very competitive results
when compared against other players which are representatives of the state-of-the-art with
a simple algorithm by training only 800,000 games in average.

In the future we will experiment with binary representation using Gray codes and dif-
ferent GA’s parameters. Furthermore, we are planning to compute the GA-Gammon’s
fitness function by playing against a more powerful strategy such as TD-Gammon, instead
of Pubeval.
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