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Table 6

Characteristics of the main five different types of fuel cells.
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Alkaline fuel cells have been used for space and military 
applications but are expensive and challenging to use in 
other applications. Phosphoric acid (PAFC), molten car-
bonate (MCFC) and alkaline (AFC) fuel cells have histori-
cally attracted a lot of R&D, but still face a number of chal-
lenges for commercial use. Low- and high-temperature 
PEM and solid oxide (SOFC) fuel cells are currently 
attracting the largest development efforts for CHP and 
transport applications. Domestic CHP units based on both 
PEMFCs and SOFCs have recently been launched by 
industrial suppliers [125, 126] as have larger units for dis-
tributed generation [127].

Fuel cells and electrolysis cells are still to enter a wide 
spread use, but the technologies have great potential in a 
future more efficient and more sustainable energy system.

Fuel cells in a more efficient and sustainable 
future energy system

Fuel cells can save energy thanks to their high electrical 
efficiency. Whenever electricity is generated from fossil 
resources and the accompanying heat is not used, the elec-
trical efficiency of the process determines the energy input 
required to meet the power demand. Most centralised fossil 
power plants worldwide operate with no or limited use of 
their waste heat. The electrical efficiency of a high-temper-
ature fuel cell plant may be as high as 60% and if the fuel 

Working principle

A fuel cell is an electrochemical cell that converts the 
chemical energy in a fuel to electricity and heat. The elec-
trical efficiency of the conversion is not limited by the Car-
not efficiency and hence may be very high compared to 
power production based on combustion processes.

Fuel cells possess a number of other characteristics which 
make them relevant to many different applications in the 
future energy system. They are by nature modular and may 
thus be used at a wide variety of scales: from battery 
replacements (0.1–1 kW), through combined heat and 
power (CHP) for single houses (1–10 kW) and decentral-
ised units (100 kW–5 MW), to large centralised power and 
CHP plants (100–500 MW). Fuel cells may also be oper-
ated in reverse mode, as electrolysers, to convert electrical 
energy to chemical energy. An example is the reduction of 
steam to hydrogen and CO2 to CO; using well-known cata-
lytic routes the resulting gases can be further converted to a 
range of hydrocarbons which may be used as transport 
fuels, such as methanol, DME and even synthetic diesel 
[124].

Several different types of fuel cells exist. They can be classi-
fied by the type of electrolyte used (Table 6). All have their 
advantages and disadvantages, but none has to date 
matured to a level where fuel cells are in widespread com-
mercial use or play a significant role in the energy system. 

The role of fuel cells and electrolysers  
in future efficient energy systems
Peter Vang Hendriksen DTU Energy Conversion, Brian Vad Mathiesen, Department of Development and Planning, Aalborg University,  

Allan S. Pedersen and Søren Linderoth, DTU Energy Conversion; 

Acronym AFC PEMFC PAFC MCFC SOFC

Fuel cell type, 
electrolyte

Alkaline, Potassium 
hydroxide

Polymer membrane Phosphoric acid Molten carbonate Solid oxide 

Catalyst Nickel Platinum Platinum Nickel Perovskites/Ni

Operating 
temperature

40–100°C 60–200°C 180–220°C 550–700°C 500–1,000°C

Fuel(s) Pure H2 Pure H2 or CH3OH Pure H2 H2, CO, NH3, 
hydrocarbons, alcohols

H22, CO, NH3, 
hydrocarbons, alcohols

Intolerant to CO, CO2 CO, S, NH3 CO, S, NH3 S S

Potential electric 
efficiency 1) 

~45% ~45% ~45% ~60% ~60%

Potential applications Mobile units, space, 
military

Mobile units,  
micro-CHP

Smaller CHP units Larger CHP units CHP from micro- to 
large-scale

1)  The achievable electrical efficiencies depend on stack load. The numbers in the table are indicative. Under special conditions higher electrical 
efficiencies may be achievable. For high-temperature PEMFCs a 55% net system efficiency has been achieved. The higher efficiencies quoted for 
the high temperature technologies (MCFC, SOFC) lie primarily in their suitability for using hydrocarbon fuels. MCFCs and SOFCs can achieve 
electrical efficiencies of 70–75% when combined with gas turbines or steam turbines. Total efficiency may be more than 90%, but depends on the 
cooling system and the operating temperature.
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based on natural gas is an option that does expand the 
amount of CHP in the system and increases the efficiency 
compared to boilers. However, the analysis points out that 
the best way to expand CHP based on fuel cells is through 
use in de-central plants (>0.5 MW) [133]. These plants are 
more efficient than the local ones and allows for more 
extensive use of heat pumps locally where district heating 
grids are not feasible. The latter is beneficial as the heat 
pumps via their high efficiencies (“heat out”/”electricity in”) 
exceeding one allows the heat-demand to be covered using 
less fossil resources and a larger share of intermittent power 
production (wind, solar) in the system. Fuel cells in decen-
tralised CHP plants give higher fuel savings when used in 
integrated energy systems with large shares of intermittent 
renewable energy, compared to conventional energy sys-
tems. The reason is that the high electrical efficiency of fuel 
cells reduces the amount of heat produced by CHP plants. 
In conventional energy systems this means that more heat 
would have to be produced by boilers, whereas in inte-
grated systems incorporating wind power the extra heat 
demand can be met by large heat pumps for district heat-
ing, increasing the overall fuel efficiency of the system. 

From an energy efficiency perspective, combining fuel cells 
with heat pumps and heat storage creates synergy with 
intermittent production based on renewable resources. In 
decentralised CHP plants with district heating grids, fuel 
cells are especially promising as replacements for conven-
tional simple cycle gas turbines. Fuel cells have higher effi-
ciencies, even at part load, and like gas turbines they can be 
combined with heat pumps and heat storage. It is harder 
for fuel cells to compete with combined cycle gas turbines. 
Fuel cells can become important in the move towards 
future 100% renewable energy systems, because in such 
integrated energy systems they are able to reduce our 
dependence on fossil fuels to a greater extent than combus-
tion technologies. It should be noted that above conclu-
sions on where fuel cells may be best placed from an energy 
system perspective depends on a number of assumptions 
regarding technology availability and importantly on 
expected costs and efficiencies of the applied technologies. 

Fuel cells in the transport sector

Fuel cells may also improve energy efficiency in services 
other than power production. A particularly important 
example is transport. Transport accounts for around 33% 
of the total annual energy consumption in Denmark [134] 
and there is a huge potential to save energy in this sector, as 
discussed in Chapter 9. One route is via fuel cell cars.

The efficiency of a fuel cell is roughly double of that of a 
combustion engine. Subtracting the energy losses associ-

cell is combined with a steam cycle the overall efficiency 
may be as high as 70–75% [128]. This is higher than that of 
advanced condensing power plants and gas turbines, so the 
use of fuel cells may save energy by reducing losses during 
electricity production.

Making use of the heat produced during electricity genera-
tion turns power plants into CHP plants (combined heat 
and power). In Denmark there is a long tradition of using 
CHP to heat houses via district heating networks. In 2010, 
61% of all the electricity produced in Danish thermal 
plants was accompanied by use of the waste heat. In a 
future energy system incorporating fuel cells, the use of 
heat from power plants will remain important. 

The modular character of the technology and the fact that 
CHP units may be made as small as 1–10 kW to several 
100 MW allows both local and decentralised power genera-
tion based on fuel cells. This provides another way to save 
energy, since local generation reduces transmission losses 
for both power and heat. Losses in the electrical grid 
depend on the transmission voltage and distance; at ~400 
kV the losses are in the range from 4% - 9%/1000km [129, 
130]. In Denmark the total loss associated with electricity 
transmission is estimated to be 6% [131]. Heat losses 
depend on system size; as an example, in a 20 MW system 
supplying around 6,000 houses, around 20% of the heat is 
lost in transmission [132]. Local production in CHP units 
eliminates these losses. Whether the energy saving eco-
nomically will warrant the extra investments depends on 
assumed future energy and technology costs. System simu-
lations [133] (see further below) show that despite the 
potential for reduced transmission losses with local fuel cell 
CHPs introduction in larger units (0,5-5MW) is more 
favourable from a system perspective. 

Increased amounts of fluctuating power production on the 
grid from solar and wind will further increase the need for 
both load balancing and backup generating capacity. It is 
crucial that this capacity is flexible and can start up quickly 
[133]. Future energy systems may need several types of fuel 
cells within both the heat and power sector and the trans-
port sector. To identify feasible applications for fuel cells it 
is important to see them as part of the entire energy sys-
tem, and not just the isolated role they play in supplying 
consumers directly with power and heat.

Integration studies of fuel cells in the Danish energy 

system

A recent study examined the use of fuel cells and electroly-
sis in future energy systems, with a focus on Denmark [133]. 
For isolated houses domestic fuel cells units (1–10 kW) 
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Electrolysis in the future energy system

In the specific context of saving energy by replacing fossil 
fuels, fuel cells may have even greater potential when used 
in reverse, for electrolysis. Electrolysis converts electrical 
energy to chemical energy, so for instance water may be 
split electrochemically into hydrogen and oxygen.

Electrolysis may act as an “enabling technology” facilitating 
substitution of fossil energy by alternatives in several differ-
ent ways. These include storing energy from intermittent 
renewable sources such as wind and solar power, and pro-
ducing synthetic fuels for transport. The latter will be 
important in a future sustainable system where biomass 
resources will be scarce [144].

The energy efficiency of electrolysis can be very high, at 
around 90–95% (based on higher heating value) [143, 145]. 
The exact value of the efficiency depends on temperature, 
current loading, and the chosen electrolysis cell technology 
(Table 6).

Energy storage

An increasing share of power production that relies on 
fluctuating sources like solar and wind places increasing 
demands on load balancing on the electricity grid. This is 
true both at short timescales, to keep the frequency con-
stant, and for longer-term storage of surplus electricity so 
that the system can cover periods when consumption 
exceeds production. Both objectives can be met by electrol-
ysis, with storage of the gases produced and conversion 
back to electricity as required. For ease of storage and re-
use it may be best to produce either methane or liquid 
fuels. Methane can be produced in two steps. Syngas (a 
CO/H2 mixture) is first produced either via co-electrolysis 
of CO2 and H2O or by reacting CO2 with hydrogen from 
steam electrolysis [146], and then catalytically converted to 
methane. Both routes to syngas have been demonstrated 
[145,146] and the conversion of syngas to methane is well 
established in the chemical industry.

From a number of detailed analyses of how to realise a 
totally fossil-free Danish energy system by 2050, transmis-
sion grid manager Energinet.dk has assessed the amount of 
extra wind power capacity needed (among other renewable 
sources) as well as the required storage capacity [147]. 
Energinet.dk concluded that an extra 17 GW of installed 
wind capacity is needed, plus around 3.5 TWh of storage. 
(Interestingly, the capacity of the existing Danish natural 
gas grid, including two storage sites, is about 11 TWh.) 
Energy storage in batteries on board a fleet of EVs is 
another option, though of rather low capacity. Around 1.5 

ated with producing the fuel (hydrogen or methanol), the 
overall well-to-wheel energy saving is reduced to around 
15–25% (for hydrogen from natural gas) [135]. For hydro-
gen derived from biomass there is no efficiency gain com-
pared to diesel, but of course there is a dramatic benefit in 
terms of emissions [136, 137, 128, 138].

Several car manufacturers including Honda, Hyundai, 
Daimler and Ford have development programmes on fuel 
cell cars, though commercial fuel cell cars are not yet avail-
able. Small demonstration fleets exist in several places in 
the world, including buses [139] as well as cars [140]. 
Development has proved to be much slower than expected 
a decade ago, but several developers have announced that 
they expect market introduction around 2015 [141].

For transport with improved environmental performance, 
fuel cell vehicles are in strong competition with battery-
based electric vehicles. Whereas fuel cell vehicles provide 
longer drive ranges – around 500 km – than battery EVs 
[142], the latter are technically more mature and nearer 
commercial availability. At the current state of develop-
ment, battery EVs are also more fuel-efficient and cheaper 
than fuel cell vehicles. Due to their limited range, battery 
EVs may be best suited to covering only certain parts of the 
transport demand. For long journeys a hybrid solution may 
be the best option, combining the high fuel efficiency of 
battery EVs with efficient fuel cells to increase the range. In 
this case fuel cells would compete with the small combus-
tion engines used in current hybrid vehicles [133].

Large-scale introduction of both technologies is hampered 
by the higher cost of the vehicles as well as the large invest-
ments needed for new infrastructure (hydrogen fuelling 
stations and charging/battery replacement stations, respec-
tively). From an emission reduction perspective an inter-
esting alternative is to run conventional combustion 
engines on synthetic fuels produced by electrolysis (see 
below) [143].

Besides their use for power production in CHP plants and 
transport, as discussed above, fuel cells may reduce energy 
losses by replacing inefficient existing technologies in a 
number of specific niches. One example is the auxiliary 
power units which long-distance trucks use to generate 
electricity for cargo refrigeration and driver comfort. Con-
ventional auxiliary power units based on generators driven 
by the main engine are very inefficient (<15%), so fuel cells 
could be an attractive alternative.
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carbon yield [149,143]. Effectively it uses the CO2 to carry 
electricity from wind, solar or hydro to the transport sector 
in the form of synfuels.

In the short term, sources of CO2 apart from biomass could 
include industrial point sources such as cement plants, 
which contribute 5% of total global anthropogenic CO2 
emissions. In the longer term it might be possible to cap-
ture CO2 from air [150].

Electrolysis in the Danish energy system

Detailed systems analyses of fossil-free future Danish 
energy systems [133,144] have also pointed out the poten-
tial of electrolysis to balance fluctuating power production 
and to provide a route to synthetic fuels for heavy trans-
port, shipping and aviation. In the long term some applica-
tions of electrolysis are more suitable than others, and 
other energy storage technologies – such as large heat 
pumps in combination with heat storages in CHP plants 
and battery electric vehicles – may well precede large-scale 
electrolysis because of high efficiency and lower cost at the 
present stage of development [144].

Fuel from electrolysers combined with fuel cells in CHP 
plants can supplement other fuels, such as biogas or syngas, 
in energy systems with high shares of intermittent renewa-
ble energy. When the share of renewable electricity from 
wind or PV exceeds 50% of the supply, the advantage of 
electrolysers for hydrogen and synthetic fuel production 
improves significantly. If electrolysis is introduced to a sys-
tem with a smaller share of fluctuating renewable electricity 
there is a risk that conventional power plants would some-
times have to supply electricity for electrolysis which is 
undesirable as it reduces overall efficiency of the system 
[133].

The Danish government aims for 50% of the electricity 
demand coming from wind power by 2020. Although elec-
trolysis is not the only balancing or storage option for the 
Danish system, it has the potential to become important 
because of its ability to supply transport fuels and to side-
step the biomass resource limit outlined above.

Technology status

All the fuel cell types listed in Table 6 have similar (or even 
identical) counterparts in electrolysers.

Alkaline electrolysis systems have been commercially avail-
able for many decades from a number of suppliers. Mega-
watt-scale plants are in operation, typically for on-site use 
in industrial processes where scale or transport costs make 
conventional hydrogen processes more expensive. By far 

million EVs would be able to store on the order of 50 GWh, 
which could match hour-to-hour fluctuations but would 
not be enough to cover weeks of low wind generation. 

Electrolysers can thus become important in the transition 
to renewable energy. In this transition it is very important 
to integrate the electricity sector with the heating sector 
and the transport sector as will be discussed further below

Transport fuels

Extensive use of electrolysis may also play a role in reduc-
ing consumption of fossil energy and emissions from the 
transport sector.

Hydrogen for fuel cell vehicles may be produced by steam 
electrolysis using power from renewable sources like wind 
and solar. An alternative which also avoids the problems 
associated with hydrogen storage is to produce synthetic fuels 
– methanol, DME or synthetic diesel – via Fischer-Tropsch 
processes. These liquid fuels can be produced from syngas, 
which in turn is made via electrolysis powered by renewables.

The synthetic fuels route has the disadvantage that it does 
not bring the efficiency improvements possible by replacing 
combustion engines with fuel cells. However, it has several 
advantages: the existing liquid fuel infrastructure can still 
be used, and future sustainable non-fossil energy systems 
will still need liquid fuels, for example for aviation and 
shipping. A detailed techno-economic analysis shows that 
this route can produce synthetic fuels at an energy effi-
ciency of around 70% (electricity to liquid fuel). Assuming 
an electricity price of $0.04–0.05 /kWh, which is close to 
the average wholesale electricity price in the USA, the pro-
cess would break even at a fuel price of $3 /gallon (DKK 
4.25 /l) [143].

Carbon sources and biomass upgrades

The synfuels discussed above need a source of carbon. An 
appealing option from a sustainability point of view is to 
use biomass as the carbon source. However, biomass is 
scarce and is estimated to cover only around 20% of total 
energy requirements [148], so it is important to use this 
resource efficiently. Furthermore, one should be careful In 
replacing food production with energy crops.

An interesting option in this context is “carbon capture and 
reuse”, where one first burns the biomass to produce elec-
tricity and heat, and then uses the resulting CO2 to produce 
synfuels via electrolysis. This is a way to produce transport 
fuels from biomass efficiently in terms of both energy and 
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demand, but also on sector integration through demand 
flexibility and various storage options:

large heat pumps;

electric vehicles for electricity storage;

sector, enabling energy storage in a dense liquid form;

Smart energy systems enable flexible and efficient integra-
tion of large amounts of fluctuating electricity production 
from sources such as wind turbines. The whole idea of 
building wind turbines or PV systems is to cut use of fossil 
energy sources. The gas grid´s storage facilities and liquid 
fuels provide long-term storage, while electric vehicles and 
large heat pumps in combination with thermal heat storage 
contribute shorter-term storage and flexibility. If the large-
scale integration of renewable energy is accompanied by 
the integration of sectors, the increased fuel efficiency can 
potentially decrease the costs of the total energy system.

The first and most important step is the integration 
between the heating and power sectors. This is already in 
place to some extent in Denmark, where approximately 
60% of the electricity demand is met by CHP plants and 
more than 60% of heat demand is supplied by district heat-
ing. This integration requires thermal storage, which is cur-
rently installed in more than 500 small and medium-sized 
CHP plants to enable them to operate more flexibly (pre-
sent thermal storage capacity in the Danish district heating 
system is estimated to be approx 50 GWh). This can reduce 
fuel consumption in the overall energy system by replacing 
condensing power plants and helping to integrate fluctuat-
ing wind power effectively. More important than the con-
tent of the storage is that the storage allows for flexible pro-
duction and an unbundling of the heat demand and the 
electricity production.

20–25% of wind power on the grid can be integrated with-
out significant changes to the energy system. With more 
than 20–25% of wind power, the analysis points to installa-
tion of large heat pumps in district heating plants in com-
bination with the heat storages as the next needed step in 
integrating the heating and power systems. With wind 
power levels above 40–45% the transport sector also needs 
to be integrated with the electricity system [153]. Integration 
with the transport sector will be a significant challenge in 
the coming years. Electric vehicles can be important in this 
integration, as they provide flexibility on the demand side. 
Exceeding 50-60% fluctuation renewable energy in the sys-
tem electrolysis becomes important as really large capaci-

the largest share of global hydrogen production comes 
from fossil fuels, however.

Recently PEM electrolysis systems have also become availa-
ble from industrial suppliers, though so far only a few 
plants exist.

As yet there are no commercial suppliers of solid oxide 
electrolysis (SOEC) plants, but standard SOFCs have been 
shown to work well for electrolysis at modest current den-
sities [151]. The development and marketing of SOECs can 
therefore be expected to follow a few years behind that of 
SOFCs, with the same industrial players involved. Though 
it has only been demonstrated at a scale of 15 kW this 
technology has great potential to become cost-competitive; 
the high operating temperatures allow the use of expensive 
noble metals to be avoided, and high volumetric production 
can be achieved without compromising efficiency [143,145].

Both fuel cells and electrolysis cells can play important 
roles in the future energy system, where the focus is on sav-
ing energy and replacing fossil resources. Which of the 
technologies mentioned will be developed and used on a 
global scale depends eventually on their availability on the 
right scale at the right time, and most importantly on their 
costs compared with competing technologies. In our view 
the most promising systems, which are also the ones cur-
rently attracting most of the development funding, are:

Denmark’s transition to a smart energy system

This section presents the results of systems analyses of a 
future Danish energy system based on 100% renewable 
energy by 2050. The analysis balances supply and demand 
under a range of assumptions about future trends in con-
sumption and availability and the estimated costs of supply 
technologies. The work was carried out under the CEESA 
(Coherent Energy and Environmental System Analyses) 
project funded by the Strategic Research Council [144]. In 
the analyses the energy system analyses model Energy-
PLAN has been used. EnergyPLAN [152] is a deterministic 
simulation model ensuring that the system balances from 
hour to hour throughout the year. 

Increasing penetration of intermittent renewable resources 
in the electricity grid increases the demand for smart 
energy systems. In a smart energy system the focus is not 
only on the electricity grid and its balance of supply and 



100  DTU International Energy Report 2012

13 A

By 2050, when the Danish energy system is envisaged to be 
fossil-free, new technologies will be needed to make sure 
that renewable energy can meet all the demands placed on 
the system. Hence the CEESA 2050 analysis has a scenario 
where after 2030, electrolysers producing hydrogen for bio-
DME or biomethanol are gradually increased in volume to 
provide large amounts of liquid fuels to the transport sec-
tor. At the same time, co-electrolysers begin to produce 
feedstocks for DME and methanol using carbon captured 
from power plants, CHP plants or other sources. Figure 47 
shows the energy flows in a 100% fossil-free Danish energy 
system in 2050 according to the CEESA 2050 scenario 
[144]. In these scenarios methanol is used as an example of 
how it is possible to use electrolysers to make synthetic 
fuels; turning wind energy into liquid fuels. There are more 
technologies that enable this, however this principle will 
become increasingly important as other biofuels for trans-
port put a larger strain on the limited biomass resource. In 
the specific scenario the electrolysers produce more than 
20 TWh of hydrogen or more than 70 PJ. This amount of 
energy would have to be replaced by at least as mush bio-
mass if we did not have the electrolyser technology in the 
system.

ties have to be put in place to balance supply and demand 
[133,153]. This will introduce extra losses in the system, 
but has the advantages that larger shares of fluctuating pro-
duction can be tolerated and biomass consumption is 
reduced.

A smart energy system strategy implies the development 
and integration of a wide range of supply and end-use tech-
nologies, markets and control systems, including electric 
boilers and heat pumps in distributed generation, electric 
vehicles, mechanical and electrochemical storage systems, 
flexible demand mechanisms, and more. Denmark and the 
Nord Pool already have systems in place to operate smart 
energy markets, specifically on electricity markets that also 
enable smaller technologies to participate. These can be 
further developed in the coming years to accommodate 
more and more integration technologies. A recent study 
has documented that systems with large amounts of renew-
able energy and flexible integration technologies will per-
form equally well or better (i.e. make more money) on the 
Nord POOL market than a reference system similar to the 
one we have today [154]. 
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Figure 47

Energy flows in a 100% fossil-free Danish energy system in 2050, according to the CEESA 2050 scenario. The flows represent the annual aggregated 
values; however every single hour for all demands and production technologies is accounted for in energy system analyses.

Reference: Preliminary 2011 version of results presented in Mathiesen, B.V. et.al. “CEESA 100% Renewable Energy Scenarios towards 2050”. Aalborg 
University, 2012 [144].
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