Aalborg Universitet AALBORG

UNIVERSITY

Multi-currency Influence Diagrams

Nielsen, Sgren Holbech; Nielsen, Thomas Dyhre; Jensen, Finn V.

Published in:
Advances in Probabilistic Graphical Models

Publication date:
2007

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Nielsen, S. H., Nielsen, T. D., & Jensen, F. V. (2007). Multi-currency Influence Diagrams. In P. Lucas, J. Gamez,
& A. Salmeron (Eds.), Advances in Probabilistic Graphical Models (Vol. 213, pp. 275-294). Springer.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 23, 2025

https://vbn.aau.dk/en/publications/727a71d0-36d6-11db-a718-000ea68e967b

Multi-currency Influence Diagrams

Sgren Holbech Nielsen, Thomas D. Nielsen, and Finn V. Jensen

Aalborg University, Aalborg, Denmark

Abstract. When using the influence diagrams framework for solving a decision
problem with several different quantitative utilities, the traditional approach has
been to convert the utilities into one common currency. This conversion is carried
out using a tacit transformation, under the assumption that the converted prob-
lem is equivalent to the original one. In this paper we present an extension of the
influence diagram framework. The extension allows for these decision problems to
be modelled in their original form. We present an algorithm that, given a linear
conversion function between the currencies of the original utilities, discovers a char-
acterisation of all other such functions, which induce the same optimal strategy. As
this characterisation can potentially be very complex, we give methods to present
it in an approximate way.

1 Introduction

Influence diagrams (IDs) were introduced by [4] as a compact modelling lan-
guage for decision problems with a single decision maker (DM). When a
decision problem is represented using the ID framework, the specification
rests on two principal components: A graphical structure for capturing the
qualitative part of the domain, and quantitative information in the form of
probabilities for representing uncertainty and utilities for representing pref-
erences.

The separation of the qualitative and quantitative part of the ID is one of
the appealing properties of IDs when considered as a modelling tool. First, it
helps the modeller to focus on structure rather than calculations, and second,
the structure emphasises the local relations, which govern the specification of
the probabilities. Unfortunately, this locality principle does not completely
extend to the specification of the utility function: The utility function is usu-
ally specified through a collection of local utility functions, which appear as
the additive components of the global utility function. This implies that all
local utility functions should appear on the same scale. For instance, in a
medical domain money and discomfort would need to be transformed onto
a common scale. For decision problems where several parties are affected
by the decision making process, the utility functions for the individual stake-
holders would also have to be transformed into a single utility function before
reasoning can take place. Unfortunately, it is usually difficult to elicit the pa-
rameters, which governs such transformations (e.g. what is the monetary cost

2 Sgren Holbech Nielsen et al.

of one unit of discomfort?).! Moreover, the nature of such a transformation
has a direct impact on the solution of the ID, but this effect cannot be made
transparent when the transformation is tacit. Furthermore, this type of un-
certainty, or ignorance, is not easily represented in the model.

In this paper we propose a framework, termed multi-currency IDs (MCIDs),
for representing decision problems with local utility functions of different
currencies.? An MCID can be seen as an ID augmented with currency infor-
mation for the local utility functions. We propose an algorithm that, based on
an MCID representation of a decision problem and a solution corresponding
to a given set of currency transformation parameters, provides a characteri-
sation of all combinations of parameters, which would give rise to the same
solution — a solution being an optimal strategy composed of a policy for each
decision. The result of such an analysis thus provides an indication of how
robust the optimal strategy is in terms of the tacit conversion parameters.
Regular sensitivity analysis (see e.g. [3] and [8]), on the other hand, provides
robustness measures in terms of isolated deviances in one or more of the ac-
tual utility values in the ID, with no regard to how the uncertainties in these
parameters are related. By encoding each value for which regular sensitivity
analysis is to be performed by its own currency, the analysis could be per-
formed by the method we propose here, and it can therefore be seen as a
generalization of regular sensitivity analysis.

As the result of the analysis may be quite complex, we provide, in addition to
this algorithm, methods for presenting the result to a DM in a comprehensible
manner.

Ezample 1 (A Motivating Ezample). The ID in Fig. 1 models a decision prob-
lem where a doctor is faced with a patient. The health Health, of the patient
at the time of the initial consultation is revealed only indirectly by the symp-
toms Symptoms exhibited by the patient. Based on the symptoms, the doctor
must decide whether to perform a test Test. The test will produce a result
Result, which the doctor observes before deciding on a treatment (if any)
Treat. The health of the patient, after a possible treatment has been ad-
ministered, is represented by the variable Healths. As medical supplies are
expensive both the Test and Treat decisions are associated with a monetary
cost represented by the utility nodes Uz and Usz. Furthermore, if a test is
performed, it might be associated with a degree of pain, risk of mortality, or
other side effects on behalf of the patient. This is represented by the utility
node U;. The Healthy variable also has a preferred state (corresponding to
the patient being well), which is encoded by the utility node Uy.

! [12] considers utilities that are defined as a linear combination of cost, insult and
rigk, for instance.

% Even though the word currencies is used here, we are not restricting ourselves
to monetary currencies, but consider human lives, spare time etc. as currencies
also. Also, in decision problems with several stakeholders, each currency can be
seen as the utility for one specific stakeholder.

Multi-currency Influence Diagrams 3

Now, before the doctor calculates an optimal strategy for his decision prob-

Results Healtho

> @

Fig.1. Ezample of an ID

lem, he needs to transform U;, Uy, Us, and U, onto a common scale — say,
dollars. This involves estimating the monetary equivalents of the patient be-
ing ill and of him being subjected to a painful test. However, different trans-
formations might produce differing optimal strategies. Therefore it would be
advantageous to know:

1. What choice of conversion parameters has been the basis of the calculated
optimal strategy?

2. What other conversion parameters would produce the same optimal strat-
egy? If another stakeholder, such as the patient in this example, disagrees
with the parameters, we could guarantee that even though there is dis-
agreement on the exact choice of parameters, the identified set of param-
eters all render the same strategy optimal.

None of these questions can be answered from the ID alone.

As an example of how decision problems involving several stakeholders can
be interpreted as a multi-currency problem, the ID introduced above can
be seen as describing a conflict between the interests of the patient and the
hospital (and/or the patient’s medical insurance company) mediated by the
doctor: By letting the patient specify utility values corresponding to utility
nodes U; and Uy, and the hospital the ones for U, and Us, we can investigate
how the decisions of the doctor relate to these two stakeholders; he may be
indulgent to please the patient more than the hospital or vice versa.

2 Influence Diagrams

An ID is a directed acyclic graph consisting of chance (V¢), decision (Vp),
and utility nodes (Vy), with the two constraints that a node has no chil-
dren if and only if (iff) it is a utility node, and that there is a directed path
encompassing all decision nodes in the diagram. A chance node (drawn as
an ellipse) represents a chance variable, which is a discrete variable outside

4 Sgren Holbech Nielsen et al.

the DM’s direct control. A decision node (drawn as a rectangle) represents
a decision variable (or simply a decision), which is a discrete variable un-
der the DM’s direct control. A utility node (drawn as a diamond) represents
a local utility function, and the set of local utility functions constitute the
components in an additive factorisation of the global utility function [13].
When the meaning is obvious from the context, we use the terms node and
variable interchangeably and do not distinguish between a variable or local
utility function and the node representing it.

When speaking of IDs we denote by pa(V') the set of nodes, which are parents
of the node V', and by sp(V') we denote the set of states of variable V — states
being outcomes for chance variables and decision options for decisions. For a
set of variables, S, we denote by sp(S) the configurations X ycgsp(V).

An arc in an ID represents either functional dependence, probabilistic de-
pendence, or temporal precedence, depending on the type of node it goes
into. In particular, an arc emanating from a node X going into a decision
node D is a temporal precedence arc and states that X is observed or decided
upon immediately before D is decided upon. No-forgetting is assumed so that
variables observed or decided upon immediately before previous decisions are
remembered at subsequent decisions. A chance variable, which is not a parent
of any decision in the ID, is either never observed or observed after the last
decision. The temporal precedence arcs impose a partial temporal ordering
< on Vg U Vp. Together with the requirement on a directed path through
all decisions, this ordering induces a total temporal ordering on Vp. For no-
tational convenience, we assume that the decisions are labelled Dy,..., Dy,
such that ¢ < j implies D; < D;. Furthermore, we use the notation C;_;
to mean the set of chance variables observed immediately before deciding on
D;. By C,, we refer to the set of chance variables never observed (or observed
after the last decision D,, has been decided upon). In summary we have

C0-<D1-<Cl-<"'-<Dn-<Cn,

and no-forgetting amounts to the assumption that for any Dy all observa-
tions of variables in U;<;C; and decisions taken for D;,...,Dj_; are re-
membered when the DM decides on Dj. We define the past of decision D
to be past(D) = {V € Ve UVp | V < D}. We encode the quantitative as-
pects of the modelled decision problem as a set ¢ of conditional probability
distributions and a set ¥ of local utility functions:

& = {P(C|pa(C)) | C € V¢}, and
¥ ={U(pall)) |UeW}.

A pair ($, %) is called a realisation for the ID. Here, and henceforth, we have
used f(V1,..., Vi) to denote a function of the type f : sp(V1) x---xsp(V}) —
R. Such a function is called a potential; we distinguish between probability
potentials, denoted by ¢’s, and wutility potentials, denoted by 1)’s. Furthermore,
the set of variables {V1,...,V}} is referred to as the domain of f, denoted

Multi-currency Influence Diagrams 5

dom(f).
Given an ID and a decision D a function, dp : sp(past(D)) — sp(D), is
called a policy for D. A collection of policies for each decision in an ID,

A = {ép : sp(past(D)) = sp(D) | D € Vp},

is called a strategy for the ID. Given a policy dp for a decision D we define the
chance variable policy[2] for D Py, (D|past(D)) as Ps, (dlc) =1if dp(c) =d
and 0 otherwise. An optimal strategy A* for an ID is a strategy that fulfills

A =agmax > (] Pu@ [60X w@). ®

cesp(VeUVp) DeVDp PP YEW

The individual policies in an optimal strategy are referred to as optimal poli-
cies. To denote that a policy for a decision D is a part of an optimal strategy,
we write it as d},. The quantity that is maximised in (1) is the expected utility
of the decision problem given the strategy A, and it is denoted eu(A). Not all
variables in the past of a decision D are necessarily relevant for D. Therefore,
we call a variable V' required for D, if there exists a realisation and a configu-
ration ¢ over the variables in past(D) \ {V'}, such that 0},(e, v;) # 6},(c, v;)
for two states v; and v; in sp(V'). The set of required variables for a decision
D we denote by req(D).> We may then redefine a policy to be a function
dp : sp(req(D)) — sp(D).

When optimal policies are to be identified, it is usually easier to work with
a recursive expression for the maximum expected utility instead of (1). An
example is the variable elimination algorithm [5]: Define

D) = {¢ € €| dom(¢) N (C; U{D;}) # @},

and similarly for ¥(,). Then

5p. () =argmax > [[dlc,de) Y ¢le,de), (2

d€sP(Dn) eesp(Cn) 9€B () YEF(n)
and we set
tnl)= Y.] ¢lc.6p,(c)e), (3)
eCsp(Chr) 9EP(n)
and

dal@)=| Y]I #e.dp.(c)e) D le,dp,(c).e) | /¢nle)

ecsp(Chr) 9€EP(n) YEP(n)
(4)

3 [9] provides an operational method for determining req(D) for any decision D
in an ID.

6 Sgren Holbech Nielsen et al.

for all configurations ¢ over req(D,,). For all i < n we recursively define

D) ={p € PU{Pit1,-..,¢n} | dom(¢) N (C;U{D;}) # @} \Uj>i®(;) (5)

and similarly for ¥;) with ¥;11,...,%,. We then get

dp, (c) = argmax z H #(c,d,e) Z Y(c,d,e) , (6)

desp(D;)

ecsp(C;) ¢€P(;) YeP ()
and set
¢i (C) = Z H ¢(C7 52)1 (C), e)) (7)
ecsp(C;) 9EP(y)
and

v@=| Y I eede Y vlede)| /@, ©

ecsp(C;) ¢€P(;) YeY()

for all configurations ¢ over req(D;). We may then write the maximum ex-
pected utility of the ID as

eu(d’)= Y I ¢le) D vle).

e€sp(Co) $€2(0) YeEYF(0)

Given an ID and a realisation, an optimal strategy may be found through
the use of any one of a number of algorithms including [5], [7], [10], and [11],
which all utilise the distributive and associative law on the expressions in (2)
to (8).

3 Multi-currency Influence Diagrams

From the summations of utility potentials in (2) to (8), it is clear that these
must be of the same type, i.e. defined over the same currency; in the ID
framework this is tackled by transforming the different currencies into one
currency during construction of the ID. We now introduce a framework capa-
ble of handling decision problems involving utilities of several currencies. We
call models in this framework Multi-currency Influence Diagrams (MCIDs).
Basically, an MCID is just an ID where each of the utility nodes is annotated
with the currency of the corresponding local utility function. Formally, the
syntax and semantics of IDs described in Sec. 2 carry over to MCIDs, except
for the requirement that the local utility functions must be an additive de-
composition of the global utility function. By assuming some arbitrary, but
fixed, order of the currencies in the MCID sq,...,s,;,, we may refer to the
currency of a local utility function by a natural number i € {1,...,m}.

In what follows we refer to the number of different currencies of an MCID

Multi-currency Influence Diagrams 7

as the dimension of the MCID, and throughout we assume this to be m. A
realisation of an MCID is therefore a tuple (®,%1,...,%,,), where ¥; is the
set of local utility functions of currency i. We require that, for each ¥;, its
elements form an additive decomposition of a utility function, which encodes
the same preference ordering as if the DM had disregarded all consequences
measured in currencies different from ¢, and that there is some linear com-
bination of these utility functions describing the decision makers preferences
in full. Note that it follows that an MCID of dimension 1 is an ID, and hence
from this point on we assume m to be larger than 1.

A strategy for an MCID is the same as for an ID: A prescription of choices
given the required variables in the past. However, if we want to compute an
optimal strategy for an MCID, we need a method for comparing amounts of
one currency with amounts of another. This can be seen from the following
example.

Ezample 2 (A Simple Example of an MCID). Consider a simple two-dimen-
sional MCID, over the currencies A and B, with only a single binary decision
D and two local utilities U; and U, defined as Uy (D = dy) = 1A, Uy (D =
dz) = 5A, UQ(D = dl) = QB, and UQ(D = d2) =1B.

Both choices of D can be optimal choices depending on how much the DM
values amounts of currency A relative to amounts of currency B. If D = d,
should be an optimal strategy then eu(D = dy) > eu(D = ds), which is
equivalent to

1A+2B>5A+1B & —4A+B >0,

If we regard the currency name A as a real variable, representing the DM’s
degree of appreciation of amounts of A, and similarly for currency name B,
then —4 - A 4+ B corresponds to an amount of appreciation equivalent to —4
A’s and one B. The set of all values for A and B, where —4- A+ B > 0, then
corresponds to the possible attitudes of the DM rendering d; the optimal
choice of the decision problem modelled by the MCID. The state space of
A x B, viz. R2, is thus partitioned into two regions, each corresponding to
an optimal strategy.

To sum up, we see that the payoff of following a specific strategy is an element
of R™ (e.g. (5,1) in Ex. 2) rather than a scalar value as is the case with
strategies for IDs. The means we use for comparing amounts of different
currencies are called currency mappings:

Definition 1. Let Z be an MCID of dimension m and a = (ay,...,a,) a
point in R™, then « is a currency mapping (CM) for 7.

The semantics of a CM «, reflecting a DM’s preferences, is that, for any
two amounts x; and z; of currencies ¢ and j, respectively, we have that o;z;
equals a;z; iff the DM values z; of currency ¢ as much as z; of currency
j- We also say that the DM adheres to a. This way «; becomes a measure
of appreciation for the DM of one unit of currency i. In a multi-stakeholder

8 Sgren Holbech Nielsen et al.

setting, a; becomes a weight of importance attributed to satisfying the i’th
stakeholder compared to the other stakeholders. In any case, the objective of
the DM is to maximize the expected global utility of a strategy A given by

a-eu(A) = Zai Z (H P, (c) H ¢(c) Z wi(c)) - (9)

=1 CESp(VcUVD) DeVp ped Y EY;

It follows that we assume the preferential relationship between currencies is
a linear one. Thus, in Ex. 2, a DM adhering to the CM (3, 2), would have an
expected global utility of 3-1+2-2 = 7 for choosing d; and 3-5+2-1=17
for choosing ds. In order to maximize the expected global utility he should
therefore choose ds.

We use bold face Latin letters (f, g, etc.) to denote arbitrary points in R™,
and Greek letters (a and 3) to denote points when we want to emphasise
that they are CMs. In general, we use ¢; to refer to the i’th coordinate of a
point g. We shall not distinguish between a point g and the corresponding
vector going from the origin to g. In what follows we furthermore use f - ¢
to denote the scalar product), fig;.

In this paper we assume, without loss of generality, that each element of a
currency mapping is positive, i.e. a CM is an element of R} rather than
R™, where R, denotes the set of strictly positive reals. This assumption
implies that everybody should be able to agree on whether amounts of each
currency, ¢, is beneficial to be had or not, and that no-one would contest the
relevance of amounts of any currency. If a currency i is disadvantageous to be
had (meaning that «; should be negative) we expect the modelled decision
problem to have negative utilities specified for positive amounts of i, as is
usually done when costs are specified in IDs.

If for a strategy, A, we have that a-eu(A) is greater than or equal to a-eu(A’)
for all other strategies A’, it means that a DM adhering to « appreciates the
expected utility of following A at least as much as that of following any other
strategy, and we consequently say that A is optimal given the CM a. As can
be seen from (9), and the distributive law of the scalar product, the optimal
strategy for a is equivalent to the one obtained by solving an ID resulting
from multiplying the individual utilities in the MCID with o« beforehand. We
denote an optimal strategy for an MCID given a CM o as A},. As several
strategies might give rise to the same expected utility, the set of all optimal
strategies corresponding to o is denoted as Ay,.

4 Support Analysis of MCIDs

Clearly, if we are given a CM « in addition to an MCID we can solve it
by means of simply converting the MCID into an ID, through multiplying
each local utility function of currency ¢ by «;, and then solving the resulting
ID. This simple solution method allows for optimal strategies to be com-
puted for any «, and the distinction between MCIDs and CMs emphasises

Multi-currency Influence Diagrams 9

the assumptions leading to the results. However, we would not be closer to
answering the second question in the motivating example, viz. what other
currency mappings would lead to the same optimal strategy? In order to do
this, we must render the effect of a on the optimal strategy transparent. We
would then be able to reason about the universality of the applicability of
that optimal strategy. We obtain this transparency by postponing the con-
version of utilities until it is needed, so that we can analyse the requirements
these conversions bestow upon those CMs giving rise to the same optimal
strategy.

4.1 Preliminaries

Given an MCID and a strategy A, we call the set su(A) = {8 € R} | A€
A_E} the support of A. Intuitively, su(A) is the set of CMs for which A is
an optimal strategy. We refer to the process of calculating the support of an
optimal strategy as performing support analysis of the MCID. In Ex. 2 we
actually found the support of both strategies D = dy and D = d» (the two
partitions of R defined by —4A4 + B = 0). Later it will become apparent
that any such support can be described as an intersection of partitions of R
— each partition described by a linear inequality.

As mentioned in the beginning of this section, we postpone the conversion of
utility potentials until needed. Hence, we introduce a new type of potential,
which can represent utility functions of several currencies:* A multi-currency
utility potential (MCUP) of dimension m over the variables in a set S is
a function 0 : sp(S) — R™ attributing to each configuration ¢ over the
variables in S a measure of utility ((c)); of each currency i. In Ex. 2 we could
have exchanged the two utility functions U; and U, with the two MCUPs
01 and 027 where 01(d1) = (1,0), 01(d2) = (5,0), 02(d1) = (0,2), 02(d2) =
(0,1). For a DM whose preferences are reflected by the CM 8, 8 - 6(S) is
a utility potential that for any configuration, ¢, over variables in S yields
the value f1(0(c))1 + -+ + Bm(0(c))m, which to the DM is equivalent to
the amounts (6(¢))1,---,(6(c))n of currencies 1,...,m, respectively. When
adding MCUPs or multiplying probability potentials onto them, we simply
treat each dimension of the MCUP as a regular utility potential, and perform
the operation on each dimension separately. For instance, in Ex. 2 we have
that 61 +05 is the MCUP 6 where 8, (d;) = (1,2) and 04 (dz) = (5, 1), which
to a DM adhering to 8 = (3,2) would be equivalent to a utility potential v,
where ¢(d1) = 7 and ¥(ds) = 17.

4.2 Support Analysis

We are now ready to give a procedure for performing support analysis of an
MCID. We describe the method first, and give an example of its application

4 Such potentials are not part of the MCID framework as such, but rather data
structures used by the proposed method for doing support analysis.

10 Sgren Holbech Nielsen et al.

afterwards. We assume the existence of an optimal strategy A, determined
by some initial currency mapping o as well as a realisation (®,%,...,%,,),
and we look for the support of A?, for this realisation. The method is inspired
by that of Lazy evaluation presented in [7] and basically traces the steps of
this method while recording the requirements on o for A%, to be an optimal
strategy. The method consists of an initialisation phase and an identification
phase. The initialisation phase consists of two steps: First, two empty sets =
and @ are generated, where = will hold inequalities defining su(A%), and ©
is a container for MCUPs used in the identification phase. Second, for each
currency ¢ each potential ¢ in ¥; is converted to a MCUP € and put into
®, such that §; = ¢ if k = ¢ and 0 otherwise, where 0 denotes the function
yielding the zero value for all input.

The identification phase follows the Lazy evaluation method, except for the
steps normally carried out when a variable is eliminated (see Algorithm 1).
The major difference between these steps and the corresponding steps in Lazy
evaluation is that we do not perform a maximisation to uncover an optimal
strategy. Instead we look for a set of linear inequalities (Step 4) that need
to be fulfilled if A}, is to be optimal. We refer to the inequalities in = as
constraints, since they constrain the support set.

Algorithm 1: The elimination steps of the identification phase. The strategy
A, is assumed to be given apriori.

1. Let V be the variable to be eliminated, and let &y denote the set of
probability potentials in & with V in their domain, and @y denote the
set of MCUPs in @ with V in their domain.

2. Let
gv=][¢ and 6y = > 0.

PpEDy cOv

3. If V is a chance variable, then set

4”—(45\45V)U{Z¢V} ,
%

and

@« (©\6Oy)U {Lgf;i”} .

4. If V is a decision variable, then set
P (@\Py)U{s(V =0)|¢pedy},
where v is some arbitrary state of V', and
O« (©\Oy)U{by(sy)} ,

® Note that any potential in ¥y must be constant over V

Multi-currency Influence Diagrams 11

where 63 is the appropriate element of A},. For each configuration ¢ over
the variables in req(V) and state v # 47, (c) of V, set

E(_EU{fC,v"'YZO}7 (10)
where f.,, denotes 6(c, dy,(c)) — 6(c,v).

Before proceeding, we illustrate the workings of the algorithm by an example:

Example 3. We specify the ID from Ex. 1 as an MCID. We assume that the
state space of the variables are as follows:

sp(Healthy (Hy)) = {bad(b1), healthy(hy)} ,
sp(Symptoms(S)) = {symptoms(sy), none(no)} ,
sp(Test(Te)) = {test(te), no test(nte)} ,

sp(Results(R)) = {positive(po), negative(ne), no result(nr)} ,
sp(Treat(Tr)) = {treat(tr), no treatment(ntr)} , and
sp(Healtha(Hz)) = {bad(bz), healthy(hz2)} .

The three currencies we work with are, and are ordered as comfort(c), dol-
lars($), and health(h). The realization that we work with is defined by the
following parameters:

P(b)=0.5, P(sylb1) =095, P(sylh1)=0.1, P(nr|nte,’)=1,
P(nr|te,-) =0, P(polte,by) =0.99, P(po|te,hy)=10.01,

P(bz|b1,tr) =0.001, P(ba|by,ntr) =0.999, P(bs|hy,tr) =0,
P(bz|h1,ntr) = 0.0001, Uj(te,nte) = (—1c,0), Usx(te,nte) = (—$1000,0)
Us(tr,ntr) = (—$10000,0) , and Uy(by, ho) = (—1h,0) .

We assume that the doctor is adhering to a CM a = (10, 1,100000) mean-
ing that he regards discomfort on behalf of the patient as bad as the loss of
$10 and the death of the patient as bad as a loss of $100000. The CM cor-
responds to a strategy prescribing treatment either if a test was conducted,
and a positive test result was gotten, or no test was conducted and there was
symptoms, and no treatment otherwise.

In the initialization part of the algorithm, we construct an empty set = and
convert the four utility potentials into a set of four MCUPs

O = {6 (te,nte) = ([-1,0,0],[0,0,0]) , B(te,nte) = ([0, —1000,0],[0,0,0]),

03 (tr,ntr) = ([0, —10000, 0], [0,0,0]) , 84(bz, h2) = ([0,0,-1],[0,0,0])} .

Next we perform variable elimination in an order that respects the <-ordering
of the MCID: First Healths, then Health,, Treat, Results, Test, and lastly
Symptoms. Marginalizing out Healths, according to Steps 2 and 3 results in

12 Sgren Holbech Nielsen et al.
dropping P(Hz|H1,Tr) from the set of probability potentials and replacing
64 with a new MCUP:

P _ EHZP(H2|H17TT)'04
et = s o P(Ho|H,y, Tr)

in which O, 7,(by,tr) = [0,0,—10"%], O, zr(b,ntr) = [0,0,—-0.999)],

0w, rr(h1,tr) = [0,0,0], and Og, 7. (h1,ntr) = [0,0,—10~*]. Further marginal-
izing out Health; (again according to Steps 2 and 3) replaces all probability

potentials with

®R,5,Te = ZP(H1) - P(S|H1) - P(R|H1,Te)
H,

and 0H1,T'r' with

2.m, P(Hy) - P(S|Hy) - P(R|Hy, Te) - Om, 1

®S,R,Te

OR,5,Te,Tr =

This last potential is shown in Table 1.

When marginalizing Treat, we construct the MCUP 6F; g 1., 1, = 03+0R 5,Te,Tr
(shown in Table 2), according to Step 2, and by marginalizing Treat out of
this, according to Step 4 and A, we end up with a new MCUP 6g s 1. (nOt
shown), but also add 12 constraints to = — one for each configuration over
Results, Symptoms, and Test. For instance, for the configuration (po, sy, te),
we construct the constraint (v = (v, v, 74))

((0,-10000,—9.99 - 10~ *) — (0,0, —9.98- 10" 1))y > 0
—10000vg 4+ 9.97- 1071y, >0,

which is satisfied by «, as can easily be verified. After the other 11 con-
straints have been calculated the algorithm continues with elimination of the
remaining variables.

Table 1. 0r,s,1e,7r

te nte

tr ntr tr ntr

polsy[[0,0, —9.99 - 10~*][[0,0, —9.98 - 10~ " 0,0,0 0,0,0

nol[0, 0, —8.46 - 10 7][[0, 0, —8.45 - 10 ! 0,0,0 0,0,0

ne|sy|[0,0, —8.76 - 10~*]|[0,0, —8.76 - 102 0,0,0 0,0,0

nol[0,0, —=5.61 - 10~ 7]{[0, 0, —6.60 - 10~ * 0,0,0 0,0,0
nr|sy 0,0,0 0,0,0 0,0,—9.05-10~%]|[0,0,—9.04 - 10~ !
no 0,0,0 0,0,0 0,0,—5.26 - 10 °][[0,0, —5.27 - 102

Multi-currency Influence Diagrams 13

Table 2. 6§,S,T5,Tr

te nte

tr ntr tr ntr

polsy|[0, —10%,—9.99 - 10~7][[0, 0, —9.98 - 10! 0,—10%,0 0,0,0

nol[0, —10%, —8.46 - 10 *]|[0,0, —8.45-10 ' 0,—10%,0 0,0,0

ne|sy|[0, —10%, —8.76 - 10~7]|[0, 0, —8.76 - 10> 0,—10%,0 0,0,0

nol[0, —10%,—5.61 - 10~ |[[0,0, —6.60 - 10~ * 0,—10%,0 0,0,0
nr|sy 0,—10%,0 0,0,0 0,—10%, —9.05 - 10~7][[0,0, —9.04 - 10~ "
no 0,—10%,0 0,0,0 0,—10%,=5.26 - 10~ °]{[0,0,—5.27 - 10~ 7

As presented here, the algorithm presupposes that A has been computed
beforehand. Alternatively, the Lazy evaluation algorithm itself can easily be
interleaved by inserting the following step prior to Step 4 in Algorithm 1:

* For each configuration ¢ over the variables in req(V") set

0y () = argmaxa - Oy (c,v) .
vesp(V)

Although the method, as presented here, follows the structure of the Lazy
evaluation method, it can easily be adapted to follow the structure of any
other solution method that is based on the expressions in (2) to (8). We con-
jecture that any such adaptation would identify the support set as long as
the constraints are identified and stored. With or without this modification,
though, we have the following important result:

Theorem 1. Let 3 be in R, A a strategy, and = the result of running the
method described above on A. Then 3 is an element of su(AQ) iff B satisfies
all inequalities in = .

Proof. The “if” part of the theorem is obvious. We therefore only show the
“only if” part, viz. that if 3 fails to satisfy at least one constraint in =, then
A cannot be an optimal strategy for a DM adhering to 3, and hence that 3
is not an element of su(A).

Without loss of generality, assume that f € = is the first constraint not satis-
fied by B that is identified by the algorithm. This happens during elimination
of some decision D; in Step 4 of the algorithm, with some MCUP 6p, having
been calculated during Step 2. For some configuration ¢ over dom(6p,)\ {D;}
and state v # dp, we must have that f is

(eDi (C, 5Di (c)) - eDi (C, U)) v 2>0.
Since B fails to satisfy this constraint, it follows that

(oDi (C, 6Di (C)) - aDi (C, ’l))) . IB Z 0,

14 Sgren Holbech Nielsen et al.

which is equivalent to
aDi (C, 6Di (C)) : IH < 0Di (C, U) : /H -

We construct the strategy A’ obtained from A by letting 67, (¢) = v and
leaving all other policies intact. We then have that eu(A’)-3 is strictly greater
than eu(A) - B, and hence that A cannot be an optimal strategy for a DM
adhering to .

Glancing over the constraints identified in Ex. 3 it is clear that each con-
straint f : ay1 + by + ¢ys > 0 defines a hyperplane in R® given by the
equation ay; + by + ¢y3 = 0. As the zero vector 0 = (0,0,0) is a satisfy-
ing solution to each equation, it follows that all these hyperplanes must pass
through the origin of R?, and hence that the points satisfying all constraints
must lie in a bottomless pyramid extending from the origin, as illustrated
in Fig. 2(a). A corresponding visualization for a two-dimensional MCID is
shown in Fig. 2(b). That the support of a strategy extends indefinitely from
the origin as a pyramid, also makes sense from a purely semantical point of
view: If a CM is scaled by multiplying each entry by some positive constant,
the relative difference in appreciation between amounts of the individual cur-
rencies, for a DM adhering to this CM, stays the same. Hence, if a CM renders
some strategy optimal, that strategy should also be optimal for any positively
scaled version of this CM. From a more formal point of view, we also have
that, for any CM « and two strategies A; and A4, if ar-eu(4;) > a-eu(4;)
then it must necessarily be the case that co - eu(A;) > ca - eu(A4Q;) for any
¢ > 0, and hence that the pyramidal forms of support areas are what we
should expect.

Y2
su(Az)

Fig. 2. Supports for a three-dimensional (a) and a two-dimensional MCID (b)

Multi-currency Influence Diagrams 15
5 Finding a Minimal Support Set

The procedure described above finds the support of a strategy for a given
CM and stores it as a set of constraints =. The cardinality of = is given by

|El=) Isp(rea(D))|(|sp(D)| - 1),

DeVp

and storing it requires an amount of memory proportional to m-|=|. This size
can be problematic for larger decision problems — both in terms of memory
requirements and in terms of representing the resulting = to a human DM
in a comprehensible manner.

We have devised a method for keeping the size of = minimal during the
analysis. By minimal we mean that = does not include a constraint f, such
that the set = \ {f} defines the same volume as =. Conversely, if such a
constraint f is in =, we call it superfluous. Traditionally, such a task would
be carried out by repeated applications of linear programming, but this can
be done more efficiently when the number of dimensions m is significantly
smaller than the number of decisions in the MCID. This seems to be the case
in most examples of multi-currency decision problems in the literature, see
e.g. [1] and [12].

The approach is purely geometric and rests on the already mentioned fact that
all constraints in = define a pyramid extending from the origin of R™ (see
Figs. 2(a) and 3(a)), and a black box view of the support analysis as a simple
constraint generating process. For sake of clarity, we first describe the method
informally in the intuitively understood three dimensional setting, and then
give a formal presentation of the more general m-dimensional setting.

As the support of a strategy is a pyramid extending from the origin, we
can represent the volume defined by = as a set of lines extending from the
origin, each corresponding to the intersection of two hyperplanes defined by
constraints in = (see Fig. 3(a), which illustrates the support defined by the
initial set of constraints y; > 0, v2 > 0, and 3 > 0, as well as an additional
constraint f). We refer to such lines as edges of the pyramid, and we denote
the set of them as Ez. When a new constraint g is to be added to = (see
Fig. 3(b)) it may be superfluous. With the alternative representation this
question can be restated as whether the points on any of the edges in F= fail
to satisfy g. If this is the case, g is not superfluous. In Fig. 3(b) we have that
there was originally a pyramid defined by the edges ey, ez, e3, and e4, but as
all points (but the origin) on e; and e, fail to satisfy the new constraint g, it is
not superfluous. Therefore it is added to =, which now defines a new pyramid
whose edges are ez, e4, €5, and eg. Thus Ez is updated by dropping e; and
e; and adding e5 and eg. This means that the original constraint ;3 > 0 no
longer participates in defining any of the edges in Ez, and 4t is therefore
superfluous now. Consequently, 74 > 0 must be dropped from = to keep it
minimal (see Fig. 3(c)). That is, in this alternative representation, we can

16 Sgren Holbech Nielsen et al.

also detect when old constraint are rendered superfluous by new constraints.
There is one main hurdle to be overcome by an implementation: Whenever

Fig. 3. Keeping E minimal when a new constraint g is added. Edges are shown as
dashed lines

a new constraint h is identified, the edges in E= need to be checked for
points not satisfying h. By storing the pyramid as a list of edges sorted
according to their angular distance to a (see Fig. 4(a)), and calculating the
minimal angular distance from a to the hyperplane defined by h, we can
quickly determine those edges that can contain points not satisfying h, i.e.
those with an angular distance greater than the distance to the hyperplane
defined by h. If no such edges exist (as in Fig. 4(b)), h is clearly superfluous.
If such edges do exist, they have to be checked against h one at the time,
and only if all of them satisfy h, it must be superfluous. However, as the
set of constraints grow, the girth of the pyramid becomes smaller, and we
would therefore expect that more new constraints fail the initial check of
being closer to a than any of the edges in =, and that this further check by
enumeration can be avoided.

To describe the approach precisely, we formalize and generalize the discussion
above: First, if f(y) = f -+ > 0 is a constraint in = and 8 is some point
in R™ then we use f(8) to state that f -8 > 0 and —f(8) to state that
f - B < 0. Furthermore, we denote the hyperplane {3 € R™ | f- 8 = 0}
as H(f), and talk of = as consisting of hyperplanes when it introduces no
ambiguity. A constraint f in = is then defined to be superfluous in = if there
exists no point @ in R™, such that —f(8) and g(B) for all g # f in E. If no
constraint in a set of constraints = is superfluous, we say that = is minimal.
The angular distance from B to « is given by

4 Bra
18Il - [leel] -

Here and henceforth ||g|| denotes the Euclidean length of the vector ||g||-
Moreover, we say that the set of constraints = constitutes a pyramid, if for

ZBa = cos

Multi-currency Influence Diagrams 17

Fig. 4. Rejecting a constraint, h, because of its angular distance to a

all points B in R™, where the angular distance to « is greater than 90°, there
exists at least one constraint f in =, such that —f(8). The previously intro-
duced assumption of only considering CMs in R}, we restate as an inclusion
of the m constraints 7; > 0 in = from the outset of the support analysis.
This ensures that = is a pyramid at the beginning of the support analysis.
The triangle inequality ensures that the points in a pyramid having the largest
angular distance to a must lie at the intersection of a number of hyperplanes
in =. We need to consider intersections of exactly m — 1 hyperplanes. The
reason is that an intersection of k non-parallel hyperplanes in R™ describe
an m — k dimensional subspace of R™, and the points in this subspace will
have varying angular distances to a unless the subspace has dimension 1, and
this is only the case when k is 1. If part of such an intersection lies within
=, we refer to that part as an edge. An edge determined by constraints
fiy---, fm—1 we represent by a pair e = (I,p), where I = {f1,...,fm-1}
and p € R N H(f1)N---N H(fy 1). The set of edges of a pyramid = is
denoted E=, and we assume it to be kept sorted such that (I;,p;) is stored
before (I, p;) only if Zp;a < Zpj;a. Finally, for any constraint f, we denote
by a*f the projection of o onto the subspace H (f). With these terms spec-
ified, we can now present the proposed method in Algorithm 2.

Algorithm 2: Takes as input a minimal pyramid = with a sorted set of edges
E= and a constraint f. Outputs a new minimal pyramid E', describing the
same volume as Z U {f}, along with a sorted set of edges Ez=:.

1. Partition F= into two sets E; and E_, such that each edge in E, has
angular distance to a less than or equal to Zaa*!.

2. Move each edge (I,p) in E_, where f(p), from E_ to E,
3. If F_ = & then stop and return &' = £ and E=: = E=.

18 Sgren Holbech Nielsen et al.

4. Let the new set of constraints be

g={nv U 1,

(I,p)€E+

and the set of constraints possibly defining new edges be
Ev=|&n |J r1)u{s}.
(I,p)EE_
Then let
E=z = E—l—U{(I;pI) | IC EnN, f € Ia |I| =m-—1, and g(pI) v.g € EI})

where py is the unique point in R N (NperH (h)) for which [|pr|| = 1.
5. Return =’ and E=.

Proposition 1. Let = constitute a minimal pyramid and f be a constraint
not in =. Then the constraints in E U {f} define the same region as those
in Z' obtained from using Algorithm 2 to add f to =. Furthermore, E' is a
minimal pyramid.

The complexity of inserting an element in the sorted set E= is O(log|E=|),
and we have a maximum of (nli L) new edges to add to Es in Step 4, in
effect yielding a worst-case complexity of O((n‘f_lz) log|E=|) for insertion
of a constraint. This is an improvement with respect to the complexity of
(|Z| +1)m!Z1+1 offered by using simplex repeatedly [6], especially when the
dimension m is low.

6 Presenting the Support to a Human DM

Given that = has been identified as in Fig. 5(a), we provide two compact
abstractions, which are useful for presenting the support to a DM.6

An immediate approach to representing = in a compact manner is to define
an m-dimensional ball centered at @ with radius equal to the minimum Eu-
clidean distance from « to any one of the hyperplanes defined by constraints
in = (see Fig. 5(b)).

The approach allows for a highly compact representation of = during com-
putation too: Only a single scalar value (the radius of the ball) needs to be
stored. Whenever a constraint closer to « is identified, we replace the old
radius with the distance from « to this new constraint. Unfortunately this
representation can be a rather crude abstraction, as seen in Fig. 5(b).

—
=

Another, more accurate, representation technique is to present = by the

% These techniques do not presuppose that = is minimal.

Multi-currency Influence Diagrams 19

Fig. 5. Three ways of representing the result of support analysis

largest ball that will fit into the support defined by it. That is, abandon «
as a fixed center of the representation. As = describes an infinite pyramid,
no such largest ball exists, though, so we propose to make a cut through the
computed pyramid =, by forcing one of the ;s to be 1, and then represent-
ing the resulting intersection by the largest ball, which can fit into it (see
Fig. 5(c)). The first step of this approach corresponds to identifying a base
currency i that all other currencies are compared to.

For the second step to be successfully completed it is necessary that the in-
tersection of the pyramid and the cut is a bounded volume. This is the case
if the hyperplane defined by «; = 1 intersects all hyperplanes in =. This is
equivalent to that there exists no f in =, such that the hyperplane defined
by f is parallel to the hyperplane defined by -; = 1. As all hyperplanes pass
through the origin, it is sufficient to choose an ¢ where the constraint v; > 0 is
not in =Z. If no such i exists, additional linear constraints on parameters will
have to be put into =, e.g. v; < k for some currency i and positive constant
k.

Once a base currency ¢ has been chosen, each constraint f : fiyi +--- +
fmym > 0in = is replaced with the constraint fiys +---+ fi—1vi—1 + fi +
fiv1Yit1 + -+ + fmym > 0, corresponding to f’s effect on points on the
hyperplane defined by 7; = 1. The resulting set of constraints we denote
E7%=1, To find the largest ball enclosed in the volume of R™~! defined by

—
o

the constraints in Z%=! = {f1 ... f*¥} we solve the linear program

fl(y) T 7fk(y) ,ZSdlSt(y,H(fl)) T ,ZSdiSt(y,H(fk)),

where y is in R™~! and dist(y, H (f%)) denotes the Euclidean distance from y
to the hyperplane H (f*). The function that is to be optimised is z, and upon
resolution the ball centered at y having radius z is the largest ball inscribed

in the part of the support corresponding to ; being 1.

20

Sgren Holbech Nielsen et al.

Acknowledgments

We would like to thank Martin Raussen of the Department of Mathematical
Sciences at Aalborg University for useful discussions and two anonymous re-
viewers for helpful comments and suggestions. Furthermore, we are grateful
for access to the Hugin software, which has been used in the implementa-
tion of the algorithms described in the paper. The implementation can be
downloaded from http://www.cs.aau.dk/ holbech/mcids.tgz

References

1.

10.

11.

12.

13.

Magnus Boman, Paul Davidsson, and Hakan L. Younes. Artificial decision mak-
ing under uncertainty in intelligent buildings. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, pages 65-70, 1999.
Gregory F. Cooper. A method for using belief netwoks as influence diagrams. In
Proceedings of the Fourth Conference on Uncertainty in Artificial Intelligence,
pages 5563, 1988.

James C. Felli and Gordon B. Hazen. Do sensitivity analysis really capture
problem sensitivity? an empirical analysis based on information value. Risk,
Decision and Policy, 4(2):79-98, 1999.

. Ronald A. Howard and James E. Matheson. Influence diagrams. Readings on

the Principles and Applications of Decision Analysis, pages 720-763, 1984.
Frank Jensen, Finn V. Jensen, and Sgren L. Dittmer. From influence diagrams
to junction trees. In R. Lopez de Mantaras and D. Poole, editors, Proceedings of
the Tenth Conference on Uncertainty in Artificial Intelligence, pages 367—373.
Morgan Kaufmann, 1994.

V. Klee and G. J. Minty. How good is the simplex algorithm? In Inequalities
III, pages 159-175. Academic Press Inc., 1972.

Anders L. Madsen and Finn V. Jensen. Lazy evaluation of symmetric Bayesian
decision problems. In Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence, pages 382-390, 1999.

Thomas Dyhre Nielsen and Finn Verner Nielsen. Sensitivity analysis in in-
fluence diagrams. IEEE Transactions on Systems, Man, and Cybernetics,
33(2):223-234, 2003.

Ross D. Shachter. Bayes-ball: The rational pastime (for determining irrelevance
and requisite information in belief networks and influence diagrams. In G. F.
Cooper and S. Moral, editors, Uncertainty in Artificial Intelligence: Proceedings
of the Fourteenth Conference, pages 480-487. Morgan Kaufmann.

Ross D. Shachter. Evaluating influence diagrams. Operations Research, 34:871—
882, 1986.

Prakash P. Shenoy. Valuation-based systems for Bayesian decision analysis.
Operations Research, 40:463-484, 1991.

Claus Skaaning. A knowledge acquisition tool for Bayesian-network trou-
bleshooters. In Proceedings of the Sizteenth Conference on Uncertainty in Ar-
tificial Intelligence, pages 549-557, 2000.

Joseph A. Tatman and Ross D. Shachter. Dynamic programming and influ-
ence diagrams. IEEFE Transactions on Systems Management and Cybernetics,
20:265-279, 1990.

Index

currency, 2, 6
currency mapping, 7

expected global utility, 8
expected utility, 5

influence diagram, 1, 3

multi-currency influence diagram, 1, 2,
6

— dimension of, 7

— realisation, 7

— support analysis, 8, 9

multi-currency utility potential, 9

multiple stakeholders, 3, 8
optimal strategy, 2, 5, 8

support of strategy, 9
— abstraction, 18

— constraint, 15

— constraints, 10

— minimal, 15

— representation, 18

— superfluous constraint, 15

utility potentials, 4, 6

