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bDepartment of Computer Science, Aalborg University, Aalborg, Denmark

Abstract

Monitoring a complex process often involves keeping an eye on hundreds or thou-
sands of sensors to determine whether or not the process is stable. We have been
working with dynamic data from an oil production facility in the North sea, where
unstable situations should be identified as soon as possible. Motivated by this prob-
lem setting, we propose a general model for classification in dynamic domains, and
exemplify its use by showing how it can be employed for activity detection. We con-
struct our model by using well known statistical techniques as building-blocks, and
evaluate each step in the model-building process empirically. Exact inference in the
proposed model is intractable, so in this paper we experiment with an approximate
inference scheme.

1 Introduction

A typical task for the risk and reliability engineer is to monitor the status
of a dynamic system, like, e.g., a chemical process. Doing so will often mean
tending to a large number of sensors, each of them updating their readings
on a regular basis. Real-life processes have their own natural dynamics when
everything is running according to plan; “outliers” may on the other hand be
seen as indications that the process is leaving its stable state, and thereby be-
coming more dangerous. Thus, the engineer would like to know if the system is
unstable in order to ensure that the proper corrective actions are implemented
as soon as the system becomes unsafe. Unfortunately, it may be difficult to
measure the status of the system directly, and one will typically only have
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access to indirect status indicators, which need to be analyzed and combined
in a statistical model. Formally, detecting the instantaneous status of a sys-
tem described by a collection Y = {Y1, Y2, . . . , Yn} of random variables is
identical to classification, where an object described by a value assignment
y = {y1, y2, . . . , yn} is mapped to one of a set of possible labels (or classes).
The labels for an object is represented by a class variable C, and are de-
noted sp (C). We will focus on real-valued attributes in this paper, meaning
that y ∈ R

n. In a probabilistic framework, it is well-known that the optimal
classifier will label an object y by the class label ĉ, where

ĉ = arg min
c∈sp(C)

∑

c′∈sp(C)

L(c, c′)P (c′|y) (1)

and L(c, c′) is the loss-function encoding the cost of mis-classification. Learning
a classifier therefore amounts to estimating the probability distribution P (C =
c|y).

The engineer may not only want to assess the instantaneous status of a sys-
tem, but rather to detect if the system is about to become unstable (that is,
to predict future problems). This would give a system operator the chance to
implement countermeasures before anyone is exposed to an increased level of
risk. Classifiers that fail to take the dynamic aspect of a process into account
will not be able to make accurate predictions, and will therefore not be able
to recognize a problem under development. In dynamic classification, the task
is to assign a class label to an object at each time step. To support the clas-
sification, objects are characterized by a new observation at each time step as
well. We use Y t = {Y t

1 , Y
t
2 , . . . , Y

t
n} to denote the random variables describing

the object at time t, where yt = {yt1, y
t
2, . . . , y

t
n} is a specific value assignment

to these variables. The collected observations from time t = 1 and up to time
t is denoted as y1:t. The set of possible labels (or classes) for the time series
at time t is represented by a class variable Ct, and denoted sp (Ct). With the
observations y1:t from time step 1 to t, the optimal classifier will label y1:t by
the class label ĉ t at time t

ĉ t = arg min
ct∈sp(Ct)

∑

c′∈sp(Ct)

L(ct, c′)P (c′|y1:t);

confer also Equation (1).

In a risk and reliability setting, the desire to build efficient statistical mod-
els that are flexible yet easy to understand for domain experts has led to
reduced focus on traditional frameworks like fault trees. On the other hand,
the Bayesian network (BN) framework [28,17] has received increased atten-
tion from the community over the last decade [22], partly because BNs have
proven to be an attractive alternative to classical reliability formalisms, see
e.g., [33,18]. BNs have also been used extensively for classification [8,21,35].
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The dynamic Bayesian network framework [12] supports the specification of
dynamic processes, and has already found numerous applications in reliability
engineering, see, e.g., [20,27]. A simple instance of this framework is the hid-
den Markov model (HMM), which has also been considered for classification
purposes [15,31,6]; to this end the “hidden” node in the HMM is used as the
classification node, and the attributes at time t are assumed to be indepen-
dent of those at time t + 1 given the class label at either of the two points in
time. Further simplification can be obtained by assuming that all attributes at
one time step are conditionally independent given the class label at that time
step; the resulting model by [26] is known as a dynamic näıve Bayes (dNB)
classifier. The dNB models can be efficiently estimated from data due to the
relatively small number of parameters required to specify them.

To the best of our knowledge, there has been no systematic investigation
into the properties of probabilistic classifiers and their applicability to real-life
dynamic data. In this paper we will take a step in that direction by examining
the underlying assumption of some well-known probabilistic classifiers and
their natural extensions to dynamic domains. We do so by carefully linking
our analysis back to a real-life dataset, and the result of this analysis is a
classification model, which can be used to, e.g., help prevent unwanted events
by automatically analyzing a data stream and raise an alert if the process is
entering an unstable state. For the discussions to be concrete, we will tie the
model development to the task of activity recognition in offshore oil drilling;
this is further described in Section 2. In Section 3 we give a general overview of
the dynamic classification scheme, and we also propose a specific classification
model called a dynamic latent classification model (abbreviated to dLCM).
Next, we look at inference and learning in dLCMs (Section 4), before reporting
on their classification accuracy in Section 5. Finally, in Section 6 we conclude
and give directions for future research.

2 The domain and the dataset

Offshore oil drilling is a complex process, potentially with major risks to the
safety of the operators involved (see, e.g., [34]). Further, the drilling process
in itself is extremely expensive, leading to a focus on cost efficient operation,
including high demands wrt. the reliability of the equipment employed. This
has again resulted in a plethora of data being collected – either for real-time
analysis of the state of the ongoing operations or to enable investigations
after an events has occurred. We will consider one such dataset from an oil
production installation in the North Sea. Data, consisting of 62 variables, is
captured every five seconds. The data is monitored in real time by experienced
engineers, who have a number of tasks to perform ranging from understanding
the situation on the platform in order to avoid a number of either dangerous
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or costly situations, to optimization of the drilling operation. The variables
that are collected in this dataset cover measurements taken both topside (like
flow rates) and down-hole (like, for instance, gamma rate).

The overall drilling process can be broken down into a series of activities that
are performed iteratively as the depth of the well increases. Recognizing which
activity is performed at a given point in time is called activity recognition, and
is the focus of the present paper. Out of the 62 attributes that are collected,
domain experts have selected the following 9 attributes as the most important
for activity detection: Depth Bit Measured, Depth Hole Measured, Block Po-
sition, Hookload, Weight On Bit, Revolutions Per Minute, Torque, Mud Flow
In, and Standpipe Pressure.

In the Wellsite Information Transfer Specification (WITS), a total of 34 dif-
ferent activities with associated activity codes are defined. Each activity has
its separate purpose and consists of a set of actions. Out of the 34 different
drilling activities in total, only a handful are really important to recognize.
The important activities in our analysis, which roughly correspond to those
that constitute most of the total well drilling time, are described next:

WITS2 – Drilling: The activity occurs when the well is gaining depth by
crushing rock at the bottom of the hole and removing the crushed pieces
(cuttings) out of the well-bore. Thus, the drill string is rotating during this
activity, and mud is circulated at low speed to transport out the cuttings.
The activity is interrupted by other activities, but continues until the well
reaches the reservoir and production of oil may commence.

WITS3 – Connection: This activity involves changing the length of the
drill-string, by either adding or removing pieces of drill-pipe.

WITS8 – Tripping in: This is the act of running the drill string into the
well hole.

WITS9 – Tripping out: Tripping out means pulling the drill string out of
the well bore.

It what follows, the remaining activities will collectively be grouped under the
label Others.

Knowing which activity is performed at any point in time is important in sev-
eral contexts: Firstly, the operation of an offshore installation can be monitored
by groups of experts located elsewhere (typically in on-shore control-rooms).
These experts are shielded from the offshore-operation in that they only ob-
serve visualizations of streams of data. Important aggregations, like which
activity is performed, helps them better understand the situation on-site.

Secondly, operators are consistently looking for more cost-efficient ways of
drilling, and the sequencing of activities during an operation is important for
hunting down potential time-sinks.
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Thirdly, some undesired events can only happen during specific activities, and
knowing the current activity is therefore of high importance. For instance,
apparent early warnings of undesired events can be given more credence if
that event can actually occur during the current activity and no weight if
the event is impossible. From a safety perspective, this allows for a better
early-warning system with a lower rate of false alarms.

Finally, it is worth mentioning that activity recognition is a task that also finds
applications in areas as diverse as health care [32] and video analysis [23]. In
this paper we develop a model for dynamic classification and exemplify the
process in the oil drilling domain, but other safety and reliability applications
of the developed model are readily available.

3 From static to dynamic Bayesian classifiers

In this section we develop a general framework for performing dynamic clas-
sification. The framework will be specified incrementally by examining its
expressivity relative to the oil production data. In Section 5 we further justify
the framework by setting up an empirical study using the oil production data.
In the study we analyze the accuracy results for the sequence of models that
are being considered in this section and which lead to the proposed modeling
framework.

3.1 Static classifiers

Standard (static) classifiers like NB [5] or TAN [8] assume that the class vari-
able and attributes at different time points are independent given the model.
This independence assumption is clearly violated in many domains and, in
particular, in domains that specify a process evolving over time. To validate
the independence assumptions in practice, we can for instance compare the
marginal distribution of the class variable with the conditional distribution of
the class variable given its value at the previous time step. From the results
using the oil production data, we see a considerable correlation between the
class variable of consecutive time slices. In particular, if the system was in the
drilling activity at time t− 1, the probability of being in the drilling activity
also at time t changes from 0.325 (static classifier) to 0.997 (dynamic classi-
fier). The reason for this dramatic difference is that the system tends to remain
in the drilling activity as soon as drilling has commenced, an effect that the
static classifier is unable to represent. One way to capture this dependence
is to explicitly take the dynamics of the process into account, i.e., to look at
dynamic classifiers.
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Fig. 1. Attributes are assumed to be conditionally independent given the class vari-
able (equivalent structure for HMM) with n = 4.

3.2 A simple dynamic classifier

The temporal dynamics of the class variable can be described using, e.g., a
first order Markov model, where P (Ct|C1:t−1) = P (Ct|Ct−1) for all t. By com-
bining this temporal model with the class-conditional observation model for
the attributes we have the well-known hidden Markov model (HMM)[29]. The
HMM model is described by a prior distribution over the class variable P (C0),
a conditional observation distribution P (Y t|Ct), and transition probabilities
for the class variable P (Ct|Ct−1); we assume that the model is stationary,
i.e., P (Y t|Ct) = P (Y s|Cs) and P (Ct|Ct−1) = P (Cs|Cs−1), for all s, t ≥ 1.
HMMs have previously been used in reliability contexts. For example, Smyth
[31] considers fault detection in dynamical systems, Durand and Gaudoin [6]
applies HMMs for modeling the failure and debugging process of software,
and Zamalieva et al. [36] use HMMs for online labeling of event sequences
wrt. failure and non-failure scenarios.

With a continuous observation vector, the typical way of modeling the con-
ditional distribution is to use a class-conditional multivariate Gaussian distri-
bution with mean µc and covariance matrix Σc, i.e., Y |{C = c} ∼ N(µc,Σc)
[10]. Unfortunately, learning a full covariance matrix involves estimating a
number of parameters that is quadratic in the number of attributes, which
may result in over-fitting when data is scarce compared to the number of free
parameters. One approach to alleviate this problem is to introduce additional
independence assumptions about the domain being modeled. Specifically, by
assuming that all variables are independent given the class variable, we will at
each time step have a NB model defined by a diagonal covariance matrix, thus
requiring only O(n) parameters to be learned, where n = |Y | is the number
of attributes in the model. This structure corresponds to the dNB model for
dynamic domains. A graphical representation of the resulting independence
assumptions can be seen in Fig. 1 in the form of a 2TBN [25].

As for the (static) NB model, the independence assumptions encoded in the
dNB model are often violated in real-world settings. For example, if we con-
sider the measured flow of drilling fluid going in to the well (Mud Flow In) and
the observed pressure in the well (Stand Pipe Pressure), and plot their values
conditioned on the class variable (activities tripping in and tripping out), it
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is evident that there is a conditional correlation between the two attributes
given the class, see Fig. 2; similar results are also obtained when considering
other pairs of attributes.
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Fig. 2. Scatter plot of the Mud Flow Int (x-axis) and the Stand Pipe Pressuret
(y-axis) for the two classes in the oil production data (black “+” is the tripping in
class and grey “o” is the tripping out class). The conditional correlation between
the two attributes is evident.

3.3 Modeling dependence between attributes

There are several approaches to model attribute dependence. For example,
Friedman et al. [9] propose an extension of the TAN model [8] to facilitate
continuous domains. In the TAN framework, each attribute is allowed to have
at most one parent besides the class variable. As an alternative, [21] present
the latent classification model (LCM), which can be seen as combining the
NB model with a factor analysis model [7].

An LCM offers a natural extension of the NB model by introducing contin-
uous latent variables Z = (Z1, . . . , Zk) as children of the class variable C
and parents of all the attributes Y = (Y1, . . . , Yn). The latent variables and
the attributes work as a factor analyzer focusing on modeling the correlation
structure among the attributes.

Following the approach by [21], we introduce latent variables to encode condi-
tional dependencies among the attributes. Specifically, for each time step t we
have the vector Zt = (Zt

1, . . . , Z
t
k) of latent variables that appear as children

of the class variable and parents of all the attributes (see Fig. 3). The latent
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variable Zt is assigned a multivariate Gaussian distribution conditional on the
class variable and the attribute vector Y is also assumed to be a multivariate
Gaussian distribution conditional on the latent variables:

Zt|{Ct = ct} ∼ N(µct ,Σct),

Y t|{Zt = zt} ∼ N(Lzt,Θ),

where Σct and Θ are diagonal matrixes and L is the transition matrix; note
that the stationarity assumption is encoded in the model.

In this model, the latent variables capture the dependencies between the at-
tributes. They are conditionally independent given the class but marginally
dependent. Furthermore, the same mapping, L, from the latent space to the
attribute space is used for all classes, and hence, the relation between the class
and the attributes is conveyed by the latent variables only.

Ct−1 Ct

Zt−1
1 Zt−1

2 Zt
1 Zt

2

Y t−1
1 Y t−1

2 Y t−1
3 Y t−1

4 Y t
1 Y t

2 Y t
3 Y t

4

Fig. 3. In each time step, the conditional dependencies between the attributes are
encoded by the latent variables (Zt

1, Z
t
2).

The model in Fig. 3 assumes that the attributes in different time slices are in-
dependent given the class variable. This assumption implies that the temporal
dynamics is captured at the class level only. When the state specification of
the class variable is coarse, then this assumption will rarely hold (obviously,
the finer the granularity of the state specification of the class variable, the
more appropriate this assumption will be). For the oil production data, this
assumption does not hold as we can see in Fig. 4, which show the conditional
correlation of the Stand Pipe Pressure attribute in successive time slices in
both tripping in and tripping out activities.

We propose to address this apparent short-coming by modeling the dynamics
of the system at the level of the latent variables, which semantically can be
seen as a compact representation of the “true” state of the system. At this
abstraction level, the modeling approach is related to that of Kohda and Cui
[20] who propose a factorial HMM, where latent/unobserved variables are used
to model temporal dynamics in safety monitoring systems. To be more specific,
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Fig. 4. Scatter plot of the Stand Pipe Pressure (x-axis is value of Stand Pipe Pressure
at time t and y-axis is value of Stand Pipe Pressure at time t+1) for the two classes
in the oil production data (black “+” is tripping in class and gray “o” is tripping
out class). The conditional correlation of this attribute over time is evident.

we encode the state specific dynamics by assuming that the latent variable
vector Zt follows a linear multivariate Gaussian distribution conditioned on
Zt−1:

Zt|{Zt−1 = zt−1, Ct = ct} ∼ N(Actz
t−1,Σct)

where Act encodes the class conditional transition dynamics for the latent
variables. A graphical representation of the model is given in Fig. 5, and will
be referred to as a dynamic latent classification model (dLCM). Observe that
conditional on the class variables, the state specific model dynamics is related
to a factorized Kalman filter model.

Ct−1 Ct

Zt−1
1 Zt−1

2 Zt
1 Zt

2

Y t−1
1 Y t−1

2 Y t−1
3 Y t−1

4 Y t
1 Y t

2 Y t
3 Y t

4

Fig. 5. The state specific dynamics are encoded at the level of the latent variables
with k = 2 and n = 4.
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3.4 Modeling non-linear systems

One of the main assumptions in the model above is that there is a linear
mapping from the latent variables to the attribute space as well as a linear
mapping from the latent variables in a given time slice to the latent variables
in the succeeding time slice (i.e., that the state specific dynamics are linear).
When the class variable takes a fixed value, the model is equivalent to a linear
dynamical system (LDS) [1], also known as a linear state-space model.

Given sufficient dimension of the latent space, an LDS can represent any com-
plex real-world processes, although the computational cost can make the LDS
model infeasible in practice if the target process exhibit a complicated be-
havior (see Appendix C). In order to reduce the computational cost while
maintaining the representational power, we introduce a discrete mixture vari-
able M for each time slice as done by [21] for static domains (see Fig. 6).
A related dynamic model is the switching state-space model (SSSM), which
was proposed to combine discrete and continuous dynamics [13]. The repre-
sentational power and computational efficiency of the SSSM have been well
demonstrated [13,2]. The model we propose differs from the SSSM not only by
the introduction of a class variable, but also by our model using the discrete
class variables to carry the dynamics over time (whereas this is achieved by
the latent mixture node for the SSSM). SSSMs focus on modeling non-linear
real-world process with one single system state (class), whereas our model is
intended to capture the non-linearity of multiple system states (classes) at the
same time.

We call our model a dynamic latent classification model (dLCM), and note
that we for each time slice can regard the model as combining a näıve Bayes
model with a mixture of factor analyzers. In this case, the mixture variable
follows a multinomial distribution conditioned on the class variable, and the
attributes Y t follow a multivariate Gaussian distribution conditioned on the
latent variables and the discrete mixture variable, i.e.:

M t|{Ct = ct} ∼ P (M t|Ct = ct),

Y t|{Zt = zt,M t = mt} ∼ N(Lmtzt,Θmt),

where 1 ≤ mt ≤ |sp (M)|.

4 Learning and inference

In what follows we discuss algorithms for performing inference and learning
in the proposed models.
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Fig. 6. A mixture variable M is introduced at each time slice to extend of the model,
with k = 2, n = 4.

4.1 Inference

By inference we mean to calculate the conditional distribution over some vari-
ables of interest given observations of others, for instance calculating P (ct|y1:t).
As the number of time-slices for which data has been collected may be quite
large, we are looking for an efficient way of calculating these probability dis-
tributions.

As our model is structurally similar to the linear dynamical systems model [1],
we will find inspiration for our inference scheme from the inference algorithms
associated with those models [30,1]. Therefore, we will consider two phases of
inference, the forward (or filtering) phase and the backward (smoothing) phase.
The results of the forward and backward calculations are given in the next
subsections; further details can be found in Appendix A.

Filtering using forward recursion

The goal of the filtering phase is to quantify the uncertainty over the state
of the system at time t given the observations we have up to and includ-
ing time t. Primarily, the variable of interest is the class variable Ct, but
simultaneously, the latent variables (Zt,M t) also convey information, and
are therefore also of relevance. We thus calculate the probability distribution
p(ct, zt, mt|y1:t) during filtering, and this is done recursively in t. This means
that p(ct, zt, mt|y1:t) is found using the related results from the previous time-
step, p(ct−1, zt−1, mt−1|y1:t−1), combined with information about how likely
the new observation yt is and how the system evolves over time (see also
Appendix A):

p(zt, mt, ct, |y1:t) ∝ p(yt|zt, mt) p(mt|ct) ·
∑

ct−1

p(ct|ct−1)
∫

zt−1
p(zt|zt−1, ct)

∑

mt−1

p(zt−1, mt−1, ct−1|y1:t−1) dzt−1. (2)
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However, by examining the inference rule above we see that exact filtering
is intractable (scaling exponentially with t, see also [24,2]) because neither
the class variables nor the mixture variables are observed: At time t = 1,
p(z1, m1, c1|y1) is built up by a single Gaussian. However, at time-step t = 2,
due to the summation over the class variable C1 and mixture variable M1

in Equation (2), p(z2, m2, c2|y1:2) will contain a mixture of |sp (C)| · |sp (M)|
Gaussians; the model contains a mixture of |sp (C)|2 · |sp (M)|2 Gaussians at
t = 3, and so on. To control this explosion in computational complexity, we
will resort to Gaussian collapse method [3,2]. The Gaussian collapse guarantees
that the distribution p(zt, mt, ct, |y1:t) is represented by a single Gaussian at
any time-step t; details are given in Appendix A.

Smoothing using the backward recursion

Similar to the forward pass, the backward pass also relies on a recursive
computation. Note that where the traditional forward-backward algorithm
would make use of the backward-phase to calculate p(yt+1:T |zt, mt, ct) [1], we
rather follow [2] and calculate p(zt, mt, ct|y1:T ) instead. The idea is to com-
pute p(zt, mt, ct|y1:T ) from the corresponding result of the previous recursive
step, p(zt+1, mt+1, ct+1|y1:T ). As the calculations are a bit involved they are
not presented here, but can be found in Appendix A.2.

There are two approximations involved when completing the backward re-
cursion: Firstly, similar to [2], we approximate p(zt+1|mt:t+1, ct:t+1,y1:T ) by
p(zt+1|mt+1, ct+1,y1:T ). Secondly, we observe that p(zt, mt, ct|y1:T ) will be-
come a mixture of Gaussians, and the number of components increases ex-
ponentially in T − t (see Equation (A.3)). We therefore resort to the same
solution strategy as for the forward phase, and approximate p(zt, mt, ct|y1:T )
by a single Gaussian at each time-point t; see Appendix A for more details.

4.2 Learning

Learning the dLCM model involves estimating the parameters of the model,
the number of latent variables, and the number of mixture components. With
the number of latent variables and the number of mixture components spec-
ified, parameter learning becomes simple: since the class variables are always
observed during learning, the resulting model is similar to a linear state-space
model for which an EM-algorithm [4] can be applied.

Following the approach of [21], we determine the number of latent variables,
k, and the number of mixture components, |sp (M)|, by performing a system-
atic search over a selected subset of candidate structures (note that a model
structure is completely specified by its number of latent variables and num-
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ber of mixture components). For each candidate structure we learn the model
parameters by applying the EM-algorithm, and the quality of the resulting
model is then evaluated using the wrapper approach [19]. Finally, we select
the model with the highest score.

Algorithm 1 Learn an dLCM classifier with the wrapper approach

Input: A dataset D1:T . Number of wrapper folds to use: γ.
Output: A dLCM classifier.

1: Partition the dataset into γ wrapper folds W 1, . . . ,W γ so that each W w

is a (time-)continuous part of D1:T .
2: for possible values of k and |sp (M)| do
3: for w = 1, . . . , γ do

4: Learn a classifier from the D1:T \W w.
5: Calculate the accuracy on the validation dataset W w.
6: end for

7: Score the parameter-pair (k, |sp (M)|) by the average accuracy ob-
tained over the wrapper folds.

8: end for

9: Select the values of k and |sp (M)| with highest accuracy.
10: return classifier learned with these parameters.

In data-rich situations one may alternatively choose to use a validation-set for
model selection instead of employing the wrapper-approach. The loop starting
on Line 3 in Algorithm 1 is in this case replaced by a single call to the parame-
ter learning routine (using the full training-set D1:T ), and the model selection
part (Line 7) will be based on the accuracy obtained on the validation-set.
This is the approach we will use in Section 5.

The parameters of the dLCM model are learned using the EM algorithm. At
each iteration, the model parameters are obtained by maximizing the expected
log likelihood function, resulting in the updating rules given in Appendix B.

5 Experiments Results

5.1 Setup

In this section we empirically analyze the performance of the proposed dy-
namic latent classification model. The analysis is based on the oil drilling data
described in Section 2. The data consists of sensor readings from 62 sensors
captured at a sampling frequency of every 5 seconds. Out of the 62 sensors,
domain experts deem that only 9 of the sensors are important for recogniz-
ing the activities listed in Section 2. Consequently, we focus on this reduced
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set of sensor readings in the experiments. The data was collected during ap-
proximately 31 hours, yielding time series data containing 220 000 observation
vectors, where each observation vector consists of a value for the class vari-
able (encoding the type of activity being performed) and a configuration of
the nine sensor variables.

The full dataset covers a total of five oil drilling activities, namely drilling,
connection, tripping in, tripping out, and others ; others is an abstract ac-
tivity covering all other activities besides the four mentioned previously, c.f.
Section 2. In our experiments, the data was divided into training, validation,
and test datasets consisting of 90 000, 80 000, and 50 000 time slices, respec-
tively. The training data was chosen as the initial segment of the time series,
whereas the validation and test set was chosen as the intermediate and end
segment, respectively. We note that since the different segments represent dif-
ferent phases of the drilling, the data generation process may be different in
the three segments (even for the same activity), and furthermore, the fraction
of time spent doing the different activities may also change between the seg-
ments. As an example, tripping into the well will take more time when the
length of the well increases, and correspondingly, the marginal probability for
doing the Tripping In activity changes from 12% during the initial phase (the
training set) to 21% in the last phase (the test set); see Table 1 for further
details. Obviously, this complicates the classification problem further.

Table 1
Empirical distribution over the activities for training-set, validation-set and test-set

Activity Training-set Validation-set Test-set

Drilling 42.7% 42.1% 42.6%

Connection 32.5% 21.4% 23.3%

Tripping in 12.2% 15.7% 21.3%

Tripping out 10.8% 20.8% 12.8%

Others 1.8% 0.0% 0.0%

For the classification of the five activities, we have followed the recommen-
dations of the domain experts and used a two-step hierarchical classification
process. At the first step we construct two abstract activities by first merging
together the three activities drilling, connection, and others into one group,
then the activities tripping in and tripping out into another. For the exper-
iments, this corresponds to constructing a new data set, where the actual
activities have been replaced by the two activities drilling/connection and
tripping in/out. After having classified an activity as e.g. tripping in/out, we
proceed with a second step and attempt to refine the classification by reclassi-
fying the activity as either tripping in or tripping out. Consequently, we have
trained three distinct classifiers (Mtop, Mi/o, and Md/c) corresponding to the
two-step classification procedure of the activities. When conducting the ex-
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periments we first deployed the Mtop model to classify an activity at time t as
either drilling/connection or tripping in/out. If the activity was classified as
tripping in/out we used the model Mi/o to refine the classification based on the
largest consecutive sequence of data points yt′:t classified as tripping in/out.
The process for reclassifying drilling/connection is analogous, but using Md/c.

5.2 Learning procedure for the dLCM models

The dLCM learning framework consists of two components: learning the pa-
rameters for a given model structure and finding an appropriate model struc-
ture. In our learning setup these two activities are interleaved (see Section 4.2).
For learning the model parameters, we employ the EM algorithm described
in Section 4.2, where the termination condition was set to either 50 iterations
or if the relative change in log-likelihood over two consecutive iterations falls
below ǫ = 10−4. In order to find the structure of the model (i.e., the number
of latent variables and the state space of the mixture variable M) we adopt a
greedy search strategy. More specifically, the search strategy is characterized
by i) a systematic approach for selecting values for |sp (M)| and |sp (Z)|, and,
given such a pair of values, ii) learning the parameters in the model. Each
candidate model is then scored by estimating its classification accuracy using
a separate validation dataset.

When learning classification models for the second hierarchical step (the Mi/o

and Md/c models), we first extract the relevant training data, e.g., those ex-
amples that are classified as either tripping in or tripping out are relevant for
Mi/o, and subsequently use this extracted data for learning. We thereby obtain
a collection of time series, but for the purpose of the experiments reported in
the present paper, we have treated these time series as a single time series
during learning. For future work, the learning algorithm will be adapted to
allow for multiple time series.

5.3 Results

To analyze the classification performance of the dLCM classifier, we have
compared the following list of classifiers: 1

NB: The näıve Bayes classifier discussed in Section 3.1.
dNB: The näıve Bayes classifier extended with dynamics on the class variable
(described in Section 3.2).

1 Observe that all the intermediate models considered in the development of the
dLCM model are included among the straw-men.
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dLCM1: The dLCM classifier without the mixture component, as described
in Section 3.3. The name is chosen to signify that the model is identical to
a dLCM with only one state for the mixture variable (i.e., |sp (M)| = 1).

dLCM: The full dLCM classifier, with structure learned as described above.
LGL: The local-global learning extension of the näıve Bayes classifier towards
discriminative learning [38].

J48: The J48 decision tree implementation in Weka [14] using standard pa-
rameter settings.

Note that the static classifiers (NB, LGL, J48) base their activity-classification
at time t only on yt, whereas the dynamic classifiers (dNB, dLCM1, dLCM)
use observations up until time t.

The results of the first hierarchical classification step for drilling/connection
and tripping in/out are summarized in Table 2. We see that the classification
accuracy increases with the expressiveness of the model: The poorest results
are obtained by the näıve Bayes and LGL models. Adding dynamics at the
class level (dNB) improves the results, but somewhat surprisingly, only by
0.03%. dLCM1 is clearly better than dNB, hence it seems that representing
the dynamics only at the class level (as the dNB does) is not sufficient to
recognize the different activities; one must also capture the dynamics among
the attributes to faithfully represent the important properties of the data. In-
troducing the ability to model non-linear systems in the full dLCM model also
contributes significantly by reducing the error from 2.86% to 1.28%. Finally,
it is interesting to see that J48 also fares very well at this level of classifica-
tion, being able to separate the combined activities almost at the same level
as dLCM1.

Table 2
Summary of classification accuracy for the first hierarchical step.

Model Classification accuracy

NB 84.77

dNB 84.80

dLCM1 97.14

dLCM 98.72

LGL 84.77

J48 96.83

The detailed classification results using the dLCM classifier are shown in
Fig. 7, with time on the x-axis and the class label on the y-axis. The combina-
tion drilling/connection corresponds to y = 1 and tripping in/out corresponds
to y = 2. The correct classifications are shown in the topmost plot and the
dLCM classifications are given in the lowermost plot. The results appear to be
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quite good overall, but with some patches of observations erroneously classified
as tripping in/out.
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Fig. 7. The dLCM classification results for the first hierarchical step:
drilling/connection activity (1) vs. tripping in/out activity (2).

Next, we trained separate classifiers for recognizing the fives activities drilling,
connection, tripping in, tripping out, and other in an hierarchical process as
outlined above. The results are given in Table 3. We can see the same tendency
as we did for the aggregated activities (Table 2) apart from two important
issues: Firstly, we see a clearer benefit of the dynamic model at the class level,
as the dNB is now much better than the NB. Secondly, J48 does not produce
good results for the full hierarchical classification procedure. Where J48 could
separate the aggregated activities using combinations of attribute values inside
a single time-step that were impossible (NB, dNB, LGL) or costly (dLCM1,
dLCM) to capture for the other models, this is clearly not sufficient for the
overall classification task.

Table 3
Summary of the accuracy results for the full hierarchical classification process.

Model Accuracy

NB 58.53

dNB 61.69

dLCM1 76.29

dLCM 82.09

LGL 60.41

J48 66.75

For completeness, Table 4 shows the results of each refinement-classifier. In
this table, each number gives the accuracy of that sub-classifier given that
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the aggregated class is correct. For instance, 60.72 for “NB – tripping in/out”
means that out of all examples that are either tripping in or tripping out,
NB classifies 60.72% correctly. Apparent discrepancies between Table 3 and
Table 4 are thus to be understood in light of misclassifications at the top-level
of the hierarchical process (see also Table 2). The conclusions we can draw
from Table 4 correspond well with those drawn from Table 3: Firstly, the
experimental results show that the dLCM classifiers (dLCM1, dLCM) achieve
significantly better accuracy results than the static classifiers (NB, J48, and
LGL). This verifies the need for dynamic classification models as outlined in
this paper. Next, the results also show that the full dLCM is more effective
than the two intermediate dynamic straw-men (dNB, dLCM1), justifying the
added model complexity of the dLCM classifier. Finally, we would like to note
that the accuracy results for tripping in/out are consistently lower than those
for drilling/connection. A potential contributing factor to this difference is the
change in data characteristics (in particular, the distribution of the tripping
in/out activities) that we observe when comparing the training, validation,
and test set; see also Table 1.

Table 4
Accuracy results for the second-level classifications.

Model tripping in/out drilling/connection

NB 60.72 67.64

dNB 59.96 76.23

dLCM1 75.57 76.66

dLCM 75.57 85.47

LGL 61.07 70.18

J48 57.88 69.56

Table 5 lists the models that were selected by the learning procedure. We
chose the number of latent variables in the interval from k = 3 and up to
k = 27 while keeping |sp (M)| = 1 for dLCM1; the full dLCM models were
chosen with k ∈ [3, 27] and |sp (M)| ∈ [1, 3].

Table 5
The complexity of the learned LCM models.

Classifier dLCM1 dLCM

Mtop k = 24 k = 24, |sp (M)| = 2

Mi/o k = 21 k = 21, |sp (M)| = 1

Md/c k = 24 k = 21, |sp (M)| = 3

Finally, the detailed behavior of the dLCM classifier can be seen in Fig. 8,
where again time runs along the x-axis and activity is encoded on the y-axis.
For the activities, Drilling corresponds to a value of 1, Connection is given
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value 2, Tripping In and Tripping Out are encoded as y = 3 and y = 4
respectively, and finally Others maps to a value of 5. The top-most plot shows
the correct classifications, whereas the bottom-most plot shows the results of
the dLCM classifier. It is apparent that many of the mistakes made by the
classifier is due to an over-reliance on the Other-activity, which is in fact not
present in the test-set at all. A reason for this behavior is that since Other is
made up by a combination of several activities, its data pattern is not very well
defined, and therefore basically used as a “default” when no activity seems to
fit the data well.
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Fig. 8. The detailed accuracy results for the full hierarchical classification process.

6 Conclusions

Systems for analyzing streaming data are of great importance for reliability
engineering, where an obvious application area is process monitoring; when
monitoring a process the typical task is to determine the state of the process
based on streaming data consisting of current and past sensor readings. In
this paper we have described a new family of models specifically designed for
the analysis and classification of such streaming data. We have specified data-
driven learning and inference procedures for this model class and exemplified
its use by looking at online activity recognition for an oil drilling facility, where
we empirically showed that our classification model significantly outperforms
other standard candidate straw-men classifiers.
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Our dynamic latent classification model (dLCM) generalizes the latent classifi-
cation model by Langseth and Nielsen [21] to dynamic domains, and is closely
related to switching stat-space models [13]. The model class is sufficiently ex-
pressive to capture the underlying dynamics of the oil drilling data, but is
unfortunately not amenable to exact inference. Instead we have employed an
approximate inference scheme inspired by [2]. We have already initiated an
investigation into the appropriateness of the approximate inference scheme
by comparing our approach to traditional sampling techniques (e.g., [11]), see
[37] for details, and we plan to continue this investigation as part of our future
work.

The dLCM model is a general purpose classification model for dynamic data,
and even though we have exemplified its use for activity detection in the oil
production domain, other risk and reliability applications are also relevant.
As an example, we plan to use the classification model to do event detection
directly, i.e., to foresee – and therefore help the operators prevent – undesired
situations. This can be a difficult problem if the events one tries to to detect
are rare, as that would lead to unbalanced classification problems [16], and
we thus plan to devise a semi-discriminative strategy in the spirit of [38] to
examine the appropriateness of maximum-likelihood based learning in this
setting. Finally, traditional probabilistic classification based on Equation (1)
requires the specification of a meaningful loss-function, and in this paper we
have utilized the 0/1-loss, which is identical to maximizing the classification
accuracy. In the dynamic classification setting, one could also want to encode
more advanced statements that take the dynamics into consideration, like for
instance “Detecting an event before a minute has past is worth $1, but detection
after 90 seconds is useless”. Such statements require a richer representation
than a (static) loss function, and we are planning to look into formal languages
for describing them.
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A Inference

A.1 Forward recursion: filtering

A simple decomposition of p(zt, mt, ct|y1:t) gives us

p(zt, mt, ct|y1:t) = p(zt, mt, ct,yt|y1:t−1)/p(yt|y1:t−1)

∝ p(zt, mt, ct,yt|y1:t−1).

Disregarding the normalisation constant p(yt|y1:t−1) for now, we examine
p(zt, mt, ct,yt|y1:t−1) further. Using the law of total probability, we get

p(zt, mt, ct,yt|y1:t−1)=
∫

zt−1

∑

mt−1

∑

ct−1

p(zt−1:t, mt−1:t, ct−1:t,yt|y1:t−1)dzt−1

=
∫

zt−1

∑

mt−1

∑

ct−1

p(zt−1, mt−1, ct−1|y1:t−1) · (A.1)

p(yt, zt, mt, ct|y1:t−1, zt−1, mt−1, ct−1)dzt−1.

Equation (A.1) can be simplified, but first we note that the term p(zt−1, mt−1, ct−1|y1:t−1)
is already available form the previous time-step, and thus needs no further re-
calculation. Next,

p(yt,zt, mt, ct|y1:t−1, zt−1, mt−1, ct−1) =

p(yt|zt−1:t, mt−1:t, ct−1:t,y1:t−1) · p(zt|zt−1, mt−1:t, ct−1:t,y1:t−1)·

p(mt|zt−1, mt−1, ct−1:t,y1:t−1) · p(ct|zt−1, mt−1, ct−1,y1:t−1),

and now we can utilize the conditional independence statements encoded in
the model. We notice (see also Fig. 6) that

Y t⊥⊥{Y 1:t−1, Ct−1:t, Zt−1,M t−1}|{Zt,M t},

thus p(yt|zt−1:t, mt−1:t, ct−1:t,y1:t−1) = p(yt|zt, mt), which is simply a pa-
rameter of the model, and therefore requires no further calculation. In a
similar way, we can find that, p(zt|zt−1, mt−1:t, ct−1:t,y1:t−1) = p(zt|zt−1, ct),
p(mt|zt−1, mt−1, ct−1:t,y1:t−1) = p(mt|ct) and p(ct|zt−1, mt−1, ct−1,y1:t−1) =
p(ct|ct−1). Eventually, we obtain

p(zt, mt, ct, |y1:t) ∝ p(yt|zt, mt) p(mt|ct) ·
∑

ct−1

p(ct|ct−1)
∫

zt−1
p(zt|zt−1, ct)

∑

mt−1

p(zt−1, mt−1, ct−1|y1:t−1) dzt−1,

(A.2)

which shows how p(zt, mt, ct, |y1:t) can be calculated recursively in t.
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However, by examining Equation (A.2) we see that exact filtering is intractable
(scaling exponentially with t, see also [24,2]) because neither the class variables
nor the mixture variables are observed: At time t = 1, p(z1, m1, c1|y1) is built
up by a single Gaussian. However, at time-step t = 2, due to the summation
over the class c1 and mixture variable m1 in Equation (A.2), p(z2, m2, c2|y1:2)
will contain a mixture of |sp (C)| · |sp (M)| Gaussians; the model contains a
mixture of |sp (C)|2 · |sp (M)|2 Gaussians at t = 3, and so on. To control this
explosion in computational complexity, we will resort to Gaussian collapse
[3,2]. The Gaussian collapse guarantees that the distribution p(zt, mt, ct, |y1:t)
is represented by a single Gaussian at any time-step t.

A.2 Backward recursion: smoothing

To compute p(zt, mt, ct|y1:T ), we factorize it as

p(zt,mt, ct|y1:T ) =
∑

mt+1

∑

ct+1

∫

zt+1
p
(
zt:t+1, mt:t+1, ct:t+1|y1:T

)
dzt+1

=
∑

mt+1

∑

ct+1

p(mt+1, ct+1|y1:T ) · p(mt, ct|mt+1, ct+1,y1:T )·

∫

zt+1
p(zt|zt+1, mt:t+1, ct:t+1,y1:T ) · p(zt+1|mt:t+1, ct:t+1,y1:T ) dzt+1.

We note that Zt+1 6⊥⊥{M t, Ct}|{Y 1:TM t+1, Ct+1}, but following [2] we assume
that the influence of {M t, Ct} on Zt+1 is “weak” compared to the influence
from Y 1:T ,M t+1 and Ct+1, and we will thus approximate p(zt+1|mt:t+1, ct:t+1,y1:T )
by p(zt+1|mt+1, ct+1,y1:T ). We are left with the approximation

p(zt,mt, ct|y1:T ) ≈
∑

mt+1

∑

ct+1

p(mt, ct|mt+1, ct+1,y1:T ) ·

∫

zt+1
p(zt+1, mt+1, ct+1|y1:T ) · p(zt|zt+1, mt:t+1, ct:t+1,y1:T ) dzt+1.

(A.3)

Noticing that Zt⊥⊥{Y t+1:T ,M t+1}|{Y 1:t,M t, Ct:t+1,Zt+1},

p(zt|zt+1, mt:t+1, ct:t+1,y1:T ) = p(zt|zt+1, mt, ct:t+1,y1:t)

∝ p(zt, zt+1|mt, ct:t+1,y1:t)

= p(zt+1|zt, ct+1) · p(zt|mt, ct,y1:t),

where p(zt+1|zt, ct+1) is a parameter in the model, and p(zt|mt, ct,y1:t) is
calculated during the forward phase.

Since p(zt+1, mt+1, ct+1|y1:T ) in Equation (A.3) is known from the previous
step in the backwards recursion, the last piece of the puzzle is to determine
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how to calculate

p(mt,ct|mt+1, ct+1,y1:T )

∝
∫

zt+1
p(mt, ct|zt+1, mt+1, ct+1,y1:T ) · p(zt+1, mt+1, ct+1|y1:T ) dzt+1.

Again, p(zt+1, mt+1, ct+1|y1:T ) is known from the previous step in the back-
wards recursion, and

p(mt,ct|zt+1, mt+1, ct+1,y1:T ) = p(mt, ct|zt+1, mt+1, ct+1,y1:t)

∝ p(zt+1|ct:t+1, mt:t+1,y1:t) · p(mt, ct|ct+1, mt+1,y1:t)

=
∫

zt

p(zt+1|zt, ct:t+1, mt:t+1,y1:t)p(zt|ct:t+1, mt:t+1,y1:t) dzt·

p(mt, ct|ct+1, mt+1,y1:t)

=
∫

zt

p(zt+1|zt, ct+1)p(zt|ct, mt,y1:t) dzt·

p(mt|ct,y1:t) · p(ct|y1:t, ct+1).

(A.4)

Since p(ct|y1:t, ct+1) ∝ p(ct+1|ct) ·p(ct|y1:t), it follows that Equation (A.4) only
contains terms that are readily available from the model definition or have
already been calculated during the forward phase.

The calculations above show how we achieve the recursion for the backward
pass using quantities that can be computed from previous results or from the
forward recursion. There are two approximations in the backward recursion:
Firstly, we approximated p(zt+1|mt:t+1, ct:t+1,y1:T ) by p(zt+1|mt+1, ct+1,y1:T ).
Secondly, we note that also p(zt, mt, ct|y1:T ) in Equation (A.3) is a mixture
of Gaussians, and this time the number of components increase exponentially
in T − t. We employ the same solution strategy as for the forward phase, and
approximate p(zt, mt, ct|y1:T ) by a single Gaussian at each time-point t.

B Learning

B.1 The M-step

The parameters of dLCM model are A,L,Σ,Θ,Φ,J ,K. At each iteration,
these parameters can be obtained by taking the corresponding partial deriva-
tive of the expected log likelihood. The following are the results:

L, the linear dynamics from the latent space to the attribute spaces: Li,mt

denotes the i’th row of this matrix when the mixture node is mt.
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∂Q

∂Li,mt

= Θ−1
i,mt

T∑

t=1

{
P (M t = mt|D1:T )E[Zt(Zt)T|M t = mt,D1:T ]Li,mt−

(yti − Φi,mt)P (M t = mt|D1:T )E[Zt|M t = mt,D1:T ]
}

L̂i,mt =
( T∑

t=1

{
P (M t = mt|D1:T )E[Zt(Zt)T|M t = mt,D1:T ]

})−1

·

T∑

t=1

{
(yti − Φi,mt)P (M t = mt|D1:T )E[Zt|M t = mt,D1:T ]

}

Φ, the offset from the latent space to the attribute spaces: Φi,mt denotes the
i’th row of this matrix when the mixture node is mt.

∂Q

∂Φi,mt

=
T∑

t=1

{
2P (M t = mt|D1:T )(yti − Φi,mt)− 2P (M t = mt|D1:T )LT

i,mt ·

E[Zt|M t = mt,D1:T ]
}

Φ̂i,mt =
1

∑T
t=1

{
P (M t = mt|D1:T )

}
( T∑

t=1

{
P (M t = mt|D1:T )yti

}
−

T∑

t=1

{
P (M t = mt|D1:T )LT

i,mtE[Zt|M t = mt,D1:T ]
})

Θ, the covariance matrices of the attribute spaces: Θi,mt denotes the i’th ele-
ment on the diagonal of the matrix when the mixture node is mt.

∂Q

∂Θi,mt

= −
1

2
Θ−1

i,mt

T∑

t=1

{
P (M t = mt|D1:T )

}
+

1

2
Θ−2

i,mt

T∑

t=1

{
(yti − Φi,mt)2·

P (M t = mt|D1:T )− 2(yti − Φi,mt)P (M t = mt|D1:T )LT

i,mt ·

E[Zt|M t = mt,D1:T ] + P (M t = mt|D1:T )LT

i,mt ·

E[Zt(Zt)T|M t = mt,D1:T ]Li,mt

}
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Θ̂i,mt = −
1

∑T
t=1

{
P (M t = mt|D1:T )

}
T∑

t=1

{
(yti − Φi,mt)2P (M t = mt|D1:T )−

2(yti − Φi,mt)P (M t = mt|D1:T )LT

i,mtE[Zt|M t = mt,D1:T ]+

P (M t = mt|D1:T )LT

i,mtE[Zt(Zt)T|M t = mt,D1:T ]Li,mt)
}

Σ, the covariance matrices of the latent spaces: Σc denotes the diagonal matrix
when the class variable is c.

∂Q

∂Σc

= −
αc

2
Σ−1

c

(
I −

1

αc

∑

t:ct=c

{
E[Zt(Zt)T|D1:T ]Σ−1

c

}
+ 2

1

αc

∑

t:ct=c

{
Ac·

E[Zt−1(Zt)T|D1:T ]Σ−1
c

}
−

1

αc

∑

t:ct=c

{
AcE[Z

t−1(Zt−1)T|D1:T ]AT

cΣ
−1
c

})

Σ̂c =
1

αc

∑

t:ct=c

{
E[Zt(Zt)T|D1:T ]− 2AcE[Z

t−1(Zt)T|D1:T ] +Act ·

E[Zt−1(Zt−1)T|D1:T ]AT

ct

}

A, the linear dynamics within the latent space from one time slice to next
time slice: Ac denotes the matrix when the class variable is c.

∂Q

∂Ac

= −2
∑

t:ct=c

{
Σ−1

c E[Zt(Zt−1)T|D1:T ]
}
+

2
∑

t:ct=c

{
Σ−1

c AcE[Z
t−1(Zt−1)T|D1:T ]

}

Âc =
∑

t:ct=c

{
E[Zt(Zt−1)T|D1:T ]

}
·
( ∑

t:ct=c

{
E[Zt−1(Zt−1)T|D1:T ]

})−1

J , the transition matrix of class variable is directly obtained by using fre-
quency estimation on P (ct|ct−1)

K, the transition matrix of the mixture node is computed based on P (mt|ct =
c,D1:T ) :
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P (mt|ct = c,D1:T ) =

∑
t:ct=c

{
P (M t = mt|D1:T )

}

∑T
t=1

{
P (M t = mt|D1:T )

}

B.2 The E-step

To complete the maximization step, the following expected terms need to
be calculated given M t = mt (this also applies when M t is taking on other
values):

• P (M t = mt|D1:T ),
• E[Zt|M t = mt,D1:T ],
• E[Zt(Zt)T|M t = mt,D1:T ],
• E[Zt−1(Zt−1)T|D1:T ], and
• E[Zt(Zt−1)T|D1:T ].

P (M t = mt|D1:T ) and E[Zt|M t = mt,D1:T ] can be directly obtained from a
process similar to rauch-tung-striebel smoother [30]. By a further decomposi-
tion, we can also obtain that:

E[Zt(Zt)T|M t = mt,D1:T ] = Cov[Zt|M t = mt,D1:T ]

+ E[Zt|M t = mt,D1:T ]
{
E[Zt|M t = mt,D1:T ]

}
T

E[Zt(Zt−1)T|D1:T ] = Cov[Zt(Zt−1)T|D1:T ]

+ E[Zt|D1:T ]
{
E[Zt−1|D1:T ]

}
T

where Cov[Zt(Zt−1)T|D1:T ] can be calculated with the quantities obtained
from rauch-tung-striebel smoother process:

Cov[Zt(Zt−1)T|D1:T ] = Cov[Zt(Zt−1)T|D1:t]

+ (E[Zt|D1:T ]− E[Zt|D1:t])/E[Zt|D1:T ]

· Cov[Zt(Zt−1)T|D1:t]

After obtaining all the expected term required from the maximization step,
the EM steps for the dLCM is then complete.
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C Fitting a linear dynamical system to model any time series

In the following, we will show that a linear dynamical system can model any
real-world time series, given sufficient dimension of latent continuous space.

Assume we have observed the series v1, . . . , vT . Our goal is to find a linear
dynamical system with transition matrix A and emission matrix B that can
fit this given series. We call the latent variables at time t H t. At each time
step we require that BH t = vt, and utilizing the definition of the model,
we have that H t = At−1h1, giving the requirement that BAt−1h1 = vt for
t = 1, . . . , T . These requirements can naively be fulfilled by letting H t have
a number of states equal to the observation sequence (i.e., |sp (H t)| = T ),
define h1 = [1, 0, . . . , 0]T, and let A = L1, the lower shift matrix. In this case,
ht = At−1h1 is a vector of only zeros, apart from a single “1” at location
t. Defining B to hold the observations, B = [v1 v2 . . . vT ], the constraints
above are trivially fulfilled.

We note that the representation above is extremely wasteful, and therefore not
useful in practice, but it still proves the point that these models can indeed
represent any observation sequence if so desired.
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