Circulating microvesicles and exosomes in small cell lung cancer by quantitative proteomics

  • Shona Pedersen (Ophavsperson)
  • Katrine Papendick Jensen (Aalborg University) (Ophavsperson)
  • Bent Honoré (Aarhus University, Aalborg University) (Ophavsperson)
  • Søren Risom Kristensen (Ophavsperson)
  • Camilla Holm Pedersen (Ophavsperson)
  • Weronika Maria Szejniuk (Ophavsperson)
  • Raluca Georgiana Maltesen (Westmead Millennium Institute for Medical Research) (Ophavsperson)
  • Ursula Gerda Inge Falkmer (Ophavsperson)



Abstract Background Early detection of small cell lung cancer (SCLC) crucially demands highly reliable markers. Growing evidence suggests that extracellular vesicles carry tumor cell-specific cargo suitable as protein markers in cancer. Quantitative proteomic profiling of circulating microvesicles and exosomes can be a high-throughput platform for discovery of novel molecular insights and putative markers. Hence, this study aimed to investigate proteome dynamics of plasma-derived microvesicles and exosomes in newly diagnosed SCLC patients to improve early detection. Methods Plasma-derived microvesicles and exosomes from 24 healthy controls and 24 SCLC patients were isolated from plasma by either high-speed- or ultracentrifugation. Proteins derived from these extracellular vesicles were quantified using label-free mass spectrometry and statistical analysis was carried out aiming at identifying significantly altered protein expressions between SCLC patients and healthy controls. Furthermore, significantly expressed proteins were subjected to functional enrichment analysis to identify biological pathways implicated in SCLC pathogenesis. Results Based on fold change (FC) ≥ 2 or ≤ 0.5 and AUC ≥ 0.70 (p
Dato for tilgængelighed2022