Projekter pr. år
Personlig profil
Forskningsprofil
Peter researches machine learning methods for Finance. More specifically, he develops fast and accurate methods for option valuation and calibration. In his research, he combines classical option theory methods with modern methods such as neural networks, tree regression, and differential machine learning to produce powerful tools for trading and risk management. He hopes these tools can improve solutions to complex, real-world problems, changing the world.
Samarbejde i de sidste fem år
Klik på punkterne for at se detaljerne.
Projekter
- 1 Afsluttet
-
Applications of machine learning in option theory
01/05/2021 → 01/05/2024
Projekter: Projekt › Ph.d.-projekt
Publikationer
- 2 Preprint
-
NN de-Americanization: A Fast and Efficient Calibration Method for American-Style Options
Lind, P. P. & Gatheral, J., 14 nov. 2023, SSRN: Social Science Research Network, 32 s.Publikation: Working paper/Preprint › Preprint
-
Overcoming the Feature Selection Issue in the Pricing of American Options
Lind, P. P., 28 jan. 2022, SSRN: Social Science Research Network, 24 s.Publikation: Working paper/Preprint › Preprint