Computational Oriented Real-time Convex Optimization in Signal Processing

Projektdetaljer

Beskrivelse

Convex optimization is an important tool in many areas of engineering. Recently we have seen convex optimization being used in an on-line setting where computational power and time is limited. In this case the optimization algorithm can usually only be obtained as a handtailored solution by convex optimization experts. This project will bring forth algorithms and software that automate this process such that a greater range of engineers and scientists can easily use real-time convex optimization. The proposed algorithms will, compared to state-of-the-art, efficiently use the possibilities of modern parallel and embedded computing platforms. This unleashes convex optimization models developed in the last 15 years for use in real-time signal processing systems.
AkronymRTC
StatusAfsluttet
Effektiv start/slut dato01/06/201430/06/2017

Finansiering

  • The Danish Council for Independent Research| Technology and Production Sciences
  • Danmarks Frie Forskningsfond | Sapere Aude

Fingerprint Udforsk forskningsemnerne, som dette projekt berører. Disse etiketter er oprettet på grundlag af de underliggende bevillinger/legater. Sammen danner de et unikt fingerprint.

  • Publikation

    • 10 Konferenceartikel i proceeding
    • 6 Tidsskriftartikel
    • 1 Rapport

    A Fast Interior-Point Method for Atomic Norm Soft Thresholding

    Hansen, T. L. & Jensen, T., dec. 2019, I : Signal Processing. 165, s. 7-19 13 s.

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • 20 Downloads (Pure)

    Speech Dereverberation Based on Convex Optimization Algorithms for Group Sparse Linear Prediction

    Giacobello, D. & Jensen, T. L., 2018, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018. IEEE, s. 446-450 5 s. 8462560. (I E E E International Conference on Acoustics, Speech and Signal Processing. Proceedings).

    Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

    Fil
    6 Citationer (Scopus)
    206 Downloads (Pure)

    A Fast Algorithm for Maximum Likelihood Estimation of Harmonic Chirp Parameters

    Jensen, T. L., Nielsen, J. K., Jensen, J. R., Christensen, M. G. & Jensen, S. H., 2017, I : I E E E Transactions on Signal Processing. 65, 19, s. 5137 - 5152

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

    Fil
  • 8 Citationer (Scopus)
    472 Downloads (Pure)