Projektdetaljer
Beskrivelse
SiC4GRID is a 42-months project gathering partners from the complete value chain of SiC-based converters collaborating to tackle current obstacles to the technologies' market uptake. SiC4GRID thus aims for an optimised integrated SiC-based technology composed of three-fold innovations in terms of hardware, software and IoT. Indeed, to optimise both techno-economic and environmental pillars,
the consortium will design, produce, test and validate an integrated product composed of a 30% smaller size energy-efficient SiC-based power module competitive with state-of-the-art technology and coupled with an adapted optimised self-healing energy management system (EMS). This EMS amplifies the benefits of a strong system-level IoT architecture and adapted digital tools such as digital twin and optimisation algorithms. Throughout the project, the circularity and eco-design of all steps of the converter manufacturing process will be targeted with a strong emphasis on resource optimisation and carbon emission reduction. The testing phase will be done both as an integrated modular converter on a physical test bench, as well as digitally to increase the variety of relevant applications and realcondition scenario. For the digital simulations, three use cases will therefore be chosen to increase the validated parameters and scope of applications, including MMC and SST converters, onshore/offshore wind and PV applications, as well as the potential for storage.
Overall, the project contributes to advancing the market readiness of the technology by lowering its cost (30% cost reduction compared to silicon converters), its size (15% size reduction), its lifetime (30+ years) and its environmental impact (30% resource consumption reduction and 50% CO2 emission reduction). In the longer-term, SiC4GRID will thus also help renewable energies integrate the energy
grid and bring European leadership to the forefront of converter technology providers.
the consortium will design, produce, test and validate an integrated product composed of a 30% smaller size energy-efficient SiC-based power module competitive with state-of-the-art technology and coupled with an adapted optimised self-healing energy management system (EMS). This EMS amplifies the benefits of a strong system-level IoT architecture and adapted digital tools such as digital twin and optimisation algorithms. Throughout the project, the circularity and eco-design of all steps of the converter manufacturing process will be targeted with a strong emphasis on resource optimisation and carbon emission reduction. The testing phase will be done both as an integrated modular converter on a physical test bench, as well as digitally to increase the variety of relevant applications and realcondition scenario. For the digital simulations, three use cases will therefore be chosen to increase the validated parameters and scope of applications, including MMC and SST converters, onshore/offshore wind and PV applications, as well as the potential for storage.
Overall, the project contributes to advancing the market readiness of the technology by lowering its cost (30% cost reduction compared to silicon converters), its size (15% size reduction), its lifetime (30+ years) and its environmental impact (30% resource consumption reduction and 50% CO2 emission reduction). In the longer-term, SiC4GRID will thus also help renewable energies integrate the energy
grid and bring European leadership to the forefront of converter technology providers.
Akronym | SiC4GRID |
---|---|
Status | Igangværende |
Effektiv start/slut dato | 01/10/2022 → 31/03/2026 |
Finansiering
- European Commission: 28.213.638,00 kr.
Fingerprint
Udforsk forskningsemnerne, som dette projekt berører. Disse etiketter er oprettet på grundlag af de underliggende bevillinger/legater. Sammen danner de et unikt fingerprint.