A Centralized and Scalable Uplink Power Control Algorithm in Low SINR Scenarios

Xuesong Cai, István Z. Kovács, Jeroen Wigard, Preben E. Mogensen

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

3 Citationer (Scopus)
59 Downloads (Pure)

Abstract

Power control is becoming increasingly essential for the fifth-generation (5G) and beyond systems. An example use-case, among others, is the unmanned-aerial-vehicle (UAV) communications where the nearly line-of-sight (LoS) radio channels may result in very low signal-to-interference-plus-noise ratios (SINRs). Investigations in [1] proposed to efficiently and reliably solve this kind of non-convex problem via a series of geometrical programmings (GPs) using condensation approximation. However, it is only applicable for a small-scale network with several communication pairs and practically infeasible with more (e.g. tens of) nodes to be jointly optimized. We therefore in this paper aim to provide new insights into this problem. By properly introducing auxiliary variables, the problem is transformed to an equivalent form which is simpler and more intuitive for condensation. A novel condensation method with linear complexity is also proposed based on the form. The enhancements make the GP-based power control feasible for both small-and especially large-scale networks that are common in 5G and beyond. The algorithm is verified via simulations. A preliminary case study of uplink UAV communications also shows the potential of the algorithm.
OriginalsprogEngelsk
TidsskriftIEEE Transactions on Vehicular Technology
Vol/bind70
Udgave nummer9
Sider (fra-til)9583-9587
Antal sider5
ISSN0018-9545
DOI
StatusUdgivet - sep. 2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'A Centralized and Scalable Uplink Power Control Algorithm in Low SINR Scenarios'. Sammen danner de et unikt fingeraftryk.

Citationsformater